2018深圳宝安数学一模

合集下载

2018深圳宝安区一模文科数学含答案

2018深圳宝安区一模文科数学含答案
()12.已知概念在 上的可导函数 的导函数为 ,知足 ,且 为偶函数, ,那么不等式 的解集为
A.(-2,+ )B.(0.+ )C.(1, )D.(4,+ )
第Ⅱ卷(共90分)
二、填空题(每题5分,总分值20分,将答案填在答题纸上)
13.已知向量 ,那么 .
14.设 知足约束条件 ,那么 的最大值为.
在直角坐标系中,以原点为极点, 轴的正半轴为极轴建坐标系,已知曲线
,已知过点 的直线 的参数方程为: ,直线 与曲线 别离交于 两点.
(1)写出曲线 和直线 的一般方程;
(2)假设 成等比数列,求 的值.
23.[选修4—5:不等式选讲](10分)
已知函数
(1)求不等式 的解集;
(2)假设关于 的不等式 的解集非空,求实数 的取值范围.
考点:1.频率散布直方图的应用;2.列联表的画法及 的求解.
19.【答案】( )观点析( )
试题解析:( )因为四边形ABCD为菱形,因此AC BD,
因为BE 平面ABCD,因此AC BE,故AC 平面BED.
又AC 平面AEC,因此平面AEC 平面BED……………………. 6分
( )设AB= ,在菱形ABCD中,由 ABC=120°,可得AG=GC= ,GB=GD= .
20.(1)解:设 ,因为 ,
因此 ,整理得 (舍)
或 ……………………. 5分
(2)解:由(Ⅰ)知 ,可得椭圆方程为 ,直线FF2的方程为 A,B两点的坐标知足方程组
消去 并整理,得 。解得 ,得方程组的解 ……………………. 7分
不妨设 , ,
因此 于是
……………………. 9分
圆心 到直线P调研测试卷

2018年广东省深圳市数学中考一模试卷2

2018年广东省深圳市数学中考一模试卷2

2018年广东省深圳市数学中考一模试卷扫描二维码,下载客户端,随时随地做题支持iPhone/Android手机1.2018的相反数是()A. -2018B.C. 2018D.2.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.3.下列计算结果正确的是()A.B.C.D.4.据报道,我国自行研发的第一艘001A型航空母舰吨位达到6.5万吨,造价30亿美元,用科学记数法表示6.5万吨为()A. 吨B. 吨C. 吨D. 吨5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个6.如图,一只蚂蚁以均匀的速度沿台爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是()A.B.C.D.7.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:则该班同学筹款金额的众数和中位数分别是()A. 11,20B. 25,11C. 20,25D. 25,208.在中,,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.B.C.D.9.如图所示,在中,,以点B为圆心,BC长为半径做弧,交AB于点D,再以点A为圆心,AD长为半径画弧,交AC于点E,下列结论错误的是()A.B.C.D.10.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形11.已知二次函的图象如图所示,它与x轴的两个交点分别,,对于下列命题:①;②;③;④,其中正确的是()A.3个B.2个C.1个D.0个12.如图,在矩形ABCD中,E是AD的中点,垂足为F,连接DF,下列四个结论;③;④,。

其中正确的是()A. ①②③B. ②③④C. ①③④D. ①②④13.若一元二次方有两个相等的实数根,则c的值是。

2017-2018宝安区一模数学试题

2017-2018宝安区一模数学试题

2017-2018学年第一学期宝安区期末调研试卷九年级 数学第一部分 (选择题,共36分)一、选择题:(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1. 一元二次方程x x 32=的根是( )A.3=xB.3=xC.3021-==x x ,D.3021==x x , 2.下面左侧几何体的左视图是( )3.如果2=b a ,则ba ba -+的值是( ) A.3 B.﹣3 C.21 D.234.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球。

经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值约为( )A.20B.30C.40D.505.关于x 的一元二次方程0232=-+x ax 有两个不相等的实数根,则a 的值可以是( ) A.0 B.﹣1 C.﹣2 D.﹣36.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民20XX 年人均收入300美元,预计2018年人均年收入将达到950美元,设20XX 年到2018年该地区居民人均年收入平均增长率为x ,可列方程( )A.950%13002=+)(x B.95013002=+)(x C.95021300=+)(x D.95013002=+)(x 7.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲。

为此,某电子商城推出分期付款购买新手机的活动。

一部售价为9688元的新手机,前期付款2000元,后期每个月分期付相同的数额,则每个月的付款额y (元)与付款月数x (x 为正整数)之间的函数关系式是( ) A.20007688+=x y B.20009688-=x y C.x y 7688= D.xy 2000= 8.如图1,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连结AE ,如果∠ADB=38°,则∠E 的值是( ) A.19° B.18° C.20° D.21°9.下列说法正确的是( )A.二次函数3)1(2-+=x y 的顶点坐标是(1,﹣3);B.将二次函数2x y =的图象向上平移2个单位,得到二次函数2)2(+=x y 的图象; C.菱形的对角线互相垂直且相等;D.平面内,两条平行线间的距离处处相等;10.如图2,一路灯B 距地面高BA=7m ,身高1.4m 的小红从路灯下的点D 出发,沿A →H 的方向行走至点G ,若AD=6m ,DG=4m ,则小红在点D 到G 处的影长相对于点G 处的影长变化是( )A.变长1mB.变长1.2mC.变长1.5mD.变长1.8m11.一次函数c ax y +=的图象如下图3所示,则二次函数c x ax y ++=2的图象可能大致是( )12. 如图4,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E ,PF ⊥DC 于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G 。

2018九年级数学上期末模拟试题1深圳市宝安区有答案和解释

2018九年级数学上期末模拟试题1深圳市宝安区有答案和解释
4
(
k2?
k+2
)
=41
? 8
>
0


:
k
>
2
-


:
D

6


:
















X


20
16






80


20
17






80
(
1+X
)

2018






80
(
1+x
)
(
1+X
)



20
18







10C


:
80
(
1+X
)
(
1+X
)
=彳00

80
(
1+X
)

BD




八、、
O


八、、
O

OE


AC

AD


八、、
E

DE



(

【最新】九年级数学-2018-2019学年广东省深圳市宝安区九年级上期末数学模拟题(一)含答案解析--精选练习

【最新】九年级数学-2018-2019学年广东省深圳市宝安区九年级上期末数学模拟题(一)含答案解析--精选练习

广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0B.x=0、x=1C.x=0和x=2D.x=0或x=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=.15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得:=0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,=|﹣3|=,∴S△AOD=×=,即|k|=,∴S△OCE∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形A BCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=y N﹣y P=(﹣)﹣(﹣m+2)=﹣+4m,由于四边形OBNP为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N在P的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0)…………(7分)由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.…………(9分)。

【最新】九年级数学-2018-2019学年广东省深圳市宝安区九年级上期末数学模拟题(一)含答案解析--精选练习

【最新】九年级数学-2018-2019学年广东省深圳市宝安区九年级上期末数学模拟题(一)含答案解析--精选练习

广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0B.x=0、x=1C.x=0和x=2D.x=0或x=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=.15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得:=0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,=|﹣3|=,∴S△AOD=×=,即|k|=,∴S△OCE∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形A BCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=y N﹣y P=(﹣)﹣(﹣m+2)=﹣+4m,由于四边形OBNP为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N在P的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0)…………(7分)由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.…………(9分)。

2018深圳一模文科数学word含答案 广东省深圳市2018届高三第一次调研考试

2018深圳一模文科数学word含答案 广东省深圳市2018届高三第一次调研考试

2018深圳一模文科数学word含答案广东省深圳市2018届高三第一次调研考试绝密★启用后深圳市2018届高三年级第一次调研考试数学(文科)2018.3第I卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-2<0\}$,$B=\{x|x\geq 1\}$,则$A\cap B=$A。

$(,-1]$B。

$[-1,0)$C。

$[-1,2)$D。

$[0,2)$2.已知$a\in R$,$i$ 为虚数单位,若复数$z=ai$ 纯虚数,则 $a=$A。

$0$B。

$1$XXXD。

$-1$3.其食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上收集到了一部分不同年份的该酒品,并测定了其芳香度(如下表)。

年份 $x$ | 芳香度 $y$ |1$。

|。

$1.3$。

|4$。

|。

$1.8$。

|5$。

|。

$5.6$。

|6$。

|。

$7.4$。

|8$。

|。

$9.3$。

|其中,$y\hat{y}=1.03x+1.13$,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为A。

$6.1$B。

$6.28$C。

$6.5$D。

$6.8$4.设有下面四个命题:N,n^2>2n$;R,“x>1”$ 是“$x>2$” 的充分不必要条件;p_3:$ 命题“若 $x=y$,则 $\sin x=\sin y$” 的逆否命题是“若 $\sin x\neq\sin y$,则 $x\neq y$”;p_4:$ 若“$p\lor q$” 是真命题,则 $p$ 一定是真命题。

其中为真命题的是A。

$p_1,p_2$B。

$p_2,p_3$C。

$p_2,p_4$D。

$p_1,p_3$5.已知焦点在 $x$ 轴上的双曲线的一条渐近线的倾斜角为$\frac{\pi}{6}$,线的标准方程为 $\sqrt{3}y=x-2$,且其焦点到渐近线的距离为 $2$,则该双曲线的方程为A。

2018学年广东省深圳市宝安区高一第一学期期末调研测试数学试题及答案

2018学年广东省深圳市宝安区高一第一学期期末调研测试数学试题及答案

高一数学 第1页 (共4页)深圳市宝安区2018学年第一学期期末调研测试卷 高一 数学1一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合}9,7,5,3,1{=U ,}9,1{=A ,则=A C U ( )A .{2,4,8,10}B .{3,5,7}C .{1,3}D .{1,7,9}2.设函数111)(+-++=x x x f ,则)(x f ( )A .奇函数B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数 3.函数y = )A .),1[+∞B .)2,1[C .]1,0(D .)1,0( 4.要得到)2cos()(-=x x f 的图像只需要把)1cos()(+=x x f 的图像( )A .向右移动1个单位B .向左移动1个单位C .向右移动3个单位D .向左移动3个单位5.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A,点A 的纵坐标为54,cos α=( ).A .53-B .53C .52-D .526.已知y x ,为正实数,则下列选项中正确的是( )A .y x y x lg lg lg lg 222+=+B .y x y x lg lg )lg(222∙=+C .y x y x lg lg lg lg 222+=∙D .y x xy lg lg )lg(222∙=7.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内8.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )高一数学 第2页 (共4页)A .2,3π- B .2,6π-C .4,6π- D .4,3π二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.已知集合A ={}2,1,2-,B=}1,a +,且B A ⊆,则实数a 的值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档