数控机床机电系统有机结合分析与设计
机电一体化系统设计

机电一体化系统设计一、概论1、机电一体化:是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
2、对检测传感器的要求:要求检测传感器具有高精度、高灵敏度和高可靠性。
3、检测传感技术的主要难点:提高可靠性、精度和灵敏度。
需要研究的问题有:①提高各种敏感材料和元件灵敏度及可靠性②改进传感器结构,开发温度与湿度、视觉与触觉同时存在的符合传感器③研究在线检测技术,提高抗干扰能力④研究具有自动诊断与自动补偿功能的传感器。
4、自动控制:自动控制是指在没有人参与的情况下,通过控制装置使被控制的对象或控制过程自动的按照预定的规律运行。
5、系统总体技术:系统总体技术是一种从整体目标出发,用系统的观点和方法将总体分解成若干功能单元,找出能完成各个功能的技术方案,再把功能与技术方案组合成方案组进行分析、评价和优选的综合应用技术。
6、系统总体技术包括:插件、接口转换、软件开发、微机应用技术、控制系统的成套性和成套设备自动化技术。
7、系统总体技术需要研究的问题:①软件开发与应用技术,包括过程参数应用软件、实时精度补偿软件②研究接插件技术,体改可靠性③通过接口和数据总线标准化④控制系统成套性和成套设备自动化⑤软件的标准化。
8、机电一体化系统由机械系统、信息处理系统、动力系统、传感检测系统、执行元件系统五个系统组成。
9、系统的五种内部功能:即主功能、动力功能、计策功能、控制功能、构造功能。
主功能是实现系统“目的功能”直接必须的功能,主要是对物质、能量、信息及其相互结合进行变换、传递和存储。
动力功能的作用是根据系统内部信息和外部信息对整个系统进行控制,使系统正常运转,实时“目的功能”。
而构造功能则是使构成系统的子系统及元、部件维持所定的时间和空间上的相互关系所必须的功能。
10、机电一体化系统设计的考虑方法同城有:几点互补法、融合法和组合法。
11、系统工程是组织管理系统的规划、研究、设计、制造、试验和使用的科学方法,是一种对所有系统都具有普遍意义的科学方法。
数控机床机械结构设计与制造技术分析

数控机床机械结构设计与制造技术分析数控机床是一种集机电一体、工作自动化的高科技机械设备,其应用领域日益扩大。
在现代制造领域,数控机床已经成为不可缺少的工具,具有工作高效、精度稳定、自动化程度高等优势。
因此,数控机床的机械结构设计和制造技术的分析对于提高机床的性能和质量意义重大。
本文将从数控机床机械结构设计和制造技术两个方面进行探讨。
数控机床机械结构设计是数控技术的重要组成部分,其主要目的是实现工件的高精度加工。
机械结构设计的核心是构建合理的机械结构,它必须实现切削力的传递,确保传动精度和稳定性,并满足机床高速、高精度加工的需要。
1.数控机床结构布局设计数控机床的结构设计以其性能和稳定性为基础,应该尽可能减少结构的复杂度和重量,提高加工精度和效率。
必须综合考虑机床结构与传动系统,并结合数控系统决定结构的布局设计。
2.数控机床动力传动系统数控机床的动力传动系统是保证机床高速、高精度运动的重要组成部分。
传动系统的设计要求高传动精度、高刚性、低噪声、低能耗等。
在设计中,应当选择合适的传动方式和传动件,合理布置传动方式和传动件,保证传动精度和稳定性。
3.数控机床加工台面数控机床加工台面的设计与制造是实现高精度加工关键,加工台面的设计包括机床工作台的结构和运动方式等,制造应当满足加工、表面平整度和精度等要求。
加工时台面应确保精度修整及完整性,保证工件与工具成定心运动,达到加工工件的精度要求。
数控机床的制造技术包括各种机床部件的加工装配工艺和制造工具。
制造过程中应严格遵守工艺规程,保证机床实现高精度加工的要求。
同时,应该使用高品质的材料和制造工具。
数控机床结构部件加工的精度要求高,包括螺旋齿轮的加工、齿轮啮合的匹配、齿轮的零件标记、联轴器的面精度等。
因此,必须采用高精度的加工设备和工具,采用精细的加工工艺。
2.数控机床结构部件的装配数控机床结构部件的装配是保证机床高精度、高效率的关键。
在装配过程中,应根据机床的设计规格,对各个零部件进行精密配合或插配,确保机床的高稳定性和高度精度。
机电一体化技术在数控机床上的应用分析

机电一体化技术在数控机床上的应用分析作者:梁利国来源:《城市建设理论研究》2013年第24期摘要:在科学技术是第一生产力的今天,随着经济社会的不断发展和科学技术的更新进步,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,导致了工程领域的技术革命与改造,在机械工程领域,极大地推动了不同学科的交叉与渗透。
本文简要描述了机电一体化的概念,并重点探讨了机电一体化在数控机床中的应用。
关键词:机电一体化;数控机床;应用中图分类号:TH-39文献标识码: A 文章编号:前言随着经济社会的不断发展和科学技术的更新进步,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
由于大规模集成电路和超大规模集成电路的出现,特别是微型电子计算机的空前发展,促进了机械技术和电子技术的相互交叉和相互渗透,并使机械技术和电子技术在系统论、信息论和控制论的基础上有机地结合起来,形成了机电一体化技术。
数控机床作为机电一体化产品的典型代表在当今制造业中扮演着非常重要的角色,本文就机电一体化在数控机床中的应用进行分析探讨。
1 机电一体化的基本概念机电一体化的基本概念是根据系统功能目标和优化组织目标。
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不断发展。
由此而产生的功能系统---机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,成为一个机电一体化系统或机电一体化产品。
机电一体化是从系统的观点出发,合理配置与布局各功能单元,还将被赋予新的内容。
并使整个系统最优化的系统工程技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称,是综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值。
机电系统设计分析

02
机电系统设计基础
机电系统设计基础
• 请输入您的内容
03
机电系统设计流程
需求分析与规格说明
确定系统功能与性能要求
对机电系统的功能、性能参数和运行环境进行 详细分析,明确设计目标。
收集相关资料与技术标准
收集国内外相关技术资料、标准和规范,为后 续设计提供参考。
案例四:自动化生产线设计分析
总结词
高效、可靠、柔性
详细描述
自动化生产线是实现大规模生产的关键设施之一,其设 计需要综合考虑生产工艺、设备选型、控制系统等多个 方面。自动化生产线的设计目标是实现高效、可靠、柔 性的生产,即提高生产效率、降低故障率、增强生产线 的可调整性和可扩展性。为实现这一目标,设计时需要 采用先进的自动化技术和智能技术,优化生产线布局和 设备配置,并加强生产过程中的监控和管理。
优点。
嵌入式数据库
嵌入式数据库是嵌入式系统中的重要 组成部分,用于存储和管理数据。
嵌入式操作系统
嵌入式操作系统是嵌入式系统的软件 基础,具有实时性、可裁剪性、可移 植性等优点。
嵌入式网络技术
嵌入式网络技术是实现远程控制和数 据传输的关键技术,具有低功耗、低 成本等优点。
05
机电系统设计案例分析
案例一:工业机器人设计分析
总结词
功能全面、应用广泛
详细描述
工业机器人是机电一体化技术的典型应用,具有高精度、高效率、可编程性强等特点。在设计工业机 器人时,需要考虑其运动学、动力学特性,以及人机交互、安全防护等方面的要求。此外,还需根据 实际应用需求,选择合适的驱动系统、控制系统和传感器系统等。
案例二:数控机床设计分析
机电一体化数控技术在机械加工中的应用分析

机电一体化数控技术在机械加工中的应用分析摘要:机电一体化数控技术是近年来机械加工领域的一项重要技术创新,它将机械加工与电子技术、自动控制技术有机地结合起来,为机械加工过程带来了革命性的变革。
本论文从机电一体化数控技术的基本原理、在机械加工中的应用以及未来发展趋势等方面进行了分析,旨在深入探讨这一技术在提高加工效率、精度和灵活性等方面的优势,为机械制造业的进步提供有益的参考。
关键词:机电一体化;数控技术;机械加工引言:随着工业技术的不断进步,机械加工作为制造业的重要环节,也在不断迎来新的发展。
机电一体化数控技术作为现代制造业的重要支撑,已经在机械加工中得到了广泛的应用。
它将机械、电子和自动化控制技术融为一体,实现了加工过程的智能化和自动化,极大地提高了生产效率和产品质量。
本文将深入分析机电一体化数控技术在机械加工中的应用,探讨其优势和未来的发展方向。
一、机电一体化数控技术的基本原理机电一体化数控技术是机械加工领域的一项先进技术,它主要包括数控系统、伺服系统、传感器系统等多个部分的综合应用。
数控系统通过程序控制机床的运动,实现加工工艺的自动化执行;伺服系统能够精确控制机床的运动轨迹和速度,确保加工的精度和稳定性;传感器系统用于采集加工过程中的各种数据,为自动控制提供依据。
机电一体化数控技术的核心思想是通过计算机控制和自动化技术,实现机械加工过程的精确控制和智能化操作[1]。
二、机电一体化数控技术在机械加工中的应用(一)数控车床的应用以航空航天领域为例,数控车床的应用在制造涡轮叶片等复杂零件方面变得尤为关键。
这些零件对加工精度和质量要求极高,而传统的机械加工方法难以满足这些要求。
机电一体化数控技术的引入使得涡轮叶片的加工变得更加可靠和高效。
通过精确的刀具路径控制,数控车床能够实现微小而精密的切削,从而确保涡轮叶片的几何形状和表面质量达到设计要求。
这为航空发动机的性能提升和燃料效率改善提供了坚实的基础。
机电一体化系统设计有机结合分析与设计

推动模块的标准化和互换性,降低维护成本和提高系统灵活性。
结合实例分析
实例一
数控机床的机电一体化系统设计, 通过电子系统实现对机床运动的
精确控制,提高加工精度和效率。
实例二
智能机器人的机电一体化系统设计, 集成传感器、控制器和执行器,实 现机器人的自主导航、物体识别和 抓取等功能。
实例三
机床的性能和稳定性。
数控机床的应用范围广泛,可适用于各种复杂零件的 加工,为现代制造业的发展提供了重要的技术支持。
自动化生产线设计
自动化生产线是机电一体化系统设计 的又一重要应用,通过自动化技术实 现生产过程的连续性和高效性。
自动化生产线在汽车、电子产品、食 品等领域得到广泛应用,提高了生产 效率和产品质量,降低了生产成本。
结合原则
确保机电一体化系统的稳定性、可靠性、高效性 和低成本。
接口设计
合理设计机械与电子系统之间的接口,实现数据 和信号的有效传输。
结合策略与实现
策略
采用模块化设计方法,将机电一体化系统划分为若干个功能模块, 分别进行设计、优化和集成。
实现
利用现代计算机辅助设计工具进行建模、仿真和分析,确保各模块 之间的协调性和整体性能的最优化。
风力发电机的机电一体化系统设计, 将机械能转换为电能,同时考虑风 能利用率和系统稳定性。
04
机电一体化系统设计案例
数控机床设计
数控机床是机电一体化系统设计的典型案例,通过将 机械、电子、控制等技术有机结合,实现高精度、高
效率的加工能力。
数控机床设计过程中,需要考虑机床的整体布局、传 动系统、控制系统、冷却系统等方面的设计,以确保
机械系统设计是机电一体化系统 的核心部分,包括机械结构、传
发展“机电一体化”的思路和对策范文

一、机电一体化技术发展历程及其趋势自电子技术一问世,电子技术与机械技术的结合就开始了,只是出现了半导体集成电路,尤其是出现了以微处理器为代表的大规模集成电路以后,“机电一体化”技术之后有了明显进展,引起了人们的广泛注意。
(一)“机电一体化”的发展历程1.数控机床的问世,写下了“机电一体化”历史的第一页;2.微电子技术为“机电一体化''带来勃勃生机;3.可编程序控制器、“电力电子”等的发展为“机电一体化”提供了坚强基础;4.激光技术、模糊技术、信息技术等新技术使“机电一体化”跃上新台阶。
二“机电一体化”发展趋势1.光机电一体化。
一般的机电一体化系统是由传感系统、能源系统、信息处理系统、机械结构等部件组成的。
因此,引进光学技术,实现光学技术的先天优点是能有效地改进机电一体化系统的传感系统、能源(动力)系统和信息处理系统。
光机电一体化是机电产品发展的重要趋势。
2.自律分配系统化——柔性化。
未来的机电一体化产品,控制和执行系统有足够的“冗余度”,有较强的“柔性”,能较好地应付突发事件,被设计成“自律分配系统”。
在自律分配系统中,各个子系统是相互独立工作的,子系统为总系统服务,同时具有本身的“自律性”,可根据不同的环境条件作出不同反应。
其特点是子系统可产生本身的信息并附加所给信息,在总的前提下,具体“行动”是可以改变的。
这样,既明显地增加了系统的适应能力(柔性),又不因某一子系统的故障而影响整个系统。
3.全息系统化——智能化。
今后的机电一体化产品“全息”特征越来越明显,智能化水平越来越高。
这主要收益于模糊技术、信息技术(尤其是软件及芯片技术)的发展。
除此之外,其系统的层次结构,也变简单的“从上到下”的形势而为复杂的、有较多冗余度的双向联系。
4.“生物一软件”化—仿生物系统化。
今后的机电一体化装置对信息的依赖性很大,并且往往在结构上是处于“静态”时不稳定,但在动态(工作)时却是稳定的。
这有点类似于活的生物:当控制系统(大脑)停止工作时,生物便“死亡”,而当控制系统(大脑)工作时,生物就很有活力。
数控机床上下料机械手设计机电一体化毕业论文

数控机床上下料机械⼿设计机电⼀体化毕业论⽂摘要通过对机械设计、制造及其⾃动化专业课程的学习,总结⼤学四年所学的知识,对⼯业机械⼿各部分机械结构和功能的论述和分析,以及实际操作中的应⽤情况,设计了⼀种圆柱坐标形式的数控机床上下料机械⼿。
重点针对机械⼿的⼿⽖、⼿腕、⼿臂、腰座等各部分机械结构以及机械⼿控制系统(传动系统、驱动系统)进⾏了详细的设计。
同时对其控制系统和液压系统进⾏了理论分析和设计计算。
基于PLC对机械⼿的控制系统进⾏了深⼊细致的设计,通过对机械⼿作业的⼯艺过程和控制要求的分析,设计了控制系统的硬件电路,同时编制了机械⼿的控制程序。
设计达到了预期⽬标。
关键词:机械⼿;PLC;液压伺服定位;电液系统AbstractThrough mechanical design, manufacturing and automation professional course of study, four-year summary of what you have learned, on industrial robot mechanical parts of the structure and function of discussion and analysis, as well as the actual operation of the application, designed a cylindrical form of CNC machine tool Manipulator. Focused on robotic hand, wrist, arm, waist, and other parts of the mechanical structure, and the robot control system (transmission system, driving system) with a detailed design. At the same time on the control system and hydraulic system for the calculation of theoretical analysis anddesign. The PLC-based control system of the manipulator for intensive design, by manipulators of process and control requirements analysis, design of control systems hardware circuit, be compiled in a robotic control program. The design reached the intended target.Key words: Robotics; PLC; hydraulic servo positioning; electro-hydraulic system第⼀章绪论1.1选题背景由于⼯业⾃动化的全⾯发展和科学技术的不断提⾼,对⼯作效率的提⾼迫在眉睫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•2020/5/31
3)伺服系统放大器(驱动电路)的设计与选用
驱动电路设计通常分为两部分:信号处理与功率放大(提高 信号品质为主),功率放大(增大能量为主)。 具体要求:
a)最后输出级的功率应与执行元件功率(电流、电压、容 量、额定值)相匹配。
—— 输出阻抗小、效率高、时间常数小。 b)为执行元件的正常运转提供必要的适宜条件。
•2020/5/31
(2)执行元件的功率匹配
电机功率的合理确定是执行元件选择的重要 参数之一。
主要依据电机的等效负载和最高转速确定。 常用下式进行预选。
• 再通过过热验算和过载验算,最终确定 电机的功率。
•2020/5/31
(3)电机的过热验算
电机在一定工作时间范围内,负载转矩变化时,应用等效 法(励磁磁通近似不变)计算电机的等效转矩(平均转矩
4)减速器输出轴转角误差最小原则选择减速 比
•即 最小原则:
•2020/5/31
5)按速度和加速度规定要求选择减速比
在速度和加速度有要求时,除按加速度最大原则 选择减速比外,还应依据负载最大角速度与电机输
出角速度之间的关系,最终确定减速比。
• 注意:应用上述方法确定机械传动部分的减速 比,不能单一应用某一种方法,应用多种方法,综 合分析,结合被控制对象的具体情况,在依据减速 比的分配原则(2章),最终确定机械传动总减速 比和各级减速比。
最大等要求。 (2)各级减速比的分配原则与方法 1)按加速度最大原则选择减速比 当要求输入信号变化快、响应快、加速度大时,应
按下式决定减速比 i:
•2020/5/31
2)按输入速度恒定原则选择减速比
在输入速度信号近似恒速时,有加速度最小,可按下式确 定减速比 i :
3)满足脉冲当量、进给角、丝杠基本导程匹配关 系选择减速比
•2020/5/31
四、检测传感装置、信号转换接口电路、 放大电路、电源的匹配与设计
1)检测传感装置的选择 依据被检测对象的类型,考虑传感器的精度(分辨 率)、不灵敏区、工作范围、输入/输出特性(线性 )、信号转换时间、信噪比、转动惯量和摩擦特性、
稳定性和可靠性等,合理选择传感器。
2)信号转换接口电路 尽可能选用标准、通用、商业集成元件。考虑输入
无论机械传动或变换元件是直线运动还是回转运动,应 用总动能不变的原理,可进行等效转动惯量的计算。
能量守恒:E = Ek
•2020/5/31
2)等效负载转矩的计算
无论外部或内部负载是力还是力矩,应用虚功原理,可 进行等效负载转矩的计算。
•2020/5/31
二、执行元件的匹配选择
执行元件的匹配选择主要包括转矩匹配、功 率匹配、过热保护系数和过载保护系数验算
统的整体性能。
•2020/5/31
一、典型负载分析
(1)典型负载形式 无论被控制对象的运动形式如何,负载形式 及其特点千差万别,归纳起来具有一些共性
负载——典型负载。 包括:惯性负载、外力负载、弹性负载、摩
擦负载 。 目的:获取负载特征参量。为系统执行元件 ,机械变换机构等的选用或设计,系统进行
稳定性设计和动态设计创造条件。
—— 制动条件、限流保护条件等。
c)放大器应有足够的线性范围,保障执行元件的容量得以
正常发挥。 d)输入级应与检测传感器相匹配。 ——输入阻抗大,可减轻检测传感器的负荷。
e)放大器要有足够的放大倍数,工作特性稳定可靠、易于
四部分。
•直流电机 •步进电机及驱动
•2020/5/31
•步进电机基本结构
(1)执行元件的转矩匹配
测算执行元件输出轴上的等效转矩 (摩擦 负载和工作负载)和等效惯性转矩T惯的总和。
• 考虑机械传动效率,则执行元件的等效输 出转矩:
• 注意:执行元件为伺服电动机时,电动机工 作区域应在恒转矩输出调速区内。
)。
•电机不产生过热的条件为:
,
•(4)电机的过载验算
•2020/5/31
三、减速比的匹配选择与各级减速比的分配
减速比匹配的目的是可最终获得被控制对象的运动规律和运 动速度要求。
(1)减速比匹配选择的一般原则要求
在第2章中,提到了机械传动减速比的分配原则,主要依据 是转动惯量最小、重量最轻、传动误差最小,以及综合考虑来
2.理论设计 --稳态设计 ① 使系统的输出运动参数达到技术要求。 ② 执行元件的参数选择。 ③ 功率(力/力矩)匹配以及过载能力的验算。 ④ 各主要元件的选择与控制电路的设计。 ⑤ 信号的有效传递。 ⑥ 各级增益的分配。 ⑦ 各级之间阻抗的1 稳态与动态设计
数控机床机电系统有机 结合分析与设计
2020年5月31日星期日
6.1 稳态与动态设计
机电伺服系统设计过程: 1.初步设计方案
包括系统主要元部件种类、各部分之间连接方 式、系统控制方式、所需能源供给形式、校正补
偿方法、信号转换方式等
•2020/5/31
6.1 稳态与动态设计
机电伺服系统设计过程:
1.初步设计方案
确定各级传动的减速比。
• 本节提到的减速比匹 配及分配,是以满足控制 对象的运动特性、加速特 性和动力特性为准则。
•2020/5/31
即依据负载特性、脉冲当量(分辨率)、系统综 合要求等来选择确定。减速比要满足被控制对象的 调速范围,并使在一定条件下综合指标参数达到最 佳,也要满足脉冲当量(分辨率)与进给角之间的 相应关系和在一定条件下输出转速最大或输出转矩
机电伺服系统设计过程:
1.初步设计方案
2.理论设计 --稳态设计 --动态设计 设计校正补偿装置,使系统满足动态技术指 标要求。通常需进行计算机仿真,或用计算机进 行辅助设计
3.试验与调试
•2020/5/31
6.2 稳态设计
系统稳定设计的目的: 使控制被控对象能完成所需要的机械运 动,即进行机械系统的运动学、动力学 分析以及计算,保障整个机电一体化系
•2020/5/31
(2)惯量和负载的等效换算
惯量和负载转换的作用: 为使所选择执行元件(功率、力/力矩、运动参 量)与被控对象的固有参数(质量、转动惯量、 运动参数)等相匹配,应将输出轴各部分的惯量 和负载转换到执行元件的输出端,以便进行执行
元件的选择。
•2020/5/31
1)等效转动惯量的计算