一阶偏微分方程基本知识资料

合集下载

第七章 一阶线性偏微分方程

第七章  一阶线性偏微分方程

第七章 一阶线性偏微分方程7-1求下列方程组的通积分及满足指定条件的解。

1)⎪⎪⎩⎪⎪⎨⎧++=+=t y x dtdy y x dt dx 2)⎪⎪⎩⎪⎪⎨⎧-=-=y x dtdy y x dt dx 2 ,当0=t 时,1==y x 3)xy dz z x dy y z dx -=-=- 解 1) 方程组的两式相加,得t y x dt y x d ++=+)(2)(。

令 y x z +=,上方程化为一阶线性方程t z dtdz +=2, 解之得412121--=t e C z t 即得一个首次积分为121)4121(),,(C e t y x y x t t =+++=Φ-。

方程组的两式相减,得t dty x d -=-)(, 解之得另一个首次积分为 22221),,(C t y x y x t =+-=Φ。

易验证 021111det det 2211≠-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂Φ∂∂Φ∂∂Φ∂∂Φ∂x x y x 。

因此,11),,(C y x t =Φ和22),,(C y x t =Φ是两个独立的首次积分,所以,方程组的通积分为121)4121(),,(C e t y x y x t t =+++=Φ-, 22221),,(C t y x y x t =+-=Φ。

从中可解得通解为⎪⎪⎩⎪⎪⎨⎧--+'-'=---'+'=81414181414122212221t t C e C y t t C e C x t t 。

2)方程组的两式相比,得 yx y x dy dx --=2, 变形得恰当方程 02=--+x d y y d x y d y x d x ,解之得一个首次积分为 12222C xy y x =-+,即 =Φ),,(1y x t 2122)(C y y x =+-。

给方程组第一式乘以y ,第二式乘以x ,再相减得])[()22(2222y y x xy y x y x x y +--=-+-='-',1)(22-=+-'+'-'-'yy x y y y x y y x y , 1)(22=+-'+'-'-'-y y x y y y x y y x y 两边积分,得另一个首次积分为=Φ),,(2y x t 2arctanC t y x y =--, 易验证 211),,(C y x t =Φ和22),,(C y x t =Φ是两个独立的首次积分,所以,方程组的通积分为2122)(C y y x =+-,2arctan C t yx y =--, 通解为 ⎩⎨⎧'+'='-'+'+'=t C tC y t C C t C C x s i n c o s s i n )(c o s )(211212,其中211sin C C C =',212cos C C C ='。

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组求解(实用版)目录一、一阶偏微分方程组的概念与基本概念二、一阶偏微分方程组的求解方法三、一阶偏微分方程组的应用实例正文一、一阶偏微分方程组的概念与基本概念一阶偏微分方程组是偏微分方程中的一种,它是指包含一个未知函数的一阶偏导数的方程组。

在求解一阶偏微分方程组时,我们需要了解一些基本概念,如:线性偏微分方程、非线性偏微分方程、齐次偏微分方程、非齐次偏微分方程等。

二、一阶偏微分方程组的求解方法求解一阶偏微分方程组通常有以下几种方法:1.常数变易法:适用于齐次线性偏微分方程组。

通过求解每个方程的常数项,然后将结果组合起来,得到原方程组的解。

2.变易法:适用于非齐次线性偏微分方程组。

首先求解对应的齐次线性偏微分方程组,然后通过解非齐次方程得到变易因子,最后将变易因子与齐次方程的解相加,得到原方程组的解。

3.待定系数法:适用于含有待定系数的一阶偏微分方程组。

通过设定待定系数,将方程组转化为一组关于待定系数的代数方程,然后求解代数方程,得到待定系数的值,最后将待定系数代入原方程组,得到原方程组的解。

4.分离变量法:适用于具有特定形式的一阶偏微分方程组。

通过将变量分离,将原方程组转化为一组关于不同变量的方程,然后分别求解这些方程,最后将解组合起来,得到原方程组的解。

三、一阶偏微分方程组的应用实例一阶偏微分方程组在实际问题中有广泛应用,例如:物理学中的波动方程、生物学中的种群动态方程、经济学中的价格决定方程等。

这些方程组的求解有助于我们更好地理解现实世界中的现象和规律,为科学研究和实际应用提供理论依据。

总之,一阶偏微分方程组是偏微分方程领域的基本内容,其求解方法多样,应用广泛。

一阶偏微分方程的解法

一阶偏微分方程的解法

一阶偏微分方程的解法偏微分方程是数学里一个广泛应用的领域。

其中,一阶偏微分方程是最为基础的一类,也是最常见的一类偏微分方程。

本文将介绍一阶偏微分方程的解法,希望能够对学习和应用偏微分方程的人们提供一定的帮助。

一、基础概念在介绍一阶偏微分方程的解法之前,我们需要先了解一些基础概念。

偏微分方程中的“偏”表示该方程与多个变量有关,微分方程表示该方程中包含有未知函数的导数项,即该方程描述了一个函数在不同变量下的变化。

一阶偏微分方程中,未知函数的偏导数项最高只有一次,且只涉及到一个变量。

方程中的未知函数只依赖于某一个变量,它的解也只涉及到一个变量。

因此,一阶偏微分方程通常可以写成以下的形式:$$ F(u_x, u_y, u_{xx}, u_{yy}, u_{xy}, x, y) = 0 $$其中,$u_x, u_y, u_{xx}, u_{yy}, u_{xy}$分别表示未知函数在不同变量下的偏导数,$x, y$是独立变量。

为了解决该方程,需要找到一个函数 $u(x,y)$,使得它满足该方程。

二、解法分析接下来,我们将介绍一阶偏微分方程的解法。

我们将着重介绍三种解法,分别是:特征线法、变换法和分离变量法。

1. 特征线法特征线法是一种经典的解法,适用于一些特殊的偏微分方程。

特征线法的基本思路是寻找一些特殊的曲线,这些曲线上的函数值保持不变,可以将函数沿这些曲线推进求解。

以以下方程为例:$$ u_x + u_y = x $$我们可以通过特征线法求解。

我们先假设存在某个变换,将$x,y$变为$\xi,\eta$,使得方程能够写成:$$ u_\xi + u_\eta = 1 $$这时,可以通过对$\xi, \eta$求偏导数,得到:$$ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} +\frac{\partial u}{\partial \eta}\frac{\partial \eta}{\partial x} $$$$ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} $$接着,我们可以找到一条特殊的曲线$\xi = \eta$,使得沿着该曲线推进方程不变:$$ \frac{du}{d\xi} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} = 1 $$在这个方程中,$u$ 只与$\xi$有关,因此可以直接求解得到:$$ u = \frac{1}{2}\xi^2 + C $$将$\xi,\eta$变回$x,y$,得到:$$ u = \frac{1}{2}(x-y)^2 + C $$2. 变换法变换法是一种寻求自变量的新变换,使得原方程可以转化为一些已知的方程的方法。

一阶偏微分方程教程

一阶偏微分方程教程

N (t) 0 p(a,t)da
18
若不考虑死亡,则在时刻 t+t,年龄在[a, a+a] 中的人口数量 p(a, t+t)a,应等于在时刻 t,年龄 在区间[a−t, a+a−t]中的人口数量p(a−t, t)a, 即
p(a,t t) p(a t,t)
因此 p(a, t)应满足
dx
dy du
1 u x y 1 2
首次积分为 u 2 y, 2 u x y y
于是原方程的隐式通解为
u 2y, 2 u x y y 0
其中 为任意二元连续可微函数。
16
例5. 求解hy问题
u
u x

xz u y

xy u z
0

u yy0 f (x, z)
11
解:特征方程组为 dx dy dz yz xz xy
首次积分为 x2 y2, x2 z2
于是原方程的通解为 u x2 y2, x2 z2 ,其中
为任意二元连续可微函数。
研究的数据包括50根圆柱组织样本中每一根所含 药物的测量值(见表1、表2及图1)。每一圆柱的长度 为0.76mm,直径为0.66mm。这些平行圆柱的中心 位于1mm×0.76mm×1mm的网格点上。因此,圆

a 0, t 0

p(a,
0)

p0 (a),
a0
(4)


p(0,
t
)


(a,t, N (t)) p(a,t)da,
0
t 0


N (t) 0 p(a,t)da, t 0

一阶偏微分方程

一阶偏微分方程
个独立的首次积分.
定理6.2 如果已知方程组(6.1)的一个首次积分,则可将方
程组(6.1)降低一维; 如果已知方程组(6.1)的 k 2 k n 1
个独立的首次积分,则可将方程组(6.1)降低 k 维.
应用定理6.2到例6.1, 因为
u1
(u1, u2 )
det
应用定理6.1到例6.1, 容易验证 u1(t, x, y) (x y)et 和
u2 (t, x, y) (x y)et 都是方程组的首次积分,并且根据定
义6.1,(u1,u2)也是方程组的首次积分, 其中 是任意关于其
变量连续可微的函数.那么 u1 和 u2为什么能够构成方程组
(u1,u2, , un ) 0 , (x1, x2 , , xn ) G
因此方程组(6.9)在区域 G内只有零解,即
x1 f1, x2 f2, , xn fn.
所以由(6.6)定义的函数是方程组(6.1)的解, 即(6.5)式 u j (t, x1, x2, , xn ) cj ( j 1, 2, , n)
定义6.1 设 u(t, x1, x2,, xn ) 是区域 G Rn1 内连续可
微,且不恒等于常数的函数, 如果方程组(6.1)的任一组解
x1(t), x2 (t), , xn (t), t I, 使得
u t, x1 t, x2 t, , xn t 某常数, 6.2
x
(x, y)
u2

x
u1
y u2


det

et et
y

et et


2

0,
(t,

1.3一阶线性偏微分方程的通解法

1.3一阶线性偏微分方程的通解法

1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。

1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。

)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。

试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。

一阶偏微分方程求解方法

一阶偏微分方程求解方法

VS
举例2
求解一阶偏微分方程时,遇到边界条件为 y'(0)=1,y'(1)=2的情况,可以通过有限差 分法进行处理。
感谢您的观看
THANKS
03
3. 求解参数方程
通过求解参数方程,得到 (t = x^2/2 + C) ,其中 (C) 是常数。
02
2. 建立参数方程
根据参数 (t) 的定义,建立参数方 程 (u'(x) = x + t) 。
04
4. 求得原方程的解
将 (t) 关于 (x) 的表达式代入原方 程,得到原方程的解 (u(x) = x^2/2 + C) 。
04 参数法
适用条件
适用于具有特定形式的一阶偏微分方程,如形如 (u'(x) = f(x, u(x))) 的方程。
适用于已知函数 (f(x, u)) 的情况,且在某些特定点上,方程的解 (u(x)) 可以表示为参数 (x) 的函数。
求解步骤
1. 确定参数
选择一个参数 (t) ,使得方程的解 (u(x)) 可以表示为 (t) 的函数。
乘积或商。
03 偏微分方程中的未知函数可以表示为某种周期函 数的乘积或商。
求解步骤
01
1. 将偏微分方程中的未知函数表示为多个函数的乘积
或商。
02 2. 将每个函数分别求解,得到每个函数的解。
03
3. 将所有函数的解组合起来,得到偏微分方程的解。
举例说明
考虑一阶偏微分方程 $$ frac{partial u}{partial x} + u = f(x) $$ 其中 $u = u(x)$ 是未知函数,$f(x)$ 是已知函数。
(e^{int f(x) dx} y' = f(x) e^{int f(x) dx})

一阶偏微分方程讲义

一阶偏微分方程讲义

偏微分方程(Partial Differential Equations)許多物理規律、物理過程和物理狀態都可以用微分方程描述。

當物理過程和狀態只由一個因素決定時,往往提出常微分方程。

例如質點的運動,通過解常微分方程就能得到質點的運動規律。

例:()()()()mu t cu t ku t P t++=(質點運動方程式)當物理問題由多個因素決定時,就會涉及到偏微分方程,偏微分方程為應用數學中重要的課題之一,物理問題之數學模式與偏微分方程式有關,許多數學理論與方法的發展往往肇因於求解偏微分方程。

例:222u uat x∂∂=∂∂(熱傳導方程式)22222u uat x∂∂=∂∂(波動方程式)2222u ux y∂∂+=∂∂(拉普拉斯方程式)u uut x∂∂+=∂∂(衝擊波方程式)33u u uut x xσ∂∂∂++=∂∂∂(KdV方程式)1. 偏微分方程的定義與解設()12,,,n u x x x =為自變數12,,,n x x x 之函數,任何包含其偏導數之關係式21211,,,,,,,0n n u u f x x x x x x ⎛⎫∂∂= ⎪∂∂∂⎝⎭(1)稱為偏微分方程式(簡稱P.D.E.)。

基本名詞:(1) 階數(order):P.D.E.中所含最高階偏導數之階數。

(2) 線性(linear):P.D.E.中,其未知函數以及其偏導數均滿足 (i)次數均為一次。

(ii)無互相的乘項。

(iii)無非線性函數。

則稱為線性P.D.E.。

(3) 擬線性(quasi-linear):P.D.E.中,其最高階的偏導數之次數為1次,且彼此無互乘項,則稱為擬線性P.D.E.。

(4) 非線性(non-linear):若P.D.E.不為線性或擬線性,則稱為非線性P.D.E.。

解之分類:(1) 通解(general solution):滿足P.D.E.且包含任意函數之解。

(2) 全解(complete solution):滿足P.D.E.且包含任意常數之解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶偏微分方程基本知识一阶偏微分方程基本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。

1一阶常微分方程组的首次积分1.1首次积分的定义从第三章我们知道,n 阶常微分方程()()()1,,'',',-=n n y y y x f y , ( 1.1)在变换()1'12,,,,n n y y y y y y -=== ( 1.2)之下,等价于下面的一阶微分方程组()()()1112221212,,,,,,,,,,,,,,.n nn n n dy f x y y y dx dy f x y y y dxdy f x y y y dx⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=⎪⎩ ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。

但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。

然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。

先看几个例子。

例1 求解微分方程组()()22221,1.dxdyy x x y x y x y dt dt=-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()()12222-++-=+y x y x dtdy y dt dx x, ()()()222222112d x y x y x y dt +=-++-。

这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为1222221C e yx y x t=+-+, ( 1.5) 1C 为积分常数。

( 1.5)叫做( 1.4)的首次积分。

注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。

因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。

为了确定( 1.4)的解,还需要找到另外一个首次积分。

将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到22y x dtdy x dt dx y+=-, 即()22y x dtdx y dt dy x+-=-, 亦即1arctan -=⎪⎭⎫ ⎝⎛dtx y d 。

积分得2arctan C t xy=+, ( 1.6)其中2C 为积分常数。

利用首次积分( 1.5)和( 1.6)可以确定( 1.4)的通解。

为此,采用极坐标cos ,sin x r y r θθ==,这样由( 1.5)和( 1.6)推得212211,.t e C t C r θ⎛⎫-=+= ⎪⎝⎭或 t C eC r t-=-=-221,11θ.因此我们得到方程组( 1.4)的通解为 ()teC t C x 2121cos ---=,()teC t C y 2121sin ---=. ( 1.7)例2 求解微分方程组 ()()(),,.duvw dt dvwu dt dwuv dt αβγβγαγαβ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩ ( 1.8)其中0αβγ>>>是给定的常数。

解 利用方程组的对称性,可得 0du dv dw uv w dt dt dtαβγ++=, 从而得到首次积分2221u v w C αβγ++=, ( 1.9) 其中积分常数10C ≥。

同样我们有 2220du dv dwuv w dt dt dtαβγ++=, 由此又得另一个首次积分2222222u v w C αβγ++=, ( 1.10)其中积分常数20C ≥。

有了首次积分( 1.9)和( 1.10),我们就可以将u 和v 用w 表示,代入原方程组( 1.8)的第三式,得到dw dt =, ( 1.11)其中常数a ,b 依赖于常数12C C 和,而常数 ()()()()0,0.A B γβγγαγααββαβ--=>=>--注意( 1.11)是变量可分离方程,分离变量并积分得到第三个首次积分3t C αβγ--=, ( 1.12) 其中3C 是积分常数。

因为方程组( 1.8)是三阶的,所以三个首次积分( 1.9)、( 1.10)和( 1.12)在理论上足以确定它的通解 ()()()123123123,,,,,,,,,,,.u t C C C v t C C C w t C C C ϕψχ===但是由于在式( 1.12)中出现了椭圆积分,因此不能写出上述通解的具体表达式。

现在我们考虑一般的n 阶常微分方程()n i iy y y x f dx dy ,,,,21 =,()n i ,2,1=, ( 1.13) 其中右端函数()n i y y y x f ,,,,21 在1+⊂n R D 内对()12,,,,n x y y y 连续,而且对n y y y ,,,21 是连续可微的。

定义1设函数()12,,,,n V V x y y y =在D 的某个子域G 内连续,而且对12,,,,n x y y y 是连续可微的。

又设()12,,,,n V x y y y 不为常数,但沿着微分方程( 1.3)在区域G 内的任意积分曲线()()()()1122:,,,n n y y x y y x y y x x J Γ===∈函数V 取常值;亦即()()()()()()12,,,n V x y x y x y x C x J =∈常数,或当12(,,,,)n x y y y ∈Γ时,有()12,,,,n V x y y y =常数,这里的常数随积分曲线Γ而定,则称()12,,,,n V x y y y =C ( 1.14)为微分方程( 1.13)在区域G 内的首次积分。

其中C 是一个任意常数,有时也称这里的函数()12,,,,n V x y y y 为( 1.13)的首次积分。

例如( 1.5)和( 1.6)都是微分方程( 1.4)在某个区域内的首次积分。

这里对区域G 有限制,是要求首次积分( 1.5)和( 1.6)必须是单值的连续可微函数。

因此区域G 内不能包括原点,而且也不能有包含原点的回路。

同理,式( 1.9)、( 1.10)和( 1.12)都是方程( 1.8)的首次积分。

对于高阶微分方程( 1.1),只要做变换( 1.2),就可以把它化成一个与其等价的微分方程组。

因此,首次积分的定义可以自然地移植到n 阶方程( 1.1)。

而其首次积分的一般形式可以写为()()1',,,,n V x y y y C -=。

( 1.15)例如,设二阶微分方程组()222sin 00d xa x a dt+=>为常数,用dxdt乘方程的两端,可得 222sin 0dx d x dx a x dt dt dt+=, 然后积分,得到一个首次积分221cos 2dx a x C dt ⎛⎫-= ⎪⎝⎭。

一般的,n 阶常微分方程有n 个独立的首次积分,如果求得n 阶常微分方程组的n 个独立的首次积分,则可求n 阶常微分方程组的通解。

1.2首次积分的性质和存在性关于首次积分的性质,我们不加证明地列出下面的定理。

定理1设函数()12,,,,n x y y y Φ 在区域G 内是连续可微的,而且它不是常数,则()12,,,,n x y y y C Φ= ( 1.16)是微分方程( 1.13)在区域G 内的首次积分的充分必要条件是110n nf f x y y ∂Φ∂Φ∂Φ+++=∂∂∂ ( 1.17) 是关于变量()12,,,,n x y y y G ∈的一个恒等式。

这个定理实际上为我们提供了一个判别一个函数是否是微分方程( 1.13)首次积分的有效方法。

因为根据首次积分的定义,为了判别函数()12,,,,n V x y y y 是否是微分方程( 1.13)在G 内的首次积分,我们需要知道( 1.13)在G 内的所有积分曲线。

这在实际上是由困难的。

而定理1避免了这一缺点。

定理2 若已知微分方程( 1.13)的一个首次积分( 1.14),则可以把微分方程( 1.13)降低一阶。

设微分方程组( 1.13)有n 个首次积分 ()()12,,,,1,2,,i n i x y y y C i n Φ==, ( 1.18)如果在某个区域G 内它们的Jacobi 行列式()()1212,,,0,,,n n D D y y y ΦΦΦ≠, ( 1.19)则称它们在区域G 内是相互独立的。

定理3设已知微分方程( 1.13)的n 个相互独立的首次积分( 1.18),则可由它们得到( 1.13)在区域G 内的通解()()12,,,,1,2,,i i n y x C C C i n ϕ==, ( 1.20)其中12,,,n C C C 为n 个任意常数(在允许范围内),而且上述通解表示了微分方程( 1.13)在G 内的所有解。

关于首次积分的存在性,我们有 定理4 设()00001,,,n p x y y G =∈,则存在0p 的一个邻域0G G ⊂,使得微分方程( 1.13)在区域0G 内有n 个相互独立的首次积分。

定理5 微分方程( 1.13)最多只有n 个相互独立的首次积分。

定理6 设( 1.18)是微分方程( 1.13)在区域G 内的n 个相互独立的首次积分,则在区域G 内微分方程( 1.13)的任何首次积分()12,,,,n V x y y y =C ,可以用( 1.18)来表达,亦即 ()()()1211212,,,,,,,,,,,,,,n n n n V x y y y h x y y y x y y y =ΦΦ⎡⎤⎣⎦,其中[]*,,*h 是某个连续可微的函数。

为了求首次积分,也为了下一节的应用,人们常把方程组( 1.3)改写成对称的形式12121n n dy dy dy dxf f f ===,这时自变量和未知函数的地位是完全平等的。

更一般地,人们常把上述对称式写成()()()1211221212,,,,,,,,,,nn n n n dy dy dy Y y y y Y y y y Y y y y ==( 1.21)并设12,,,n n Y Y Y G R ⊂在区域内部不同时为零,例如如果设0,n Y ≠ 则( 1.21)等价于()()()1212,,,1,2,,1,,,i n i n n n Y y y y dy i n dy Y y y y ==-。

相关文档
最新文档