电磁干扰现象-基本概念

合集下载

电子仪器仪表受到电磁干扰的解决措施

电子仪器仪表受到电磁干扰的解决措施

电子仪器仪表受到电磁干扰的解决措施摘要:目前我国和全球经济的不断发展也在推动着科技水平的快速前进,更多行业中都运用了电子仪器仪表这一物品,并且由于电子仪器仪表的种类多样,其主要的功能内容也各不相同,每一种应对电磁干扰的方式也各不相同,那么就需要根据其自身的特点进行针对性抗电磁干扰方法的设计和研究。

本文旨在探讨当电子仪器仪表遭受到外部电磁干扰时应当如何进行应对及处理对策。

关键词:电子;仪器仪表;电磁干扰1电磁干扰概述如果想要对有关电子仪器的仪表产生电磁干扰,首先需要有三个基本的环境构成要素,也就是干扰源、传播途径以及设备,只有同时具备上述的三要素,才会产生电磁干扰设备仪表的情况。

1.1干扰源的分类当前在各种电子仪器的仪表工作运转的时候,仪表会受到不同形式电磁的干扰,这也是导致仪表产生电磁干扰现象的主要原因,因此就可以根据产生电磁干扰的根本因素进行分析研究,便于设备抗电磁干扰的后续设计。

对电子仪表产生干扰的因素主要可以分为外部因素和仪器内部的干扰[1]。

仪器自身产生干扰的情况主要是指其内在的各个部件之间会出现互相影响的情况,比如仪器内部的工作电路之间可能会由于线路缠绕等因素产生漏电的情况而造成电磁的干扰;又或者是因为设备信号在接收时受到线路、电源以及传输线等组成间相互的阻碍、并且线路之间的相互感应也会导致电磁干扰的出现;电子仪器的内部组成在运行中可能会出现发热等现象,那么就会对其他的组件造成一定的影响,从而造成仪器运行的不稳定;又或者是由于电路的功率过大而产生的电磁场也会对有关设备仪器的稳定带来一定影响,造成部件的干扰。

仪器发生电磁干扰的外部因素主要是指外界因素对设备仪器以及电路等带来的干扰。

主要可以包含外界的高压电、线路漏电等都会对仪器的工作线路造成干扰;外界其他大功率的电器在运行时也会产生非常强的电磁干扰;当然还包括外界环境的不稳定,都会引起一起自身电路的不稳定,导致仪表受到电磁的干扰等多种因素。

机械振动学中的振动与电磁干扰分析

机械振动学中的振动与电磁干扰分析

机械振动学中的振动与电磁干扰分析机械振动学是研究物体在受到外力作用时的振动运动规律的一个重要学科领域。

振动作为机械系统中常见的一种现象,在实际工程应用中经常会受到电磁干扰的影响,因此对振动与电磁干扰之间的关系进行深入分析具有重要的意义。

本文将针对机械振动学中的振动与电磁干扰进行详细分析,探讨其相互作用机制与影响因素。

一、振动与电磁干扰的基本概念在机械系统中,振动是指物体围绕某一平衡位置周期性运动的现象。

而电磁干扰则是指外部电磁场对系统正常工作产生的干扰,可能导致系统的异常运行或故障。

振动与电磁干扰之间存在着复杂的相互作用关系,振动信号可能会受到电磁场的影响而产生变化,反之亦然。

因此,深入了解振动与电磁干扰之间的关系对于有效防范系统故障具有重要意义。

二、振动信号的特点与电磁干扰的影响振动信号具有频率、幅度、相位等特征,可以通过加速度传感器等设备进行监测和分析。

然而,由于电磁场的存在,振动信号可能会被干扰和扭曲,进而影响对系统状态的准确监测。

电磁干扰源可以是来自于系统内部的电子设备,也可以是外部电磁场通过导线等途径引入系统中产生的干扰。

这些干扰信号会与振动信号叠加在一起,导致信号的失真和难以正常解析。

三、振动与电磁干扰的分析方法为了有效地对机械系统中的振动与电磁干扰进行分析,可以采用以下方法:1. 信号处理技术:通过信号处理算法和滤波器等技术手段对振动信号和电磁干扰信号进行解耦和提取,从而准确地获取振动信号的特征参数。

2. 数值模拟方法:利用有限元分析等数值模拟方法,对机械系统在受到不同干扰条件下的振动响应进行模拟和预测,评估系统的稳定性和工作状态。

3. 实验验证手段:通过搭建实验台架和传感器系统,对机械系统在实际工作中受到电磁干扰时的振动响应进行实时监测和验证,验证分析结果的准确性和可靠性。

四、振动与电磁干扰的防范措施为了有效防范机械系统中振动与电磁干扰带来的问题,可以采取以下措施:1. 优化系统设计:在系统设计阶段采用电磁兼容性设计原则,避免对振动信号的影响,降低电磁干扰对系统运行的不利影响。

开关电源EM必须掌握的概念

开关电源EM必须掌握的概念

1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。

传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。

辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。

常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。

3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。

2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。

● 传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。

● 辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。

同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。

3.电磁干扰控制技术①传输通道抑制● 滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。

滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。

在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。

● 屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。

电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。

不同类型的电磁屏蔽对屏蔽体的要求不同。

在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。

实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。

电气设备工程中的电磁兼容性规范要求

电气设备工程中的电磁兼容性规范要求

电气设备工程中的电磁兼容性规范要求在电气设备工程中,电磁兼容性是一个非常重要的问题。

电磁兼容性(Electromagnetic Compatibility, EMC)是指电子设备在电磁环境中正常工作,同时不对其他设备造成干扰的能力。

为了确保电气设备的安全运行和正常功能的实现,制定了一系列的电磁兼容性规范要求。

一、电磁兼容性基本概念电磁兼容性主要包括电磁干扰和抗干扰两个方面。

电磁干扰是指电磁场对其他设备的不希望影响,而抗干扰则是指设备能够抵抗外界电磁场的能力。

在电磁兼容性规范要求中,需要对这两个方面进行考虑。

二、电磁辐射规范要求电磁辐射是指电气设备在工作时产生的电磁场向周围空间传播的现象。

为了防止电磁辐射对其他设备造成干扰,电气设备工程中需要满足一定的辐射规范要求。

辐射规范要求涉及到电气设备的电磁辐射限值、电磁辐射测试方法等方面。

三、电磁抗扰性规范要求电磁抗扰性是指电气设备在外界电磁场的干扰下,能够正常工作的能力。

为了确保设备的可靠性和稳定性,需要满足一系列的电磁抗扰性规范要求。

抗扰性规范要求包括电磁抗扰性测试方法、电磁抗扰性水平等方面。

四、电磁接地规范要求电磁接地是指将设备或部件与大地或其他导电体相连接,以降低电磁干扰和提高设备的抗干扰能力。

在电气设备工程中,电磁接地规范要求包括设备接地电阻的限值范围、接地方式等。

电磁接地规范要求的满足可以降低设备之间的互相干扰。

五、电磁屏蔽规范要求电磁屏蔽是指采取屏蔽措施,防止设备内部的电磁辐射向外传播或阻止外界电磁场对设备的干扰。

电磁屏蔽规范要求包括设备的屏蔽效能、屏蔽材料的选择和使用等。

通过满足电磁屏蔽规范要求,可以有效保护设备的正常工作。

六、电磁兼容性测试要求为了验证设备是否满足电磁兼容性规范要求,需要进行相应的测试。

电磁兼容性测试要求包括辐射测试、抗扰性测试、接地测试等多个方面。

通过合理的测试方法和准确的测试结果,可以评估设备的电磁兼容性性能。

七、电磁兼容性管理要求在电气设备工程中,电磁兼容性的管理是非常重要的。

EMC专业术语

EMC专业术语

一)基本概念1.1电磁环境electromagnetic environment存在于给定场所的所有电磁现象的总和。

1.2电磁噪声electromagnetic noise一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

1.3无用信号unwanted signal,undesired signal可能损害有用信号接收的信号。

1.4干扰信号interfering signal损害有用信号接收的信号。

1.5电磁骚扰electromagnetic disturbance任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁现象。

注:电磁骚扰可能是电磁噪声、无用信号或传播媒介自身的变化。

1.6电磁干扰electromagnetic interference(EMI)电磁骚扰引起的设备、传输通道或系统性能的下降。

1.7电磁兼容性electromagnetic compatibility(EMC)设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

1.8(电磁)发射(electromagnet1c)em1ss1on从源向外发出电磁能的现象。

1.9(无线电通信中的)发射emission(in radiocommunication)由无线电发射台产生并向外发出无线电波或信号的现象。

1.10(电磁)辐射(electromagnetic)radiationa.能量以电磁波形式由源发射到空间的现象。

b.能量以电磁波形式在空间传播。

注:“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包括在内。

1.11无线电环境radio environment国家技术监督局19 9 5-0 8-2 5批准19 9 6-0 3-01实施a.无线电频率范围内的电磁环境。

b.在给定场所内所有处于工作状态的无线电发射机产生的电磁场总和。

1.12无线电(频率)噪声radio (frequency) noise具有无线电频率分量的电磁噪声。

电磁干扰屏蔽方法

电磁干扰屏蔽方法

电磁干扰屏蔽方法电磁干扰是指由于电磁场的影响而影响电子设备系统的正常运行的电磁现象,它是一种大的电磁污染源。

电磁干扰可以影响电子设备的性能,也可以影响信号传输的正确性,造成数据传输出现错误,降低系统的运行精度。

因此,需要建立一种电磁干扰屏蔽系统,利用合理的屏蔽结构和材料,来有效地减少或避免干扰。

电磁干扰屏蔽有三种基本方法:屏蔽材料以及屏蔽结构、加电子屏蔽、加功率屏蔽(EMI)。

1、屏蔽材料和结构电磁屏蔽材料的作用是利用它的导电性及对磁场的影响来吸收、重组或反射作用于外界的电磁波,以起到电磁屏蔽的作用。

一般来说,电磁屏蔽材料是指金属结构体或含金属颗粒的绝缘材料以及金属网络或夹层结构体,根据耦合信号传导器的不同,一般来说,应选择合适的抗电磁波的屏蔽材料,如纤维布屏蔽材料、金属布屏蔽材料、全铝箔屏蔽材料、涤纶布屏蔽材料等。

2、电子屏蔽加电子屏蔽的方法有三种:首先是放置就近的设备,应该用来放置重置电容器,其次是添加陷波电路,用来抑制能量密集的脉冲,最后是利用继电器来进行转换。

加电子屏蔽后,可以大大减小外界干扰信号对电子设备的影响。

3、功率屏蔽功率屏蔽(EMI)是电气系统中最常用的一种屏蔽方法,它通过在设备之间添加一个额外的低电阻的电磁屏蔽层来减少电磁波的传播,从而有效地减少电磁干扰。

通常情况下,使用功率屏蔽的设备应被放置在屏蔽物体的外壳内,以避免外部电磁波的干扰。

在以上三种电磁干扰屏蔽方法当中,屏蔽材料最容易使用,且成本较低,但是效果有限。

而在某些现场环境中,有非常强烈的电磁干扰,那么屏蔽材料无法有效地抵消外界电磁干扰,只能使用电子或功率屏蔽。

此外,使用不同类型的屏蔽材料也有一定的要求,必须使用具有足够高的屏蔽效率的材料,以便提高电磁屏蔽的效果。

电磁干扰的屏蔽是一项非常重要的工作,由于外环境的干扰不断变化,在设计电磁干扰屏蔽系统时,应重点考虑合理的屏蔽结构、合适的屏蔽材料和有效的屏蔽方法。

总之,利用合理的电磁屏蔽技术和系统,可以有效地减少外界电磁干扰对设备的影响,从而提高系统的工作精度和可靠性。

地球与宇宙中的电磁现象

地球与宇宙中的电磁现象

地球与宇宙中的电磁现象电磁现象是我们生活中常见的物理现象,它是指物质间相互作用中最基本的一种现象。

而地球与宇宙中的电磁现象更是独具魅力,让我们不禁惊叹于自然的神奇与美妙。

本文将带您一起探索这些神秘的电磁现象,了解它们的由来、特点和意义。

一、地球上的电磁现象1.1 显微镜下的电磁现象显微镜是一个神奇的器具,可以让我们观察到肉眼无法看见的微小世界。

在显微镜下,我们可以看到各种各样的电磁现象,比如静电引力、静电斥力、磁力、电磁波等等。

这些现象不仅令人叹为观止,更是帮助人类理解物理学中的基本概念。

1.2 大自然中的电磁现象除了显微镜下的电磁现象,我们生活的大自然中也充满了各种各样的电磁现象。

例如,闪电、雷声、放电现象、地磁现象等等。

在这些现象中,有些是我们能够轻易解释的,而有些则让人类困惑了很长时间,直到科学技术的飞速发展才得以解答。

1.3 电磁干扰电磁干扰是指电子设备受到外部电磁波影响而出现故障或失效的现象。

这种现象在现代社会中已经非常普遍,例如手机信号受阻、电视信号不稳定等等。

虽然电磁干扰会给我们的生活带来不便,但同时也是人类从事无线通信、电磁防护等方面的重要测试工具。

二、宇宙中的电磁现象2.1 太阳辐射太阳辐射是指太阳释放出的电磁波能量,包括短波辐射和长波辐射。

太阳辐射是地球上最主要的能源来源之一,它使植物能够进行光合作用、陆地和海洋得以加热,生命得以存活。

同时,太阳辐射也是产生极光和太阳风等现象的原因。

2.2 星际物质我们所处的宇宙空间中,充满着各种各样的星际物质,它们中许多都有着电磁特性。

比如,尘埃和气体中的电离层、星际磁场、星际射线等等。

这些电磁现象既可以帮助我们了解宇宙空间中的物理现象,也可以回答我们对于宇宙的某些基本问题的疑惑。

2.3 宇宙微波背景辐射宇宙微波背景辐射是一种具有电磁波特性的宇宙辐射,它是宇宙大爆炸之后演化的结果。

这种辐射极为稀薄,但却对研究宇宙的起源和演化有着非常重要的意义。

电磁干扰原理

电磁干扰原理

电磁干扰原理电磁干扰是指在电磁环境中,电磁波的传播与转换中,因为电磁辐射、电磁感应或者电磁信号传播过程中的其他非期望的电磁效应而引起的问题。

电磁干扰的原理主要涉及到电磁波的传播特性、电磁辐射和电磁感应等基本理论。

一、电磁波的传播特性电磁波是一种由电场和磁场相互作用而产生的波动现象。

在电磁场中,电场和磁场通过一定的关系进行相互转换传播。

电磁波具有频率、波长和传播速度等基本特性。

电磁波的频率决定了其能在空间中传播的距离,高频电磁波具有较短的传播距离,而低频电磁波则可以覆盖较大的区域。

电磁波的波长和频率之间存在反比关系,即波长越长,频率越低。

二、电磁辐射电磁辐射是指电磁波通过空间传播时,以无线电、微波、红外线、可见光、紫外线、X射线和γ射线等形式向周围环境发射或传播的现象。

电磁辐射的强度与辐射源的功率、辐射场的传播距离以及辐射场的方向性等因素相关。

辐射源的辐射功率越大,辐射场的传播距离越远,辐射场的方向性越高,电磁辐射引起的干扰问题就会更加严重。

三、电磁感应电磁感应是指当电磁波通过导线或者电路时,由于电磁场和导线或电路产生相互作用,导致电流的产生或者电势的变化。

根据法拉第电磁感应定律,当导线或电路中存在变化的磁场时,就会在导线或电路中产生感应电动势。

电磁感应产生的电流或电势变化会对周围的电子器件和电路造成干扰。

例如,当手机在通话时,会产生辐射电磁波,这些辐射电磁波会感应到附近的导线或电路,从而干扰到其他电子设备的正常工作。

四、电磁屏蔽和抑制为了减少电磁干扰,人们采用了电磁屏蔽和抑制的方法。

电磁屏蔽是指在设备或系统周围引入屏蔽材料,阻断电磁辐射的传播路径,减少干扰成分的辐射或感应。

常见的电磁屏蔽材料包括金属网、金属薄膜、电磁屏蔽漆等。

电磁抑制则是指利用电磁吸收材料,在电磁波传播路径上吸收、衰减电磁波。

电磁抑制材料可以通过吸收电磁波的能量,减少干扰传输路径上的电磁辐射或感应。

综上所述,电磁干扰的原理涉及电磁波的传播特性、电磁辐射和电磁感应等基本理论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见干扰源
雷电 NEMP
脉冲电路
无线通信 ESD
直流电机、变频调速器 感性负载通断
电磁兼容标准的内容
电磁兼容标准
干扰发射
敏感度
/
传导 电信天 源号线 线控端
制口 线
辐射
传导
电 磁 电源线/信号线
场 场射 瞬 频态
天 线 端 口
辐射
电磁 静 电
场场 放 电
电磁兼容标准体系
电磁兼容标准
基础标准
通用标准
VCCI GB - GJB -
电磁兼容试验场地
开阔场(民用标准)
电磁发射试验
屏蔽暗室
可在普通环境中,但
敏感度或抗扰度试验: 是注意对周围设备的
影响
辐射发射测试
旋转找最大面
EUT
1、3、10、30 米
0.8m 1 ~ 4m
屏蔽墙
测试仪
浪涌(模拟雷电干扰)试验装置
接辅助设备 接电网
信号电缆用的 耦合解耦网络
EUT发生器或耦合器之 间的电缆小于2米
保护地线要能够 承受浪涌电流
浪涌敏感度试验波形
电压
0.5s 10s
t
电压 1.2s
电流
8s
50s
20s
t
t
电快速脉冲试验装置
连辅助设 备与端接
容性卡钳距参考地 100mm,轮流卡每根电缆
脉冲群 信号源
分贝(dB) 的概念
分贝的定义:分贝数

10lg
P2 P1
P1、P2 是两个功率数值,对于电流或电压,定义如下:
电压增益的分贝数 = 20lg
V2 V1
电流增益的分贝数 = 20lg I2 I2
用分贝表示的物理量
电压:用1V、1mV、1V 为参考(例如:1V = 0dBV) 则单位为:dBV、dBmV、dBV 等,
第一章 基本概念
电磁干扰现象 电磁兼容标准 电磁兼容试验 频域与时域 分贝的概念
电磁干扰现象
220AC
数字脉冲电路
数 字 视 频 设 备
开关电源
产生电磁干扰的条件
1.突然变化的电压或电流,即dV/dt 或 dI/dt 很大 2.辐射天线或传导导体
设计中,遇到电压、电流的突然变化,千 万要考虑潜在的电磁干扰问题
1 测试修改法 可采取的措施
电路 结构封装
屏蔽 滤波 软件
措施 概念 设计
2 系统设计法 成本
产品 市场 阶段
EUT与发生器或 卡钳之间的电源 线或信号线长度 小于1米
参考地平面的每个边 要超出EUT100mm并 与大地相连
EUT与参考地平面 之间的距离大于 100mm
电快速脉冲试验波形(模拟感性负载断开)
双指数脉冲
15ms脉冲串
(5kHz)
脉冲串间隔是 300ms
静电放电现象
+ +++++++++++++++++
频谱分析仪
幅度
分辨带宽
扫描速率 (时间)
频率范围
频率
脉冲信号的频谱
谐波幅度
tr
d
(电压或电流)
T
-20dB/dec
-40dB/dec
A
V( or I) = 2A(d+tr)/T V( or I) = 0.64A/Tf V( or I) = 0.2A/Ttrf2
1/d
1/tr
频率(对数)
电磁兼容的工程方法
电流:用1A、1mA、1A 为参考,则:dBA、dBmA、dBA 场强:用1V/m、1V/m 为参考,则:dBV/m、dBV/m 等,
功率:用1W、1mW 为参考,则:dBW、dBm等,
频域分析
时域波形 示波器观察
付立叶级数(周期)
频谱分量
付立叶变换(非周 期)
频谱分析仪观察
EMC分析更多是在频域中进行,并且不 考虑相位因素。
I
放电电流 I
1ns
t 100ns
静电放电试验装置
水平耦合板 >1.60.8m
EUT绝缘垫
直接对EUT放电
水平板间接放电
垂直耦合板 500mm正方形,距EUT100mm
垂直板间接 放电
参考地板 > 1m2 边沿比耦合板外延 > 设备,水平耦合板=垂直耦合板,EUT放在100mm厚的绝缘板上
被引用到 被引用到
产品标准
标准编号的识别
国家或组织 制订单位
标准编号
IEC IEC 欧共体 美国
日本 中国
CISPR TC77 CENELEC FCC,DOD
VCCI
质量技术监督 局, 国防部门
CISPR Pub. IEC EN
FCC Part , MIL-STD.
相关文档
最新文档