水泵的气蚀余量
泵的必需汽蚀余量

泵的必需汽蚀余量一、简介泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指液体从泵吸入口至压力最低K点的压力降。
单位用米标注,用(NPSH)r。
二、标准吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
三、汽蚀现象1、汽蚀溃灭液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
2、汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(~)NPSHc。
泵的汽蚀余量计算公式

泵的汽蚀余量计算公式以泵的汽蚀余量计算公式为标题,我们来探讨一下这个重要的计算公式。
泵的汽蚀余量是指泵在运行过程中能够承受的最大汽蚀程度,它是衡量泵运行安全性的重要指标。
当泵的汽蚀程度超过其汽蚀余量时,就会发生汽蚀现象,导致泵的性能下降甚至损坏。
因此,准确计算泵的汽蚀余量对于确保泵的正常运行至关重要。
泵的汽蚀余量计算公式如下:汽蚀余量 = H - Hs其中,H为泵的静水头,也就是泵入口处的液位高度;Hs为泵的汽蚀余量,是泵性能曲线上的汽蚀余量值。
在实际计算中,我们需要先测量或估算出泵的静水头H,这个值可以通过测量液位高度或使用水泵选型软件来获取。
而泵的汽蚀余量Hs则需要根据泵的性能曲线来确定。
泵的性能曲线是描述泵的性能参数随流量变化的曲线图,通常由泵的制造商提供。
性能曲线上的汽蚀余量值Hs对应着不同流量点上泵的汽蚀余量。
我们可以根据泵的性能曲线,找到所需流量下的汽蚀余量值Hs,然后代入计算公式即可得到泵的汽蚀余量。
在实际应用中,我们通常会将泵的汽蚀余量与泵的工作点进行比较,以判断泵是否存在汽蚀风险。
如果泵的汽蚀余量大于工作点对应的汽蚀程度,那么泵的运行是安全的。
反之,如果汽蚀余量小于工作点的汽蚀程度,就需要采取相应的措施,例如改变泵的进口高度、增加进口管道直径等,以减小汽蚀风险。
需要注意的是,泵的汽蚀余量并不是一个固定的数值,它随着泵的工况和运行条件的变化而变化。
因此,在不同的工作条件下,我们需要重新计算泵的汽蚀余量,并根据计算结果来调整泵的运行参数,以确保泵的安全运行。
泵的汽蚀余量计算公式是一种重要的工具,它能够帮助我们评估泵的运行安全性。
通过准确计算泵的汽蚀余量,并与实际工作点进行比较,我们可以及时发现并解决汽蚀问题,确保泵的正常运行。
希望本文能够对读者理解泵的汽蚀余量计算公式有所帮助。
空调水泵吸入口静水压力和汽蚀余量的关系

空调水泵吸入口静水压力和汽蚀余量的关系1.引言1.1 概述空调水泵是空调系统中的重要组成部分,其主要工作是通过抽水将冷却剂从冷凝器送往蒸发器,从而实现空调系统的循环。
而水泵的吸入口静水压力是影响水泵正常运行的重要因素之一。
本文旨在研究空调水泵的吸入口静水压力与汽蚀余量之间的关系。
吸入口静水压力是指水泵吸入口处的水压力,其大小直接影响水泵的进水能力和工作效率。
在空调系统中,水泵吸入口静水压力受多种因素的影响。
首先,水泵放置的位置和高度差是影响吸入口静水压力的重要因素。
一般而言,水泵放置位置越高,吸入口静水压力越低;反之,放置位置越低,吸入口静水压力越高。
其次,管道的直径、长度以及弯头的数量和角度也会影响吸入口静水压力。
较小的管道直径、较长的管道长度以及较多的弯头都会增加水流的阻力,从而导致吸入口静水压力降低。
而汽蚀余量是指水泵能够承受的最大吸入口静水压力。
当吸入口静水压力低于汽蚀余量时,水泵就会发生汽蚀现象,严重影响其运行效率和寿命。
因此,研究吸入口静水压力与汽蚀余量的关系,对于保证水泵的正常工作和延长其使用寿命具有重要意义。
综上所述,本文将基于空调水泵的工作原理,研究吸入口静水压力对水泵性能的影响,并探讨吸入口静水压力与汽蚀余量的关系。
通过深入的分析和实验验证,旨在为空调系统中水泵的合理选择和运行提供参考依据。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构是指文章按照一定的逻辑顺序组织起来的框架,它反映了整篇文章的主要内容和思路。
一个良好的文章结构可以让读者更好地理解和阅读文章,使文章的逻辑清晰、条理分明。
本文按照以下结构进行组织:引言部分包括概述、文章结构和目的。
第二部分为正文,主要包括空调水泵的工作原理、水泵吸入口静水压力的影响因素以及汽蚀余量与吸入口静水压力的关系。
具体来说,第2.1节将介绍空调水泵的工作原理,包括水泵的基本原理和工作过程。
第2.2节将详细解释水泵吸入口静水压力的影响因素,包括水泵的安装位置、泵站的海拔高度以及管道与水泵之间的连接方式等。
汽蚀余量计算方法和例子

汽蚀余量【1 】[编辑本段]根本概念泵在工作时液体在叶轮的进口处因必定真空压力下会产生汽体,汽化的气泡在液体质点的撞击活动下,对叶轮等金属概况产生剥蚀,从而损坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸进口处单位重量液体所具有的超出汽化压力的充裕能量.单位用米标注,用(NPSH)r.吸程即为必须汽蚀余量Δh:即泵许可吸液体的真空度,亦即泵许可的装配高度,单位用米.吸程=尺度大气压(10.33米)-临界汽蚀余量-安然量(0.5米)尺度大气压能压管路真空高度10.33米.[编辑本段]汽蚀现象液体在必定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡.把这种产朝气泡的现象称为汽蚀.汽蚀时产生的气泡,流淌到高压处时,其体积减小乃至幻灭.这种因为压力上升气泡消掉在液体中的现象称为汽蚀溃灭.泵在运转中,若其过流部分的局部区域(平日是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开端汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡四周的高压液体致负气泡急剧地缩小以至决裂.在气泡凝聚决裂的同时,液体质点以很高的速度填充空穴,在此刹时产生很强烈的水击感化,并以很高的冲击频率打击金属概况,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,轻微时会将壁厚击穿.在水泵中产朝气泡和蔼泡决裂使过流部件遭遇到损坏的进程就是水泵中的汽蚀进程.水泵产生汽蚀后除了对过流部件会产生损坏感化以外,还会产生噪声和振动,并导致泵的机能降低,轻微时会使泵中液体中止,不克不及正常工作.[编辑本段]汽蚀余量指泵进口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)暗示,具体分为如下几类:NPSHa——装配汽蚀余量又叫有用汽蚀余量,越大越不轻易汽蚀;NPSHr——泵汽蚀余量,又叫必须的汽蚀余量或泵进口动压降,越小抗汽蚀机能越好;NPSHc——临界汽蚀余量,是指对应泵机能降低必定值的汽蚀余量;[NPSH]——许用汽蚀余量,是肯定泵运用前提用的汽蚀余量,平日取[NPSH]=(1.1~1.5)NPSHc. NPSH----实际汽蚀余量.NPS H≥NPSHr离心泵运转时,液体压力沿着泵进口到叶轮进口而降低,在叶片进口邻近的K点上,液体压力pK最低.此后因为叶轮对液体作功,液体压力很快上升.当叶轮叶片进口邻近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化.同时,使消融在液体内的气体逸出.它们形成很多汽泡.当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又从新凝聚溃灭形成空穴,刹时内四周的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增长(有的可达数百个大气压).如许,不但阻碍液体正常流淌,尤为轻微的是,假如这些汽泡在叶轮壁面邻近溃灭,则液体就像很多个小弹头一样,持续地打击金属概况.其撞击频率很高(有的可达2000~3000Hz),于是金属概况因冲击疲惫而剥裂.如若汽泡内搀杂某种活性气体(如氧气等),它们借助汽泡凝聚时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐化感化,加倍速了金属剥蚀的损坏速度.上述这种液体汽化.凝聚.冲击.形成高压.高温.高频冲击负荷,造成金属材料的机械剥裂与电化学腐化损坏的分解现象称为气蚀.离心泵最易产朝气蚀的部位有:a.叶轮曲率最大的前盖板处,接近叶片进口边沿的低压侧;b.压出室中蜗壳隔舌和导叶的接近进口边沿低压侧;c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧;d.多级泵中第一级叶轮.[编辑本段]进步离心泵抗气蚀机能措施(1)改良泵的吸进口至叶轮邻近的构造设计.增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加快与降压;恰当削减叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以削减绕流叶片头部的加快与降压;进步叶轮和叶片进口部分概况光洁度以减小阻力损掉;将叶片进口边向叶轮进口延长,使液流提前接收作功,进步压力.(2)采取前置引诱轮,使液流在前置引诱轮中提前作功,以进步液流压力.(3)采取双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增长一倍,进口流速可削减一倍.(4)设计工况采取稍大的正冲角,以增大叶片进吵嘴,减小叶片进口处的曲折,减小叶片壅塞,以增大进口面积;改良大流量下的工作前提,以削减流淌损掉.但正冲角不宜过大,不然影响效力.(5)采取抗气蚀的材料.实践标明,材料的强度.硬度.韧性越高,化学稳固性越好,抗气蚀的机能越强.(1)增长泵前贮液罐中液面的压力,以进步有用气蚀余量.(2)减小吸上装配泵的装配高度.(3)将上吸装配改为倒灌装配.(4)减小泵前管路上的流淌损掉.如在请求规模尽量缩短管路,减小管路中的流速,削减弯管和阀门,尽量加大阀门开度等.以上措施可依据泵的选型.选材和泵的运用现场等前提,进行分解剖析,恰当加以运用. [编辑本段]盘算公式什么叫气蚀余量?什么叫吸程?各自计量单位及暗示字母?答:泵在工作时液体在叶轮的进口处因必定真空压力下会产生液体汽体,汽化的气泡在液体质点的撞击活动下叶轮等金属概况产生剥落,从而损坏叶轮等金属,此时真空压力叫汽化压力,气蚀余量是指在泵吸进口处单位重量液全所具有的超出汽化压力的充裕能量.单位为米液柱,用(NPSH)r暗示.吸程即为必须气蚀余量Δ/h:即泵许可吸液体的真空度,亦即泵许可几何装配高度.单位用米.吸程=尺度大气压(10.33米)--气蚀余量--安然量(0.5)尺度大气压能压上管路真空高度10.33米例如:某泵必须气蚀余量为4.0米,求吸程Δh (早5.67米高度内可防止汽蚀)●例子:1公斤的压力下,水的饱和温度为100度,超出100度,部分水要气化,变成水蒸汽, 此时的水假如流进泵的进口,因为管阻力的原因,压力削减为0.8公斤,水将产生汽化,为了不汽化,将进水压力由1公斤增压到1.5公斤,这时泵进口压力为1.3公斤,●必须汽蚀余量:单位重量液体从泵吸进口截面至泵压强最低点的压降.这个参数反应的是泵本身的汽蚀特征.泵吸进口压强必定的话,必须汽蚀余量越大,证实泵压强最低点压强越低,泵就越轻易汽化.有用汽蚀余量:在泵的进口处,单位重量液体具有的超出汽化压强的充裕能量.这个参数越大,泵汽蚀的可能性就越小.装配汽蚀余量=有用汽蚀余量,两者是一个意思●汽蚀余量主如果权衡泵吸上才能的一个参数.我们都知道一个尺度大气压约等于10m水柱,也就是说假如把泵放到一个很深的水池子上面,水面与大气是相通的,这时让泵将水向外排,泵最大的可能性是使水面降低到与泵轴线垂直距离10m的地方,假如泵持续运转,这时的水面也不成能再降低了.泵也无法向外持续送水,其排出的将是气,这种状况,我们把它叫汽蚀.但实际上泵是无法完整让水面降低到与其轴线垂直10m距离,若干会剩下一部分.剩下这部分水假如也以m为单位来盘算的话,就是这台泵的汽蚀余量,也叫泵的必须汽蚀余量NPSHr,平日这个值是泵厂以20℃清水在泵的额定流量下测定的,单位是米.NPSHr越小解释泵的吸上机能越好. 但在实际工况中,泵不都是垂直安顿在液面上的,泵进口的阻力平日是因为进口管路的摩擦力.进口弯头.阀门的阻力造成的,而不是由泵吸入管内的液体的垂直重力造成的,即由泵以外的装配体系肯定的.这种装配汽蚀余量NPSHa,也叫有用汽蚀余量或可用汽蚀余量,单位也是米.其数值是即定的,也就是管路装配肯定了,其NPSHa也就肯定了. 那么,既然装配汽蚀余量NPSHa肯定了,若何包管泵正常工作,不产生汽蚀呢?那就必须使泵的必须汽蚀余量NPSHr和装配汽蚀余量NPSHa间有一个安然裕量S,即知足NPSHa-NPSHr≥S.对于一般离心泵,S平日取0.6~1.0m.●许可吸上真空度与临界汽蚀余量的关系解释如下:许可吸上真空度是将实验得出的临界吸上真空度换算到大气压为0.101325MPa和水温为20°C的尺度状况下,减去0.3m的安然裕量后的数值.临界汽蚀余量与许可吸上真空度之间的关系按下式盘算:(NPSH)c=(Pb-Pv)×106/pg+v21/2g-Hsc=(Pb-Pv)×106/pg+v21/2g-(Hsa+0.3) 式中:(NPSH)c——临界汽蚀余量,m; Pb——大气压力(绝对),MPa; Pv——汽化压力(绝对),MPa;p——被输送液体的密度,kg/m3;g——自由落体加快度,m/s2(取9.81);V1——进口断面处平均速度,m/s;Hsc——临界吸上真空度,m; Hsa——许可吸上真空度,m.•管道离心泵的装配症结技巧:水泵装配高度即吸程选用一.离心泵的症结装配技巧管道离心泵的装配技巧症结在于肯定水泵装配高度(即吸程).这个高度是指水源水面到水泵叶轮中间线的垂直距离,它与许可吸上真空高度不克不及混为一谈,水泵产品解释书或铭牌上标示的许可吸上真空高度是指水泵进水口断面上的真空值,并且是在1尺度大气压下.水温20摄氏度情形下,进行实验而测定得的.它并没有斟酌吸水管道配套今后的水流状况.而水泵装配高度应当是许可吸上真空高度扣除了吸水管道损掉扬程今后,所剩下的那部分数值,它要战胜实际地形吸水高度.水泵装配高度不克不及超出盘算值,不然,水泵将会抽不上水来.别的,影响盘算值的大小是吸水管道的阻力损掉扬程,是以,宜采取最短的管路安插,并尽量少装弯优等配件,也可斟酌恰当配大一些口径的水管,以减管内流速. 应当指出,管道离心泵装配地点的高程和水温不合于实验前提时,如当地海拔300米以上或被抽水的水温超出20摄氏度,则盘算值要进行修改.即不合海拔高程处的大气压力和高于20摄氏度水温时的饱和蒸汽压力.但是,水温为20摄氏度以下时,饱和蒸汽压力可疏忽不计. 从管道装配技巧上,吸水管道请求有严厉的密封性,不克不及漏气.漏水,不然将会损坏水泵进水口处的真空度,使水泵出水量削减,轻微时甚至抽不上水来.是以,要卖力地做好管道的接口工作,包管管道衔接的施工质量. 二.离心泵的装配高度Hg盘算许可吸上真空高度Hs是指泵进口处压力p1可许可达到的最大真空度.而实际的许可吸上真空高度Hs值其实不是依据式盘算的值,而是由泵制作厂家实验测定的值,此值附于泵样本中供用户查用.位应留意的是泵样本中给出的Hs值是用清水为工作介质,操纵前提为20℃及及压力为1.013×105Pa时的值,当操纵前提及工作介质不合时,需进行换算.(1) 输送清水,但操纵前提与实验前提不合,可依下式换算Hs1=Hs+(Ha-10.33) -(Hυ-0.24)(2) 输送其它液体当被输送液体及反派人物前提均与实验前提不合时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s 2 汽蚀余量Δh对于油泵,盘算装配高度时用汽蚀余量Δh来盘算,即泵许可吸液体的真空度,亦即泵许可的装配高度,单位用米.用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定.若输送其它液体,亦需进行校订,详查有关书本.吸程=尺度大气压(10.33米)-汽蚀余量-安然量(0.5米)尺度大气压能压管路真空高度10.33米.例如:某泵必须汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安然角度斟酌,泵的实际装配高度值应小于盘算值.当盘算之Hg 为负值时,解释泵的吸进口地位应在贮槽液面之下.例2-3 某离心泵从样本上查得许可吸上真空高度Hs=5.7m.已知吸入管路的全体阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可疏忽.试盘算:(1) 输送20℃清水时泵的装配;(2) 改为输送80℃水时泵的装配高度.解:(1) 输送20℃清水时泵的装配高度已知:Hs=5.7m Hf0-1=1.5m u12/2g≈0当地大气压为9.81×104Pa,与泵出厂时的实验前提基底细符,所以泵的装配高度为Hg=5.7-0-1.5=4.2 m.(2) 输送80℃水时泵的装配高度输送80℃水时,不克不及直接采取泵样本中的Hs值盘算装配高度,需按下式对Hs时行换算,即Hs1=Hs+(Ha-10.33) -(Hυ-0.24)已知Ha=9.81×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为47.4kPa.Hv=47.4×103 Pa=4.83 mH2O Hs1=5.7+10-10.33-4.83+0.24=0.78m将Hs1值代入式中求得装配高度Hg=Hs1-Hf0-1=0.78-1.5=-0.72m Hg为负值,暗示泵应装配在水池液面以下,至少比液面低0.72m.•sunpengyu1 (2008-4-30 09:39:56)PVC管上有孔,在退潮时不是有空气么,那就吸不出水了啊•pumpvalve (2008-4-30 13:37:26)水泵的装配高度重要有两方面的影响,其一是影响安然性,其二是影响经济性.一.先说对安然性的影响,装配高度会影响水泵进口的真空度和管路体系的水击.1.装配高度会影响水泵进口的真空度,我们知道水泵进口的真空度是一个十分重要的参数,对机能影响特别大,进口的真空度太小的话,水泵打不上水;真空度太大的话,管路部分担段汽化或泵进口汽化引起汽蚀.(1)进口的真空度太小的话,水泵打不上水,主如果因为大气压和进口的真空度的压差缺少以战胜管路损掉和进步能头;(2)太大的话,泵进口汽化引起汽蚀,这个也轻易懂得,汽蚀本来就和进口压强有关;(3)太大的话,管路部分担段汽化,只要低于汽化压力就汽化,这个也轻易懂得,主如果管路部分担段汽化对管路体系机能曲线的影响,这个很少有人存眷,这个影响和汽化的程度以及汽化的不合阶段有关(本质是两相流情形下的机能曲线),机能曲线消失摇动外形,使之和泵机能曲线有多个交点,从而激发管路体系流淌摇动和振动,甚至诱发汽蚀(和(2)中所说汽蚀照样有点区此外).2.装配高度和水击有关,依据水泵装配地位不合,可能消失正或负水击,只要搞水泵的人,这一点照样都知道的.二.装配高度对经济性的影响装配高度对经济性的影响重要表如今变速调节方面,装配高度较低的话,管路体系的静装配扬程低,从而使变速调节在全部调节规模内保持高效.三.对于一些特别情形,比方没有进口管路,只有进口肘形段的水泵,还须要斟酌装配高度和进口旋涡之间的关系,目标是在进入泵叶轮前清除进口旋涡,电厂中的轮回水泵,以及一些取水泵站用泵属于这种情形.四.其它不罕有情形不在此多说,若有这方面问题的同伙还可以持续交换,只要我有时光.。
水泵允许的汽蚀余量

水泵允许的汽蚀余量
水泵的汽蚀余量是指水泵能够在一定的工况下允许出现的汽蚀现象。
汽蚀是指在水泵中发生的液体在低压区域由于压力下降而产生气化现象,形成气泡并随液体流动进入高压区域,从而造成水泵的流量下降、压力波动、噪音增大、振动加剧等问题。
水泵的汽蚀余量与水泵的设计特性、工作条件、材料等因素有关。
一般来说,汽蚀余量越大,水泵抵抗汽蚀能力就越强,工作效果越好。
汽蚀余量主要通过水泵的进口压力、工作温度、转速、进口直径和减速器等来控制。
通常情况下,水泵的汽蚀余量为10%-15%,也有一些特殊要
求的水泵可以达到20%以上的汽蚀余量。
但需要注意的是,
汽蚀余量过大会导致水泵的效率下降和能耗增加,同时也会加大水泵的振动和噪音,所以选择合适的汽蚀余量可以在最大程度上兼顾水泵的使用寿命和性能。
水泵必须汽蚀余量名词解释(一)

水泵必须汽蚀余量名词解释(一)水泵必须汽蚀余量名词解释水泵(Water pump)•水泵是一种设备,用于将液体(通常是水)从一个地方输送到另一个地方。
•例如,用于工业生产中的离心泵、柱塞泵和螺杆泵等,以及家庭用途中的泳池水泵和冷却系统水泵。
必须汽蚀余量(NPSHr)•必须汽蚀余量是指水泵在正常运行时所需的最低净正吸入压力。
•这个数值决定了水泵能否有效抵抗汽蚀的能力,以保持良好的运行状态。
•例如,如果水泵的必须汽蚀余量比提供的净吸入压力低,就会导致汽蚀现象,使泵的运行效果降低甚至损坏泵设备。
汽蚀(Cavitation)•汽蚀是水泵运行过程中的一种不良现象,由于压力太低,液体中的气体形成气泡并被瞬间崩溃引起的。
•汽蚀会降低水泵的效率,增加噪音和振动,并可能导致泵耐久性的降低。
•例如,在水泵进口压力过低的情况下,液体中的涡流和气泡形成,当这些气泡进入高压区域时瞬间崩溃,会产生噪音和振动。
净正吸入压力(NPSHa)•净正吸入压力是指水泵进水口处的净流体压力,它考虑了大气压、液体表面高度、速度头和其他液体特性。
•净正吸入压力需要大于水泵的必须汽蚀余量,以确保水泵正常工作。
•例如,如果所提供的净吸入压力低于水泵所需的必须汽蚀余量,就会导致汽蚀现象。
压力头(Pressure head)•压力头是指水泵工作时液体在一定高度上的能量,通常表示为垂直高度的长度。
•压力头包括静态压力头、压力速度头和其他压力组成部分。
•例如,液体从一个容器的底部流出,其压力头就是液体的高度,这个压力头将提供水泵所需的净正吸入压力。
静态吸入高度(Static suction head)•静态吸入高度是指水泵进水口处液体表面与泵中心线之间的垂直距离。
•静态吸入高度对水泵的必须汽蚀余量有影响,较高的吸入高度会增加水泵的汽蚀风险。
•例如,如果水泵进水口处的液体表面距离泵中心线很远,就需要更高的净正吸入压力来抵抗汽蚀。
NPSH曲线(NPSH curve)•NPSH曲线是根据不同的流量和净正吸入压力,显示了水泵必须汽蚀余量的图表。
泵汽蚀余量计算方法及计算公式

泵汽蚀余量计算方法及计算公式
泵汽蚀余量是指泵在工作时避免因汽蚀而造成设备损坏的安全
余量。
计算泵汽蚀余量的方法和公式如下:
1. 根据NPSHr值计算,NPSHr(净正吸入压力余量)是指泵在
额定工况下所需的最小净正吸入压力,通常由泵的性能曲线给出。
NPSHr值可以通过实验测定或者由泵的制造商提供。
计算泵汽蚀余
量时,需要首先确定工作条件下的NPSHr值,然后结合系统设计工
况和液体性质等因素,计算出泵的实际NPSHa(净正吸入压力)值。
泵汽蚀余量即为NPSHa与NPSHr之差,通常建议保留一定的安全余量,以确保泵在工作时不会发生汽蚀。
2. 计算公式:泵汽蚀余量可以用以下公式进行计算:
NPSH余量 = NPSHa NPSHr.
在实际工程中,为了保证泵的正常运行和延长设备的使用寿命,通常建议在计算得到的泵汽蚀余量基础上增加一定的安全余量,具
体数值可根据实际情况和经验进行确定。
同时,还需要注意在计算
过程中考虑液体的温度、气体含量、管道阻力等因素对NPSH的影响,
以确保计算结果的准确性和可靠性。
总之,泵汽蚀余量的计算方法和公式是基于NPSH的理论和实验数据,通过对泵的实际工况和系统参数进行综合考虑,以确保泵在工作时不会受到汽蚀的影响,从而保证设备的安全运行。
汽蚀余量计算方法和例子

汽蚀余量[]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
[]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体xx,不能正常工作。
[]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从上述表述可知,气蚀现象是由于流场中出现的最小绝对压力引起,哪里的绝对压力小,哪里就容易发生气蚀。
因而,控制最小绝对压力即可控制空化作用,有效地减少气蚀现象的发生。
水泵是一种给流体增加能量的机器。
流体经叶轮向外流出,其压力一般而言是增加的,因而在水泵中流体出现最小压力的地方只能是叶轮叶片进口处附近。
这样一来,确保流体在叶轮叶片进口处具有足够的绝对压力,便成为避免水泵发生气蚀的关键。
2 水泵的气蚀余量NPSH
由于叶轮机械中流体运动的复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体的流动特性,还取决于流体本身的热力学性质,所以,更难于从理论上提出气蚀发生的判据。
因此,在实践中往往是采用经验加实验的办法来提出气蚀判据。
水泵的气蚀余量概念即是其中的重要判据之一,它既具有一定的理论意义,又是产品验收的标准之一。
水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSH A,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSH R,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。
要确保水泵在运行中不气蚀,必须在安装上保证NPSH A≥K×NPSH R,(K为安全裕量),而后者由制造厂所保证。
从这个意义上看,降低水泵气蚀余量的意义在于保证水泵的绝对提水高度,满足使用要求。
如图2所示,一般采用下列公式来计算气蚀余量
式中:P0为下游压力;P v为临界压力;H SZ为安装高度;∑h s为吸入管路流动损失,包括阀门、弯头等处的损失。
图2 泵气蚀余量的计算
由上式可以看出,NPSH
A 是一种能量储备,较小的NPSH
A
可使得安装高度H
SZ
较大,这是有
利的。
式中:V
1为叶片进口绝对速度;λ
1
为绝对速度变化及流动损失引起的压降系数,称绝对速度
的不均匀系数;W
1为叶片进口相对速度;λ
2
为流体绕流叶片头部引起的压降系数,称叶片的
气蚀系数。
由上式可以看出,NPSH
R 仅与泵本身的运动特性有关。
对设计者而言,要求NPSH
R
尽可能小,
以使得泵在安装上有较充裕的气蚀储备。