人教版初一数学上册绝对值练习题

合集下载

人教版七年级上册数学绝对值专题

人教版七年级上册数学绝对值专题

人教版七年级上册数学绝对值专题题目 1:已知x = 5,求x的值。

解析:因为x = 5,所以x = 5或x = -5。

题目 2:若a - 2 = 0,则a = _ ?解析:因为a - 2 = 0,所以a - 2 = 0,a = 2。

题目 3:计算- 3 = _ ?解析:- 3 = 3题目 4:如果m = 4,n = 6,且m < n,求m + n的值。

解析:因为m = 4,所以m = ±4;因为n = 6,所以n = ±6。

又因为m < n,所以当m = 4时,n = 6,m + n = 10;当m = - 4时,n = 6,m + n = 2。

题目 5:化简- ( - 5 ) = _ ?解析:- ( - 5 ) = 5 = 5题目 6:已知x - 1 + y + 2 = 0,求x,y的值。

解析:因为x - 1 ≥ 0,y + 2 ≥ 0,且x - 1 + y + 2 = 0,所以x - 1 = 0,y + 2 = 0,即x = 1,y = - 2。

题目 7:比较- 2 和- ( - 2 )的大小。

解析:- 2 = 2,- ( - 2 ) = 2,所以- 2 = - ( - 2 )题目 8:若x + 3 = 5,则x = _ ?解析:因为x + 3 = 5,所以x + 3 = 5或x + 3 = - 5,解得x = 2或x = - 8题目 9:绝对值小于4的整数有_ ? 个。

解析:绝对值小于4的整数有- 3,- 2,- 1,0,1,2,3,共7个。

题目 10:计算- 7 - - 4 = _ ?解析:- 7 - - 4 = 7 - 4 = 3题目 11:若a = 3,b = 2,且a > b,求a - b的值。

解析:因为a = 3,所以a = ±3;因为b = 2,所以b = ±2。

又因为a > b,所以当a = 3时,b = 2或b = - 2,a - b = 1或5;当a = - 3时,不符合a > b。

人教版七年级上册 数学绝对值习题强化练习

人教版七年级上册 数学绝对值习题强化练习

七年级上册数学绝对值习题练习一、选择题1.有四盒小包装杨梅,每盒以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A. +2 B. -3C. +3 D. -12.若a与1互为相反数,则|a+1|等于()A. -1 B. 0C. 1 D. 23.如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若原点在点N 与点P之间,则绝对值最大的数表示的点是()A.点M B.点PC.点Q D.点N4.下列说法正确的是().A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是15.下列各式的结论成立的是()A.若|m|=|n|,则m>nB.若m≥n,则|m|≥|n|C.若m<n<0,则|m|>|n|D.若|m|>|n|,则m>n6.在-25,0,2,2.5这四个数中,绝对值最大的数是()5A. -25 B. 0D. 2.5C.257.如果|x|=|-5|,那么x等于()A. 5 B. -5C. +5或-5 D.以上都不对8.下列说法中,错误的有()①绝对值等于它本身的数有两个,是0和1;②一个有理数的绝对值必为正数;③4的相反数的绝对值是4;④任何有理数的绝对值都不是负数.A. 1个B. 2个C. 3个D. 4个9.当式子2016+|a|的值最小时,则a的值为()A. -2016 B. 2016C. 0 D.1201610.有理数m,n,e,f在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.M B.N C.E D.f二、填空题11.某部分检测一种零件,零件的标准长度是6cm,超过的长度用正数表示,不足的长度用负数表示,抽查了5个零件,其结果如下:①-0.002,②+0.015,③+0.02,④-0.018 ⑤-0.008,这5个零件中最接近标准长度的是________(填序号).12.某工厂生产一批零件,根据零件质量要求“零件的长度可以有0.2厘米的误差”.现抽查5个零件,检查数据如下(超过规定长度的厘米数记作正数,不足规定长度的厘米数记为负数):从表中可以看出,符合质量要求的是__________,它们中质量最好的是___________.13.如图所示,a、b是有理数,则化简式子|a|+|b|=___________.|=___________.14.化简:-[-(-3.1)]=___________;-|-53415.-|-[+(-2017)]|的绝对值是___________.16.已知|x|+|y-3|=0,则x+y=___________.三、解答题17.重庆出租车司机小李,一天下午以江北机场为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6,若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?18.武汉百步亭小区交警每天都骑摩托车沿南北街来回巡逻,早晨从A地出发,晚上最后到达B地.假定向北为正方向,当天巡逻记录如下(单位:km):14,-9,18,-7,13,-6,10,-6,问:若摩托车每千米耗油0.1升,则一共需耗油多少升?19.某交警大队的一辆警车沿着一条南北方向的公路巡视,某天早晨从A 地出发,晚上到达B地,约定向北为正方向,当天行驶记录如下:(单位:千米)+8.3,-9.5,+7.1,-12,-4.2,+13,-6.8,-8.5问:(1)若该警车每千米耗油0.2升,那么该天共耗油多少升?(2)若油箱中有油12升,中途是否需要加油?如果需要,至少加多少升?请说明理由.20.已知|a|=2,|b|=2,|c|=4,且有理数a,b,c在数轴上的位置如图所示,试求a,b,c的值.21.已知a、b表示两个不同的有理数,且|a|=4,|b|=1,它们在数轴上的位置如图所示:(1)试确定a、b的数值;(2)表示a、b两数的点相距多远?,-|-12|,-(-5)放入恰当的集合中.22.将有理数-3,0,20,-1.25,13423.(1)对于式子|a|+12,当a等于什么值时,它的值最小?最小值是多少?(2)对于式子12-|a|,当a等于什么值时,它的值最大?最大值是多少?答案解析1.【答案】D【解析】A、+2的绝对值是2;B、-3的绝对值是3;C、+3的绝对值是3;D、-1的绝对值是1.D选项的绝对值最小.2.【答案】B【解析】因为互为相反数的两数和为0,所以a+1=0;因为0的绝对值是0,则|a+1|=|0|=0.3.【答案】A【解析】因为原点在点N与点P之间,所以原点的位置大约在O点,所以绝对值最大的数的点是M点.4.【答案】D【解】A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确.5.【答案】C【解析】A 、若m =-3,n =3,|m |=|n |,m <n ,故结论不成立;B 、若m =3,n =-4,m ≥n ,则|m |<|n |,故结论不成立;C 、若m <n <0,则|m |>|n |,故结论成立;D 、若m =-4,n =3,|m |>|n |,则m <n ,故结论不成立.6.【答案】A【解析】因为|-25|=25,|0|=0,|25|=25,|2.5|=2.5,所以-25,0,25,2.5这四个数中,绝对值最大的数是:-25.7.【答案】C【解析】因为|x |=|-5|,所以|x |=5,因为|±5|=5,所以x =±5.8.【答案】B【解析】绝对值等于它本身的数有0和正数,①错误;0的绝对值是0,②错误;4的相反数是-4,-4的绝对值是4,③正确;任何有理数的绝对值都不是负数,④正确.9.【答案】C【解析】由于绝对值具有非负性,要使式子2016+|a|的值最小,则|a|就要取最小值,由于|a|≥0,所以当|a|=0时,式子2016+|a|的值才能最小,所以当a=0时,式子2016+|a|的值最小.10.【答案】C【解析】这四个数中,绝对值最小的是e.11.【答案】①【解析】①|-0.002|=0.002,②|+0.015|=0.015,③|+0.02|=0.02,④|-0.018|=0.018,⑤|-0.008|=0.008,因为|-0.002|=0.002在所检查的零件中绝对值最小,所以它最接近标准长度.12.【答案】③④;③【解析】由表中的数值,计算它们的绝对值可得符合质量要求的是③④,它们中质量最好的是③.13.【答案】-a+b【解析】因为由数轴上a、b两点的位置可知,a<0,b>0,所以|a|+|b|=-a+b14.【答案】-3.1;-534【解析】-[-(-3.1)]=-3.1;-|-534|=-534.15.【答案】2017【解析】-|-[+(-2017)]|= -|-(-2017)|=-|2017|=-2017,-2017的绝对值是2017.16.【答案】3【解析】因为|x |≥0,|y -3|≥0,而|x |+|y -3|=0,所以|x |=0,|y -3|=0,所以x =0,y -3=0,解得:x =0,y =3,所以x +y =3.17.【答案】解:|+15|+|-2|+|+5|+|-13|+|+10|+|-7|+|-8|+|+12|+|+4|+|-5|+|+6|=87(千米),87×3.5=304.5(元). 答:这天下午小李的营业额是304.5元.18.【答案】解:|14|+|-9|+|18|+|-7|+|13|+|-6|+|10|+|-6|=83, 83×0.1=8.3(升)答:一共需耗油8.3升.19.【答案】解:(1)|8.3|+|-9.5|+|+7.1|+|-12|+|-4.2|+|+13|+|-6.8|+|-8.5|=69.4(千米),69.4×0.2=13.88(升).答:共耗油13.88升.(2)13.88-12=1.88(升).答:需要加油,需要加1.88升油.(2)耗油量与油箱中的油比较,可判断是否需要加油.20.【答案】解:因为|a|=2,|b|=2,|c|=4,所以a=±2,b=±2,c=±4,而a<0,b>0,c>0,所以a=-2,b=2,c=4.21.【答案】解:(1)由图可知a<0,b<0,因为|a|=4,|b|=1,所以a=-4,b=-1;(2)a、b两数的点相距4-1=3个单位长度.22.【答案】解:负数集合应填:-3,-1.25,-|-12|,整数集合应填:-3,0,20,-|-12|,-(-5),其中的-3,-|-12|要填在中间公共的位置.23.【答案】解:(1)因为|a|≥0,所以|a|+12≥12,所以当a等于0时,值最小,最小值是12;(2)因为|a|≥0,所以-|a|≤0,所以12-|a|≤12,所以当a等于0时,值最大,最大值是12.。

人教版七年级数学上册绝对值

人教版七年级数学上册绝对值

人教版七年级数学上册绝对值基础检测:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱= a , 则 a 。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x <y <0, 那么︱x ︱︱y︱。

7.︱x - 1 ︱=3 ,则x=。

8.若︱x+3︱+︱y -4︱= 0,则x + y = 。

9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。

10.︱x ︱<л,则整数x = 。

11.已知︱x︱-︱y︱=2,且y =-4,则x = 。

12.已知︱x︱=2 ,︱y︱=3,则x +y = 。

13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。

14‘式子︱x +1 ︱的最小值是,这时,x值为。

15‘下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子 a b a b c+++ + m -cd 的值。

19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接近代号A B C D E 超标情况0‘01 -0‘02 -0‘01 0‘04 -0‘031‘2‘4 绝对值基础检测1. 8, ︱-8︱ 2‘ ±5 3‘ a ≥ 0 4‘ ±2004 5‘数轴上,原点6‘> 7‘4或-2 8‘ 1 9‘<,> 10‘ 0, ±1, ±2, ±3 11‘ ±612‘±1, ±5 13‘3 14‘0, x=-1 15‘C 16‘A 17‘ B拓展提高18‘1或-3 2‘3‘3L,正西方向上, 2千米 3‘A 球C 球。

人教版数学七年级上册第二章《有理数绝对值综合复习》计算50题专练(含加减乘除混合运算)

人教版数学七年级上册第二章《有理数绝对值综合复习》计算50题专练(含加减乘除混合运算)

绝对值综合巩固练习1.如果|a +2|+(b ﹣1)2=0,那么代数式(a +b )2022的值是( ) A .﹣1 B .2022C .﹣2022D .12.如果a a =,则 ( )A .a 是正数B .a 是负数C .a 是零D .a 是正数或零3.若a =3,2=b ,且a b <,那么+a b 的值是 ( )A .5或1B .1或-1C .5或-5D .-5或-14.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且 MN =NP =PR =1.数 a 对应的点在 M 与 N 之间,数 b 对应的点在 P 与 R 之间,若|a |+|b |=3,则原点是( )A 、N 或 PB 、M 或 RC 、M 或 ND 、P 或 R5.若|a|=3,|b|=2,且a <b ,那么a+b 的值是A .5或1B .1或-1C .5或-5D .-5或-1 6.a 是有理数,则a +|a |的值A .可以是负数B .不可能是负数C .一定是正数D .可是正数也可是负数7.如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a 8.若(),0422=++-y x ,则xy 的值是 .9.已知5x =,3y =,且0x y +>,则y x -的值是 .10.利用绝对值的意义化简计算:︱3一π︱+︱π一4︱=________. 11.已知0>ab ,则abab bb aa ++= .12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd +的值。

难点:绝对值的距离问题例1.同学们都知道,5(3)--表示5与-3的差的绝对值? 实际上也可理解为5与-3两数在数轴上所对应的两点之间的距离.试探索:(1) 5(3)--= .(2) 找出所有符合条件的整数x ,使2x ++3x -=5成立. (3) 已知有理数x 满足3x --6x -=3,则x 的范围是 .例2.结合数轴与绝对值的知识回答下列问题:(1)表示—3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -. 如果32=+a ,那么a = .(2)若数轴上表示数a 的点位于—4与2之间,则42a a ++-的值为 ; (3)利用数轴找出所有符合条件的整数..点.x ,使得25x x ++-=7,这些点表示的数的和是 .(4)当a = 时,314a a a ++-+-的值最小,最小值是 .例3:同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|5-(-2)|= ______ .(2)同理|x+5|+|x-2|表示数轴上有理数x 所对应的点到-5和2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x+5|+|x-2|=7,这样的整数是 ______ .(3)由以上探索猜想对于任何有理数x ,|x+6|+|x-3|是否有最小值?如果有,写出最小值及相应x 的取值范围;如果没有,说明理由.例4. 阅读材料:我们知道:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a -b |.所以式子|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离;同理4x -也可理解为x 与4两数在数轴上所对应的两点之间的距离。

人教版七年级数学上册绝对值测试题

人教版七年级数学上册绝对值测试题

人教版7年级数学考试题测试题人教版初中数学1.2.4 绝对值5分钟训练(预习类训练,可用于课前)1.判断题:(1)数a的绝对值就是数轴上表示数a的点与原点的距离; ()(2)负数没有绝对值; ()(3)绝对值最小的数是0; ()(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ()(5)如果数a的绝对值等于a,那么a一定是正数. ()思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或2附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。

数学人教版七年级上册绝对值的练习题

数学人教版七年级上册绝对值的练习题

1.│-2│等于()
A.-2 B.2 C.- D.
2.绝对值为4的数是()
A.±4 B.4 C.-4 D.2
3.-4的绝对值是________;2的相反数的绝对值是______.
4.若│a│=│-3│,则a=_______.
5.化简下列各数:
(1)-[-(-3)];(2)-{-[+(-3)]};
(3)-{+[-(+3)]};(4)-{-[-(-│-3│)}.
6.下列推断正确的是()
A.若│a│=│b│,则a=b B.若│a│=b,则a=b
C.若│m│=-n,则m=n D.若m=-n,则│m│=│n│ 7.下列计算正确的是()
A.-|- |= B.| |=± C.-(-3)=3 D.-│-6│=-6 8.若a与2互为相反数,则│a+2│等于()
A.0 B.-2 C.2 D.4
9.已知│a-3│+│b-4│=0,求的值.
10.绝对值大于2而小于5的所有正整数之和是()
A.7 B.8 C.9 D.10
11.某车间生产一批圆形机器零件,从中抽6件进行检验,比规定
直径长的毫米数记作正数,比规定直径短的毫米数记作负数,检查记录如下:
1 2 3 4 5 6
+0.2 -0.3 -0.2 +0.3 +0.4 -0.1
指出哪一个零件好些?怎样用学过的绝对值的知识来说明什么样的零件好些?
12.如图,在所给数轴上画出表示数-3,-1,│-2│的点.把这组数从小到大用“<”号连接起来.。

【人教版】七年级数学:绝对值的概念与性质练习题及答案

【人教版】七年级数学:绝对值的概念与性质练习题及答案

绝对值的概念与性质一.选择题(共11小题) 1.|2023|(−= ) A .2023B .2023−C .12023−D .120232.2022−的绝对值是( ) A .2022−B .2022C .12022−D .120223.已知23x −的绝对值与6x +的绝对值相等,则x 的相反数为( ) A .9B .1C .1或9−D .9或1−4.若43a =−,4||3b =−,32c =,2d =−,则绝对值最大的数是( )A .aB .bC .cD .d5.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于( )A .5±B .0或1±C .0或5±D .1±或5±6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +−+的结果是( )A .2a b c ++B .b c −C .c b −D .2a b c −−7.如果|1|0a +=,那么2023a 的值是( ) A .2023−B .2023C .1−D .18.若0m ,则||2m m −+等于( ) A .22m +B .2C .22m −D .22m −9.若|5|5x x −=−,则x 的取值范围为( ) A .5x >B .5xC .5x <D .5x10.已知a 、b 、c 的大致位置如图所示:化简||||||a c b c a b −−−++的结果是( )A .2a −B .2aC .222a b c +−D .222a b c −+−11.若|1||2|0a b −++=,则a b +的值为( ) A .1−B .1C .3D .3−二.填空题(共4小题)12.若|3||2|0++−=,则2022a b+=.()a b13.若|2||3|0−++=,则a b的值为.a b14.已知|||2|0−++=,则x yx y y+=.15.已知|2|x−与|4|y+互为相反数,则x y+=.绝对值的概念与性质 答案一.选择题(共11小题) 1.|2023|(−= ) A .2023B .2023−C .12023−D .12023【解答】解:|2023|(2023)2023−=−−=. 故选:A .2.2022−的绝对值是( ) A .2022−B .2022C .12022−D .12022【解答】解:|2022|2022−=. 故选:B .3.已知23x −的绝对值与6x +的绝对值相等,则x 的相反数为( ) A .9B .1C .1或9−D .9或1−【解答】解:|23||6|x x −=+, 236x x ∴−=+,或23(6)x x −=−+,9x ∴=或1x =−,x ∴的相反数是9−或1.故选:C .4.若43a =−,4||3b =−,32c =,2d =−,则绝对值最大的数是( )A .aB .bC .cD .d【解答】解:数a 的绝对值为:44||33−=,数b 的绝对值为:44||33−=,数c 的绝对值为:33||22=,数d 的绝对值为:|2|2−=, 由于34223>>, 所以绝对值最大的数是2d =−, 故选:D .5.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于( )A .5±B .0或1±C .0或5±D .1±或5±【解答】解:由于a ,b 为有理数,0ab ≠, 当0a >、0b >时,且2||3235||a bM a b =+=+=. 当0a >、0b <时,且2||3231||a b M a b =+=−=−. 当0a <、0b >时,且2||3231||a bM a b =+=−+=. 当0a <、0b <时,且2||3235||a b M a b =+=−−=−. 故选:D .6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +−+的结果是( )A .2a b c ++B .b c −C .c b −D .2a b c −−【解答】解:由题意得:0b a c <<<,且||||c a >. 0a c ∴+>,0a b +<. ∴原式()a c a b =+−−−a c ab =+++2a b c =++.故选:A .7.如果|1|0a +=,那么2023a 的值是( ) A .2023−B .2023C .1−D .1【解答】解:|1|0a +=, 1a ∴=−,20232023(1)1a ∴=−=−. 故选:C .8.若0m ,则||2m m −+等于( ) A .22m + B .2 C .22m − D .22m −【解答】解:0m , ||m m ∴=−,原式222m m m =++=+. 故选:A .9.若|5|5x x −=−,则x 的取值范围为( ) A .5x >B .5xC .5x <D .5x【解答】解:|5|5x x −=−, 50x ∴−,即5x , 故选:B .10.已知a 、b 、c 的大致位置如图所示:化简||||||a c b c a b −−−++的结果是( )A .2a −B .2aC .222a b c +−D .222a b c −+−【解答】解:由数轴可得:0a c −<,0b c −<,0a b +<, 则原式()()()a c b c a b =−−+−−+ a c b c a b =−++−−−2a =−.故选:A .11.若|1||2|0a b −++=,则a b +的值为( ) A .1−B .1C .3D .3−【解答】解:|1||2|0a b −++=, 1a ∴=,2b =−,1(2)1a b ∴+=+−=−,故选:A .二.填空题(共4小题)12.若|3||2|0a b ++−=,则2022()a b += 1 . 【解答】解:|3||2|0a b ++−=, 3a ∴=−,2b =,则202220222022()(32)(1)1a b +=−+=−=. 故答案为:1.13.若|2||3|0a b −++=,则a b 的值为 9 . 【解答】解:|2||3|0a b −++=, 20a ∴−=,30b +=, 2a ∴=,3b =−,2(3)9a b ∴=−=,故答案为:9.14.已知|||2|0−++=,则x yx y y+=4−.【解答】解:|||2|0−++=,x y yx y∴−=,20y+=,y=−,x2∴=−,2∴+=−+−=−.2(2)4x y故答案为:4−.15.已知|2|x−与|4|y+互为相反数,则x y+=2−.【解答】解:|2|x−与|4|y+互为相反数,|2||4|0∴−++=,x yy+=,∴−=,40x20y=−x2∴=,4∴+=−=−,242x y故答案为:2−.。

人教版七年级数学上册绝对值测试题

人教版七年级数学上册绝对值测试题

人教版7年级数学考试题测试题人教版初中数学1.2.4绝对值能力提升1.下面是几个城市某年一月份的平均气温,其中平均气温最低的城市是()A.桂林11.2 ℃B.广州13.5 ℃C.北京-4.8 ℃D.南京3.4 ℃2.下列各组数中,互为相反数的一组是()A.|-3|与-1B.|-3|与-(-3)3C.|-3|与-|-3|D.|-3|与133.如果甲数的绝对值大于乙数的绝对值,那么()A.甲数必定大于乙数B.甲数必定小于乙数C.甲、乙两数一定异号D.甲、乙两数的大小,要根据具体值确定4.有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系正确的是()A.-a<a<1B.a<-a<1C.1<-a<aD.a<1<-a5.在数轴上与原点的距离为4个单位长度的点表示的数的绝对值是,表示的数分别为,它们互为.6.绝对值是它本身的数是 ;绝对值不大于3.1的整数有 .7.实数a ,b 在数轴上的位置如图所示,则|a|,|b|的大小关系是 .(用“>”连接)8.已知|x-1|=2,则x= .9.比较下列每对数的大小:(1)-89和-910;(2)-213和-2.3;(3)-3.21和2.9;(4)-|-2.7|和-223.★10.已知|a|=3,|b|=2,|c|=1,且a<b<c ,求a+b+c 的值.★11.某同学学习编程后,编写了一个关于绝对值的程序,当输入一个数值后,屏幕上输出的结果总比该数的绝对值小1.某同学输入-7后,把输出的结果再次输入,则最后屏幕上输出的结果是多少?创新应用★12.规定x※y=-|y|,x△y=-x,如当x=3,y=4时,x※y=-|4|=-4,x△y=-3.根据以上运算法则比较5※(-7)与5△(-7)的大小.参考答案能力提升1.C2.C3.D4.D5.4±4相反数6.0和正数0,±1,±2,±37.|a|>|b|显然a所对应的点到原点的距离大于b所对应的点到原点的距离,故|a|>|b|.8.3或-1因为绝对值为2的数有2和-2,所以x-1=2或x-1=-2,所以x=3或x=-1.9.解:(1)因为|-89|=89=8090,|-910|=910=8190,8090<8190,所以-89>-910.(2)-2.3=-2310.因为|-213|=213,|-2310|=2310,213>2310,所以-213<-2.3.(3)因为正数大于负数,所以-3.21<2.9.(4)-|-2.7|=-2.7=-2710,因为|-2710|=2710,|-223|=223,2710>223,所以-|-2.7|<-223. 10.解:由题意,知a=-3,b=-2,c=±1.当c=1时,a+b+c=-4;当c=-1时,a+b+c=-6.11.解:|-7|-1=6,|6|-1=5,故最后输出的结果是5.创新应用12.解:因为5※(-7)=-|-7|=-7,5△(-7)=-5,又-7<-5,所以5※(-7)<5△(-7).附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b c a 1
0绝对值练习题
一、选择题
1.下列说法中正确的个数是( )
(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)•两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身.
个 个 个 个
2.若-│a │=,则a 是( )
A.3.2
B.-3.2
C.±
D.以上都不对
3.若│a │=8,│b │=5,且a+b>0,那么a-b 的值是( )
,
或13 或-13 C.3或-3 或-13
4.一个数的绝对值等于它的相反数的数一定是( )
A.负数
B.正数
C.负数或零
D.正数或零
<0时,化简||3a a a
结果为( ) A.23
.0 C D.-2a 二、填空题
6.绝对值小于5而不小于2的所有整数有_________.
7.绝对值和相反数都等于它本身的数是_________.
\
8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________. 9.比较下列各对数的大小(用“)”或“〈”填空〉 (1)-35_______-23;(2)16;(3)-(-19)______-|-110
|. 10.有理数a,b,c 在数轴上的位置如图所示:
试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________.
三、解答题 11.计算 (1)││+│+│; (2)|-813|-|-323
|+|-20| *
12.比较下列各组数的大小:(1)-112与-43
(2)-13与;
13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c的值.
&
14.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x2+(a+b)x-•cd 的值.
·
15.求|
1
10
-
1
11
|+|
1
11
-
1
12
|+…|
1
49
-
1
50
|的值.
16.化简│1-a│+│2a+1│+│a│(a<-2).
-
17.若│a│=3,│b│=4,且a<b,求a,b的值.。

18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0•
这五个数由大到小用“>”依次排列出来.
{
答案:
一、

二、6.±4,±3,±2 9.(1)>;(2)>
三、11.(1);(2)32; 12.(1)-1
2
<-
4
3
(2)-
1
3
<;
13.∵│a-3│+│-b+5│+│c-•2│=0,
又│a-3│≥0,│-b+5│≥0,│c-2│≥0.∴a-3=0,-b+5=0,c-2=0,
即a=3,b=•5,c=2,
∴2a+b+c=13
14.由条件可知:a+b=0,cd=1,x=±1,
$
则x2=1,
∴x2+(a+b)x-cd=0 •
15.原式=
1
10
-
1
11
+
1
11
-
1
12
+…+
1
49
-
1
50
=
1
10
-
1
50
=
2
25
16.∵a<-2,
∴1-a>0,2a+1<0.
∴│1-a│+│2a+1│+│a│=1-a+(-2a-1)+(-a)=-4a 17.∵│a│=3,│b│=4
∴a=±3,b=±4
又a<b,
则a=±3,b=4
>c>0>d>b。

相关文档
最新文档