六年级数学下册的知识点(图形)
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)

这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
六年级下册数学总复习《图形的认识与测量(1)》

无数
一条
教材第87页“做一做”第2题 。 2.有长度分别为3 cm、4 cm、5 cm、6 cm的小
棒各一根。哪三根小棒可以围成一个三角形?
①3 cm,4 cm,5 cm ②3 cm,4 cm,6 cm ③3 cm,5 cm,6 cm ④4 cm,5 cm,6 cm
教材第87页“做一做”第3题 。 3.一个直角三角形的两个锐角的和是多少度?
④正方形是特殊的长方形。 ( √ )
⑤只有一组对边平行的四边形叫做梯形。( √ )
例7 ①什么是圆?圆的各部分名称分别是什么?
圆是由一条封闭的曲线围成的图形。 圆的各部分名称:圆心:O,半径:r,直径:d。 ②圆的直径和半径之间是什么关系? 在同圆或等圆中,d=2r或r= d 。
2
③圆是轴对称图形吗?它有多少条对称轴? 圆是轴对称图形,圆有无数条对称轴,即为直
从直线外一点到这条直线所画的垂直线段 的长度叫做点到直线的距离。
①判断:两条直线若不平行,就相交。 ( × )
②过直线外一点可以画( 1 )条已知直线的平行线。
③过点P画出直线l的垂线和平行线,并量出图中P点
到直线l的距离。
例4 ①怎样能组成一个角?角的大小和边的长度有
关系吗?如果没有关系,和什么有关系?
①线段图形可以按照构成图形的边的条数来分: 分为三角形、四边形、多边形。
②三角形可以按角的度数分:分为锐角三角形、 直角三角形和钝角三角形。
三角形还可以按边来分:分为等腰三角形、不 等边三角形,等腰三角形包括腰和底边不相等的 等腰三角形和等边三角形。
③四边形包括我们刚才说过的长方形、正方形、 平行四边形、梯形、不规则的四边形。
是直角,那么其他3个角也是直角。( √ )
扇形定义六年级下册知识点

扇形定义六年级下册知识点扇形是数学中的一种图形,其定义和性质在六年级下册数学教材中进行了详细的介绍和讲解。
本文将围绕扇形的定义及相关知识点展开讨论,旨在帮助六年级学生更好地理解和掌握这一概念。
一、扇形的定义扇形是由一个圆心O、半径为r的圆和弧AB所围成的图形。
其中,点A、B分别为弧上的两个端点,弧AB的度数表示扇形的大小,角AOB称为扇形的圆心角。
二、扇形的性质1. 扇形的度数:扇形的度数等于其圆心角的度数,可以用度数表示,也可以用弧度表示。
2. 扇形的面积:扇形的面积可以通过圆的面积和扇形的圆心角计算得出。
设扇形的圆心角为α度(或弧度),则扇形的面积为(S=α/360)πr²,其中r为扇形的半径。
3. 扇形的周长:扇形的周长由圆心角和半径决定,计算公式为C=2πr(α/360),其中r为扇形的半径,α为扇形的圆心角度数。
三、扇形的相关知识点1. 完整的圆的度数为360度(或2π弧度)。
2. 扇形的面积和周长的计算需要利用圆的相关公式,六年级下册数学教材中有详细的公式总结和例题讲解,学生需要熟练掌握。
3. 扇形的大小不仅与圆心角有关,还与半径的长度有关。
当圆心角相同时,半径越长,扇形的面积越大。
4. 扇形的面积和周长都是扇形所包含的圆的一部分,因此可通过比较扇形和圆的面积或周长大小,来了解扇形所占圆的比例关系。
通过以上对扇形的定义和性质的介绍,我们可以更好地理解扇形的概念,并能够运用相关知识点进行计算和分析。
在学习扇形的过程中,应注重理论知识与实际应用的结合,通过解决一些与扇形相关的问题,加深对扇形的认识和理解。
六年级下册数学教材还将介绍更多有关几何图形的知识,如圆的面积和周长计算、正方形的性质等。
在学习过程中,要注重练习和巩固,通过大量的习题和实际应用,提高对数学知识的掌握和应用能力。
总结:扇形是由一个圆心、半径和弧所组成的图形,通过圆心角的度数可以计算出扇形的面积和周长。
掌握扇形的定义和性质,对于六年级学生来说是十分重要的,它是几何学中的基础知识之一。
苏教版六年级数学下册知识点梳理归纳及复习要点

苏教版六年级数学下册知识点梳理归纳及复习要点一、知识点梳理归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。
①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。
2021年北师大版数学六下第三单元《图形的运动》章节知识点、达标训练附解析

北师大版数学六年级下册章节复习知识点、达标训练附解析第三单元《图形的运动》知识点一:图形的旋转1.旋转后,图形的方向和位置发生了变化,但是图形的形状与大小都不会发生变化。
2.描述旋转时,要说明旋转中心、旋转方向和旋转角度。
3.在方格纸上画简单图形旋转90°后的图形:一要注意确定关键线段;二要明确旋转中心、旋转方向和旋转角度;三要注意对应线段的长度与相对位置不变;四要注意按原图的形状连接对应点知识点二:图形的运动1.图形的运动常见的方式有三种,分别是旋转、平移和轴对称。
2.图形平移时,注意移动的方向和距离。
3.画轴对称图形时,要注意各对应点到对称轴的距离相等。
4.图形在方格纸上旋转运动时,应找准旋转的中心、方向和角度。
5.逆用图形的运动可以将图形还原知识点三:欣赏与设计1.欣赏美丽的图案,要注意分析图案的构造,注意找出其中的基本图形,明确基本图形经过怎样的运动才能形成这幅图案。
2.可以单独利用图形的某一种运动方式设计图案,也可以综合运用两种或多种运动方式设计图案。
3.利用图形的变换方式设计图案时,首先要选好基本图形,然后确定运动方式,最后画出变换后的图案一、精挑细选(共5题;每题1分,共5分)1. 如图,三角形ABC怎样旋转可以得到三角形A'BC'?下面说法正确的是()A. 绕B点逆时针旋转90°B. 绕B点顺时针旋转90°C. 绕C点顺时针旋转90°D. 绕C点逆时针旋转180°2. 以点C为中心旋转的图形是()。
A. B. C.3. 如图,点A的位置用数对表示是(1,5)。
线段OA绕点O按顺时针方向旋转90°,点A的对应点A’的位置用数对表示是()。
A. (5,5)B. (5,1)C. (4,1)D. (6,1)4. 将图形A(),可以得到图形B.A. 向右平移3格,再绕O点逆时针旋转90°B. 向右平移5格,再绕O点顺时针旋转90°C. 向右平移3格,再绕O点顺时针旋转90°5. 如图中,图形A变换到图形B,下列描述不正确的是()A. 图形A先向右平移4格,再向下平移2格,然后以直径所在的直线作轴对称图形得到图形BB. 图形A先向下平移2格,再向右平移4格,然后以直径所在的直线作轴对称图形得到图形BC. 图形A先以直径所在的直线作轴对称图形,再向下平移4格,再向右平移2格,得到图形BD. 图形A先以直径所在的直线作轴对称图形,再向右平移4格,再向下平移2格,得到图形B二、判断正误(共5题;每题1分,共5分)6. 如图,图1先顺时针旋转90°,再向右平移6个格,就可以得到图2。
六年级下册总复习知识点

六年级总复习知识点大全第一部分【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4; C=4a 面积=边长×边长 S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6; S表=a×a×6体积=棱长×棱长×棱长; V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2; C=2(a+b) 面积=长×宽; S=a×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 S=ah÷2 三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高; S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr(2)面积=π×半径×半径; S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间13、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)第二部分【常用单位换算】(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米; 1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算:1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算:1元=10角; 1角=10分; 1元=100分(六)时间单位换算:1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;第三部分【基本概念】第一章数和数的运算一、概念(一)整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册的知识点(图形)
如何把小学各门基础学科学好大概是很多学生都发愁的问题,查字典数学网为大家提供了数学下册的知识点(图形),希望同学们多多积累,不断进步!
一、认识圆形
1、圆的定义:圆是由封闭的曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r= d
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数()。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母(pai) 表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率是一个无限不循环小数。
在计算时,一般取 3.14。
(2)、在判断时,圆周长与它直径的比值是倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= d d = C 或C=2r r = C 2
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
周长的一半:等于圆的周长2 计算方法:2 r 2 即r
(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:r+2r 即5.14 r
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S 表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)拼出的图形与圆的周长和半径的关系。
圆的半径= 长方形的宽圆的周长的一半= 长方形的长
因为:长方形面积= 长宽所以:圆的面积= 圆周长的一半圆的半径
S圆= r r 圆的面积公式:S圆= r r = S
4、圆环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。
(R=r+圆环的宽度.)
S环= - r 或圆环形的面积公式:S圆环= - r )。
5、扇形的面积计算公式:S扇= (n表示扇形圆心角的度数)
6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
7、两个圆:半径比= 直径比= 周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
8、任意一个圆的外接或内接正方形的面积之比都是一个固
定值,即:4∶∶2
9、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
10、确定起跑线:
(1)每条跑道的长度= 两个半圆形跑道合成的圆的周长+ 两个直道的长度。
(2)每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。
(因此起跑线不同)
(3)每相邻两个跑道相隔的距离是:2跑道的宽度
(4)当一个圆的半径增加a厘米时,它的周长就增加2当一个圆的直径增加a厘米时,它的周长就增加a厘米。
11、常用各值结果:
= 3.14 = 6.28 = 9.42 = 12.56 5 = 15.7
6 = 18.84 = 21.98 8 = 25.12 9 = 28.26 16 = 50.24
25 = 78.5 36 = 113.04 64 = 200.96 96 = 301.44
四、图形的变换和确定位置
1、图形的放大或缩小:图形的形状不变,大小不同。
2、比例尺:图上距离与实际距离的比。
即图上距离∶实际距离=比例尺
比例尺分为数字比例尺(无单位)和线段比例尺(有单位)。
比的前项为1是缩小比例尺,比的后项为1是放大比例尺。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
已知图上距离和比例尺求实际距离,实际距离=图上距离比例尺;已知实际距离和比例尺求图上距离,图上距离=实际距离比例尺(画图确定物体的位置)。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,
特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
3、物体位置的确定:确定观测点后,知道物体的方向和距离就能确定物体的位置。
上北下南左西右东,以观测点画十字坐标确定方向,以比例尺确定图上距离或实际距离。
用数对确定点的位置,如(3,5)表示:(第三列,第五行)
本文就是我们为广大同学准备的数学下册的知识点(图形),希望可以为大家的学习起到一定作用!
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。