双闭环可逆直流脉宽调速系统实验详细资料

合集下载

实验四双闭环可逆直流脉宽调速系统

实验四双闭环可逆直流脉宽调速系统

实验报告题目学院专业班级学号学生姓名指导教师完成日期年月日实验四双闭环可逆直流脉宽调速系统一.实验目的1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理. 2.熟悉直流PWM 专用集成电路SG3525 的组成、功能与工作原理。

3.熟悉H 型PWM 变换器的各种控制方式的原理与特点。

4.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。

二.实验内容1.PWM 控制器SG3525 性能测试。

2.控制单元调试。

3.系统开环调试。

4.系统闭环调试5.系统稳态、动态特性测试。

6.H 型PWM 变换器不同控制方式时的性能测试。

三.实验系统的组成和工作原理在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。

双闭环脉宽调速系统的原理框图如图6—10 所示。

图中可逆PWM 变换器主电路系采用MOSFET 所构成的H 型结构形式,UPW 为脉宽调制器,DLD 为逻辑延时环节,GD 为MOS 管的栅极驱动电路,FA 为瞬时动作的过流保护。

脉宽调制器UPW 采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。

由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。

四.实验设备及仪器1.教学实验台主控制屏。

2.NMCL—10A 组件。

4.NMEL-03组件。

5.NMEL—18D组件。

6.电机导轨及测功机。

7.直流电动机M03。

8.双踪示波器。

9. 万用表。

五.注意事项1.直流电动机工作前,必须先加上直流激磁。

2.接入ASR 构成转速负反馈时,为了防止振荡,可预先把ASR 的RP3 电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR 的“5”、“6”端接入可调电容(预置7μF)。

3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

双闭环直流调速实验报告

双闭环直流调速实验报告

双闭环直流调速实验报告双闭环直流调速实验报告引言:直流电机作为一种常见的电动机类型,广泛应用于工业生产和日常生活中。

为了提高直流电机的调速性能,双闭环直流调速系统应运而生。

本实验旨在通过搭建双闭环直流调速系统,对其性能进行测试和评估。

一、实验目的本实验的主要目的是研究和掌握双闭环直流调速系统的工作原理和性能特点,具体包括以下几个方面:1. 了解双闭环直流调速系统的组成和工作原理;2. 掌握双闭环直流调速系统的参数调节方法;3. 测试和评估双闭环直流调速系统的调速性能。

二、实验原理双闭环直流调速系统由速度环和电流环组成,其中速度环负责控制电机的转速,电流环负责控制电机的电流。

具体工作原理如下:1. 速度环:速度环通过测量电机的转速,与给定的转速进行比较,计算出转速误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电流环。

2. 电流环:电流环通过测量电机的电流,与速度环输出的控制信号进行比较,计算出电流误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电机。

三、实验步骤1. 搭建实验平台:将直流电机与电机驱动器连接,并将驱动器与控制器相连。

2. 参数设置:根据实验要求,设置速度环和电流环的PID参数。

3. 测试电机转速:给定一个转速值,观察电机的实际转速是否与给定值一致。

4. 测试电机负载:通过改变电机负载,观察电机的转速是否能够稳定在给定值附近。

5. 测试电机响应时间:通过改变给定转速,观察电机的响应时间,并记录下来。

6. 测试电流控制性能:通过改变电机负载,观察电机电流的变化情况,并记录下来。

四、实验结果与分析1. 电机转速测试结果表明,双闭环直流调速系统能够准确控制电机的转速,实际转速与给定值之间的误差较小。

2. 电机负载测试结果表明,双闭环直流调速系统能够在不同负载下保持电机的转速稳定,具有较好的负载适应性。

3. 电机响应时间测试结果表明,双闭环直流调速系统的响应时间较短,能够快速响应给定转速的变化。

实验四 双闭环控制可逆直流脉宽调速系统

实验四  双闭环控制可逆直流脉宽调速系统

实验四双闭环控制可逆直流脉宽调速系统(H 桥)一、实验目的(1)了解转速、电流双闭环可逆直流PWM调速系统的组成、工作原理及各单元的工作原理。

(2)掌握双闭环可逆直流PWM 调速系统的调试步骤、方法及参数的整定。

(3)测定双闭环直流调速系统的静态和动态性能指标。

二、实验原理图4-1 双闭环H 桥DC/DC 变换直流调速系统原理框图速度给定信号G,速度调节器ASR,电流调节器ACR,控制PWM信号产生装置UPM,DLD单元把一组PWM波形分成两组相差180°的PWM 波,并产生一定的死区,用于控制两组臂;GD的作用是形成四组隔离的PWM驱动脉冲;PWM 为功率放大电路,直接给电动机M供电;DZS是零速封锁单元;FA限制主电路瞬时电流,过流时封锁DLD单元输出;电流反馈调节单元CFR;速度反馈调节SFR。

三、实验所需挂件及附件四、实验内容与步骤(1)系统单元调试①速度调节器(ASR)和电流调节器(ACR)的调零把调节器的输入端1、2、3 全部接地,4、5 之间接50K电阻,调节电位器RP3,使输出端7绝对值小于1mv。

②速度调节器(ASR)和电流调节器(ACR)的输出限幅值的整定在调节器的3个输入中的其中任一个输入接给定,在4、5之间接50K电阻、1uF 电容,调节给定电位器,使调节器的输入为-1V,调节电位器RP1,使调节器的输出7为+4V(输出正限幅值);同样把给定调节为+1V,调节RP2,把负限幅值调节为-4V。

③零速度封锁器(DZS)观测首先把零速封锁器的输入悬空,开关S1拨至“封锁”状态,输出接速度或者电流调节器的零速封锁端6,无论调节器的输入如何调节,输出7始终为零。

把面板上的给定输出接至零速封锁单元其中一路,另一路悬空,增大给定,测量零速封锁单元输出端3:给定的绝对值大于0.26V左右时,封锁端3输出-15V;减小给定,给定的绝对值小于0.17V左右时,封锁端3输出+15V。

双闭环控制的直流脉宽调速系统(H桥)实验报告(2014)

双闭环控制的直流脉宽调速系统(H桥)实验报告(2014)

正转时,闭环控制特性 n = f(Ug)
n(rpm)
1172 1100 1000 902 791 692 594
Ug(V)
4.06 3.78 3.41 3.07 2.69 2.35 2.02
反转时,闭环控制特性 n = f(Ug)
n(rpm)
1168 1096 997
Ug(V)
4.02 3.77 3.43
实验名称:双闭环控制的直流脉宽调速系统(H 桥)
实验目的:
1. 了解 PMW 全桥直流调速系统的工作原理。 2. 分析电流环与速度环在直流调速系统中的作用。
实验仪器设备:
1.DJK01 电源控制屏; 2.DJK08 可调电阻、电容箱; 3.DJK09 单相调压与可调负载; 4.DJK17 双闭环 H 桥 DC/DC 变换直流调速系统; 5.DD03-2 电机导轨、测速发电机及转速表; 6.DJ13-1 直流发电机; 7.DJ15 直流并励发电机; 8.D42 三相可调电阻; 9.慢扫描示波器; 10.万用表。
实验数据及结果:
系统的开环特性 n =f(Id)
n(rpm)
1130
Id(A)
0.9
1160 0.8
1190 0.7
1225 0.58
1265 0.45
1288 0.4
1300 0.37
电动机转速接近 n=l200rpm,闭环机械特性 n =f(Id)
n(rpm)
1168 1146 1116 1101
Ug 不变,改变 RG 使 Id 逐渐下降,测出相应的转速 n 及电流平均值 Id。 2.系统闭环特性的测定:将电流反馈量调节电位器调到最高端。 转向选择开关拨至“正向”,Ug >0,电动机启动后,测量测速发电机输出电压,将高电 位端接入速度反馈的 T1 端,低电位端接入 T2 端,以保证速度反馈为负值。 闭环机械特性的测定: 1) 调节给定 Ug 、转速反馈和电流反馈调节电位器使电机转速 n=1200rpm,这时 Un

(完整word版)双闭环可逆直流脉宽PWM调速系统设计(精)

(完整word版)双闭环可逆直流脉宽PWM调速系统设计(精)

双闭环可逆直流脉宽PWM调速系统设计学院:机电工程学院学号:专业(方向)年级:学生姓名:福建农林大学机电工程学院电气工程系2011年 1 月7 日目录一. 设计任务书 (1)二.设计说明书 (3)2.1 方案确定 (3)2.1.1方案选定 (3)2.1.2桥式可逆PWM变换器工作原理 (3)2.1.3系统控制电路图 (6)2.1.4双闭环直流调速系统静态分析 (6)2.1.5双闭环直流调速系统稳态结构图 (7)2.2硬件结构 (9)2.2.1主电路 (9)2.2.2泵升压限制 (11)2.3主电路参数计算及元件选择 (12)2.3.1整流二极管选择 (12)2.3.2绝缘栅双极晶体管选择 (12)2.4调节器参数设计和选择 (13)2.4.1电流环的设计 (13)2.4.2转速环的设计 (16)2.4.3反馈单元 (18)2.5 系统总电路图 (19)三.心得体会 (20)交直流调速课程设计任务书一、题目双闭环可逆直流脉宽PWM调速系统设计二、设计目的1、对先修课程(电力电子学、自动控制原理等)的进一步理解与运用2、运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。

也可以制作硬件电路。

3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。

达到综合提高学生工程设计与动手能力的目的。

三、系统方案的确定自动控制系统的设计一般要经历从“机械负载的调速性能(动、静)→电机参数→主电路→控制方案”(系统方案的确定)→“系统设计→仿真研究→参数整定→直到理论实现要求→硬件设计→制版、焊接、调试”等过程,其中系统方案的确定至关重要。

为了发挥同学们的主观能动作用,且避免方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自己选定。

1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;3、机械负载为反抗性恒转矩负载,系统飞轮矩(含电机及传动机构)4、主电源:可以选择三相交流380V供电;5、他励直流电动机的参数:见习题集【4-19】(P96)=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2。

实验三 PWM转速,电流双闭环调速系统

实验三 PWM转速,电流双闭环调速系统

实验三 PWM 转速、电流双闭环调速系统一、实验目的1.了解转速、电流双闭环可逆直流PWM 调速系统的组成、原理及各单元的工作原理。

2.掌握双闭环可逆直流PWM 调速系统的调试步骤、方法及参数的整定。

3.测定双闭环直流调速系统的静态和动态性能指标。

二、实验系统组成及工作原理在中小容量的直流传动系统中,采用功率开关器件的脉宽调制(PWM )调速系统比相控系统具有更多的优越性,因而得到日益广泛的应用。

双闭环可逆直流PWM 调速系统的组成如实验图3-1所示。

图中,可逆PWM 变换器主电路采用MOSFET 构成H 型结构,UPW 为脉宽调制器,DLD 为逻辑延迟环节,GD 为MOS 管的栅极驱动电路,FA 为瞬时动作的过流保护,GM 为调制波发生器。

速度给定信号*n U 与速度反馈信号n U 经速度调节器ASR 调节后输出为电流给定信号*i U ,它与电流反馈信号i U 经电流调节器ACR 调节后输出为控制信号c U ,送入UPW 控制PWM波形的产生,最终控制电动机两端的电压。

DLD 的作用是把PWM 波分成二组相差180°的PWM 波,并留有一定死区时间,用于控制两组桥臂VT ;GD 的作用是形成四组隔离的PWM 驱动脉冲;PWM 为功率放大电路,直接给电动机M 供电;FA 可限制主电路瞬时电流;GM 的功能是产生调制三角波;AR 为反相器,构成电流负反馈。

实验图3-1 双闭环可逆直流PWM 调速系统的组成三、实验设备及仪器 1.主控制屏NMCL-322.直流电动机-负载直流发电机-测速发电机组3. NMCL-22 、NMCL -18挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.各控制单元调试2.测定开环机械特性)(d I f n =:min /1500r n =,min /1000r n =,和min /500r n =。

3.测定闭环静特性)(d I f n =:min /1500r n =,min /1000r n =,和min /500r n =。

双闭环可逆直流脉宽PWM调速系统设计

双闭环可逆直流脉宽PWM调速系统设计

双闭环可逆直流脉宽PWM调速系统设计一、系统概述二、系统设计原理1.速度内环设计原理速度内环的目标是实现对电机转速的闭环控制。

通过测量电机输出轴速度和设定速度值之间的差异,根据PID控制算法计算出控制信号,通过控制器输出的脉宽PWM信号调节电机的输出转矩,从而实现对电机速度的控制。

2.电流外环设计原理电流外环的目标是实现对电机电流的闭环控制。

通过测量电机的电流和设定电流值之间的差异,根据PID控制算法计算出电流控制信号,通过控制器输出的脉宽PWM信号调节电机的电流,从而实现对电机电流的控制。

三、系统构建要素1.电机驱动模块:用于控制电机的转矩和速度,并提供脉宽PWM信号输出接口。

通常使用MOSFET或IGBT作为功率开关元件。

2.速度测量模块:用于测量电机输出轴的转速,通常采用霍尔元件或编码器。

3.电流测量模块:用于测量电机的电流。

通常通过电流传感器或全桥电流检测器实现。

4.控制器:对测量的速度和电流数据进行处理,根据PID控制算法计算出合适的脉宽PWM信号,控制电机的转速和电流。

5.信号调理模块:用于对控制信号进行滤波和放大,以保证信号的稳定性和合理性。

6.反馈回路:将测量得到的电机速度和电流数据反馈给控制器,以实现闭环控制。

7.电源模块:为整个系统提供稳定的电源。

四、系统工作流程1.控制器通过速度测量模块获取电机的实际速度,并与设定速度进行比较计算出速度误差。

2.控制器通过电流测量模块获取电机的实际电流,并与设定电流进行比较计算出电流误差。

3.将速度误差和电流误差作为输入,经过PID控制算法计算出合适的脉宽PWM信号。

4.控制器将计算得到的脉宽PWM信号通过信号调理模块进行滤波和放大,然后输出到电机驱动模块。

5.电机驱动模块根据脉宽PWM信号的占空比调节电机的输出转矩和电流。

6.通过反馈回路将电机的实际速度和电流信息返回给控制器。

7.根据反馈信息对速度误差和电流误差进行修正,进一步优化脉宽PWM信号的计算。

双闭环直流调速系统实验

双闭环直流调速系统实验

实验一 实验二 实验三 实验四 实验五实验五实验五 双闭环直流调速系统实验双闭环直流调速系统实验一.实验目的一.实验目的⒈ 熟悉双闭环直流调速系统的组成、工作原理、调试方法。

⒉ 了解双闭环直流调速系统的静态和动态特性。

二.实验设备二.实验设备⒈ MCL –⒈ MCL – 31 31 31 低压控制电路及仪表。

低压控制电路及仪表。

低压控制电路及仪表。

⒉ MCL –⒉ MCL – 32 32 32 电源控制屏。

电源控制屏。

电源控制屏。

⒊ MCL –⒊ MCL – 33 33 33 触发电路及晶闸管主回路。

触发电路及晶闸管主回路。

触发电路及晶闸管主回路。

⒋ MEL –⒋ MEL – 0303 03 三相可调电阻器。

三相可调电阻器。

三相可调电阻器。

⒌ MEL –⒌ MEL – 11 11 11 电容箱。

电容箱。

电容箱。

⒍ 直流电动机–发电机–测速机组。

⒍ 直流电动机–发电机–测速机组。

⒎ 万用表。

⒎ 万用表。

⒏ 双踪示波器。

⒏ 双踪示波器。

三.三. 实验原理实验原理在双闭环直流调速系统中设置了两个调节器,转速调节器的输出当作电流调节器的输入,电流调节器的输出控制晶闸管整流器的 触发装置。

触发装置。

电流调节器在里面称作内环,转速调节器在外面称作外环,这样就形成转速、电流双闭环调速系统。

双闭环直流调速系统原理图如下图所示。

速系统原理图如下图所示。

为了获得良好的静、动态性能,转速和电流两个调节器都采用采用 PI PI PI 调节器。

转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变调节器。

转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变化,稳态时实现转速无静差,对负载变化起抗扰作用,其输出限幅值决定电机允许的最大电流。

最大电流。

电流调节器电流调节器 使 电流紧紧跟随其电流紧紧跟随其 给定电压变化,对电网电压的波动起及时抗扰作用,在 转速动态过程中能够获得电动机允许的最大电流,从而加快动态过程, 当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双闭环可逆直流脉宽调速系统
一.实验目的
1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。

2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。

3.熟悉H型PWM变换器的各种控制方式的原理与特点。

4.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。

二.实验内容
1.PWM控制器SG3525性能测试。

2.控制单元调试。

3.系统开环调试。

4.系统闭环调试
5.系统稳态、动态特性测试。

6.H型PWM变换器不同控制方式时的性能测试。

三.实验系统的组成和工作原理
图1—1 双闭环脉宽调速系统的原理图
在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。

双闭环脉宽调速系统的原理框图如图6—10所示。

图中可逆PWM变换器主电路系采用IGBT所构成的H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节, FA为瞬时动作的过流保护。

脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。

由于它简单、可靠及使用方便
灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。

四.实验设备及仪器
1.NMCL系列教学实验台主控制屏。

2.NMCL—18组件
3.NMCL—31A组件
4.NMCL-22挂箱
6.M MEL—13组件。

7.直流电动机M03。

8.双踪示波器。

五.注意事项
1.直流电动机工作前,必须先加上直流激磁。

2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.系统开环连接时,不允许突加给定信号U g起动电机。

5.起动电机时,需把MMEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。

6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。

7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

8.实验时需要特别注意起动限流电路的继电器有否吸合,如该继电器未吸合,进行过流保护电路调试或进行加负载试验时,就会烧坏起动限流电阻。

9.系统整定要求满足超调量小于5%,调节时间小于3秒。

六.实验方法
1.SG3525及控制电路性能测试
(1)调节UPW单元的RP电位器使输出波形的占空比为二分之一,UPW的2端与DLD 单元的1相连,按下S1开关,检查G1E1,,G2E2,G3E3,G4E2之间的波形是否正常2.开环系统调试
按图5-19接线。

断开主电源,将三相调压器的U、V、W接主电路的相应处,,将主电路的1、3端相连,
6、7端接入直流电动机M03的电枢及700mH的电感,电枢回路要串入NMCL—31A
上的指针式电流表。

电机加上励磁。

22挂箱的地与G(给定)的地相连,G(给定)的输出接到UPW的3端。

(1)系统开环机械特性测定
增大给定值,使电机转速达1400r/min ,调节测功机加载旋钮,在空载至额定负载范围内测取7—8个点,记录相应的转速n 和转矩M (或直流发电机电流i d )
调节给定值,使n=1000/min 和n=500r/min
,作同样的记录,可得到电机在中速和低速时的机械特性。

断开主电源,给定开关拨向“负给定”,然后按照以上方法,测出系统的反向机械特性。

(2)速度反馈系数的调试
转速计输出“+”、“--”分别与NMCL—31A上的FBS的“2”、“1”相连(注意此时速度反馈应接成负反馈),G(给定)打到正给定,调节正给定值使电机转速逐渐升高,并达到1400r /min,调节FBS的反馈电位器,使速度反馈电压为2V。

4.闭环系统调试
将ASR,ACR均接成PI调节器接入系统,形成双闭环不可逆系统。

按图片接线(“接线图实验一”)
(1)速度调节器的调试
(a)反馈电位器RP3逆时针旋到底,使放大倍数最小;
(b)“5”、“6”端接入MEL—11电容器,预置5~7μF;
(c)调节RP1、RP2使输出限幅为±2V。

(2)电流调节器的调试
(a)反馈电位器RP3逆时针旋到底,使放大倍数最小;
(b)“5”、“6”端接入MEL—11电容器,预置5~7μF;
(c)给定开关S2打向“给定”,S1开关扳向上,调节RP1电位器,使ACR输出正饱和,调整ACR的正限幅电位器RP1,用示波器观察UPW单元“2”的脉冲,不可移出范围。

(占空比不能为1)
S2开关打向“给定”,S1开关打向下至“负给定”,调节RP2电位器,使ACR输出负饱和,调整ACR的负限幅电位器RP2,用示波器观察UPW单元“2”的脉冲,不可移出范围。

5.系统动态波形的观察
用二踪慢扫描示波器观察动态波形,并记录动态波形。

在不同的调节器参数下,观察,记录下列动态波形:
(1)突加给定起动时,电动机电枢电流波形和转速波形,读出超调量及调节时间(2)系统稳定运行时突加额定负载和突降负载时,电动机电枢电流波形和转速波形,读出动态速降及恢复时间
注:电动机电枢电流波形的观察可通过ACR的第“1”端
转速波形的观察可通过ASR的第“1”端。

6.系统静特性测试
(1)机械特性n=f(I d)的测定
S2开关打向“给定”,S1开关扳向上,调节RP1电位器,使电机空载转速至1400 r/min,再调节测功机加载旋钮,在空载至额定负载范围内分别记录7~8点,可测出系统正转时的静特性曲线n=f
S2开关打向“给定”,S1开关打向下至“负给定”,调节RP2电位器,使电机空载转速至1400 r/min ,再调节测功机加载旋钮,在空载至额定负载范围内分别记录7~8点,可测出系统反转时的静特性曲线n=f (Id )
(2)闭环控制特性n=f(Ug)的测定
S2开关打向“给定”,S1开关扳向上,调节RP1电位器,记录U g 和n ,即可测出闭环控制特性
g
七.实验报告
1.列出开环机械特性数据, 画出对应的曲线,并计算出S及开环系统调速范围。

2.根据实验数据,计算出电流反馈系数β与速度反馈系数α。

3.列出闭环机械特性数据,画出对应的曲线,计算出S及闭环系统调速范围,并与开环系统调速范围相比较。

4.列出闭环控制特性n=f(u g)数据,并画出对应的曲线。

5.画出下列动态波形
(1)突加给定时的电动机电枢电流和转速波形,并在图上标出超调量等参数。

(2)突加与突减负载时的电动机电枢电流和转速波形。

八.思考题
1.为了防止上、下桥臂的直通,有人把上、下桥臂驱动信号死区时间调得很大,这样做行不行,为什么?
答:不行,这样有可能使得上、下两个桥臂同时进入死区,使机器无法运行。

进入死区的时间过长,不利于电机的灵活控制。

九.实验总结
通过本实验进一步的掌握了闭环可逆直流脉宽调速系统的组成原理及各主要单元的工作原理。

本实验中的连线比较繁琐,做试验的时候比较麻烦,但只要能静心和耐心就能好好的完成实验。

实验中的特别注意的地方是开启电源的之前R1和R2必须左旋到底,不然会烧坏机器。

相关文档
最新文档