示波器的调节与使用
示波器上的按键使用方法

示波器上的按键使用方法示波器是一种常用的电子测量仪器,用于显示和分析电压信号的波形。
在示波器上有许多按键,每个按键都有特定的功能。
以下是示波器按键的使用方法。
1. 开关按钮:示波器的开关按钮用于打开或关闭示波器。
当按下此按钮时,示波器将开始工作并显示波形信号。
2. 垂直调节按钮:示波器的垂直调节按钮用于调整信号在屏幕上的垂直位置。
通过旋转按钮,可以将信号移动到屏幕的上部、中部或下部。
3. 水平调节按钮:示波器的水平调节按钮用于调整信号在时间轴上的位置。
通过旋转按钮,可以将信号移动到所需的位置,以便更好地观察波形。
4. 垂直触发按钮:示波器的垂直触发按钮用于设置触发电平。
触发电平用于指定何时开始显示波形信号。
通过旋转按钮,可以调整触发电平的值。
5. 水平触发按钮:示波器的水平触发按钮用于设置触发时刻。
触发时刻是指示波器何时开始显示波形信号的时间点。
通过旋转按钮,可以调整触发时刻的值。
6. 选择按钮:示波器的选择按钮用于选择不同的输入通道。
如果示波器有多个输入通道,按下选择按钮可以切换通道并显示不同的波形信号。
7. 尺度调节按钮:示波器的尺度调节按钮用于调整波形的幅度大小。
通过旋转按钮,可以将波形放大或缩小,以便更好地观察信号的细节。
8. 双踪按钮:示波器的双踪按钮用于显示两个不同的波形信号。
通过按下此按钮,可以在屏幕上同时显示两个信号,并进行比较和分析。
9. 自动按钮:示波器的自动按钮用于自动调整波形的显示和设置。
通过按下此按钮,示波器将自动选择合适的尺度、位置和触发设置,以便更好地显示波形信号。
10. 存储按钮:示波器的存储按钮用于存储当前显示的波形信号。
通过按下此按钮,示波器将保存当前波形,并可以在以后进行分析和比较。
11. 光标按钮:示波器的光标按钮用于添加光标,并在波形上测量时间和电压值。
通过按下此按钮,可以在波形上添加水平和垂直的光标,并通过旋转按钮进行测量。
12. 触发按钮:示波器的触发按钮用于手动触发波形的显示。
示波器的使用方法与调节要点详解

示波器的使用方法与调节要点详解示波器是一种广泛应用于电子工程领域的测试仪器,用于显示和测量电信号的波形。
它不仅可以帮助工程师迅速发现设备中的问题,还可以进行故障分析和信号调整。
本文将详细介绍示波器的使用方法和调节要点,帮助读者更好地理解和使用示波器。
一、示波器的基本结构和原理示波器由主要由控制系统、触发系统、放大系统和显示系统组成。
其中,控制系统负责控制示波器的各种操作;触发系统用于确定信号显示的时间和位置;放大系统负责对输入信号进行放大;显示系统则将放大后的信号以波形的形式显示在屏幕上。
示波器的原理是基于电子束在阴极射线管(CRT)上的显示。
电子束在CRT屏幕上扫描形成像素点,通过对像素点的控制可以显示出不同的波形。
同时,示波器还可以对信号进行触发,确保波形显示的稳定和准确性。
二、示波器的基本使用方法1. 连接电路:首先,将待测试的电路与示波器相连接。
通常,示波器有两个探头(标称为1X和10X),通过选择适当的探头可以在不同测试条件下获得更好的信号质量。
2. 调整水平和垂直控制:示波器的水平和垂直控制用于设置波形的水平位置和垂直幅度。
通过调整这些参数,可以使波形在屏幕上居中和适应屏幕大小。
3. 选择触发方式:触发方式决定了示波器何时开始显示波形。
常见的触发方式有自由运行触发、边沿触发和脉冲触发等。
根据测试需求,选择适当的触发方式可以更好地显示待测信号。
4. 调整触发电平和斜率:触发电平决定了波形触发的阈值,而触发斜率决定了触发时信号的上升或下降沿。
根据测试的信号特点,设置适当的触发电平和斜率可以获得稳定和准确的波形显示。
5. 选择和调整时间基准:示波器的时间基准用于确定波形在屏幕上的时间尺度。
通过选择不同的时间基准和调整时间刻度,可以观察到不同时间尺度下的信号变化。
三、示波器的调节要点1. 垂直灵敏度:垂直灵敏度设置决定了每个格子的电压幅度。
根据待测信号的特点,选择适当的垂直灵敏度可以使波形显示在较大的范围内。
示波器的调节和使用

示波器的调节和使用我们以型号为YB4300系列的双踪示波器为例说明其一般使用方法;YB4300系列双踪示波器的型号根据频率不同主要有YB4320G、YB4340G、YB4360G;一、示波器的调节和使用示波器有多种型号,面板形状也各不相同,但其结构与功能大同小异;熟练掌握示波器的使用,首先应该了解示波器面板上各个旋钮的功能;本书以YB4320G型示波器为例进行说明,如图1所示;该示波器的前面板如图2所示,各部分功能介绍如下:图1 YB4320G型示波器外形结构图2 YB4320G型示波器操作面板示意图1、主机电源9电源开关POWER:将电源开关按键弹出即为“关”位置,将电源线接入,按电源开关键,接通电源;8电源指示灯:电源接通时,指示灯亮;2辉度控制INTENSITY:顺时针方向旋转旋钮,扫描线辉度增加;4聚焦控制FOCUS:用辉度控制钮将亮度调至合适的标准,然后调节聚焦控制钮直至光迹达到最清晰的程度;虽然调节亮度时,聚焦电路可自动调节,但聚焦有时也会轻微变化,如果出现这种情况,需重新调节聚焦旋钮;5基线旋转TRACE ROTATION:用于调节扫描线使其和水平刻度线平行,以克服外磁场变化带来的基线倾斜,需要使用螺丝刀调节;45显示屏:仪器的测量显示最终端;3延迟扫描辉度控制钮B INTEN:顺时针方向旋转此钮,增加延迟扫描B显示光迹亮度;1校准信号输出端子CAL2、垂直方向部分VERTICAL13通道1输入端CH1 INPUTX:被测信号由此输入y1通道;当示波器在X-Y方式时,输入到此端的信号作为X轴信号;17通道2输入端CH2 INPUTX:被测信号由此输入y2通道;当示波器在X-Y方式时,输入到此端的信号作为Y轴信号;11、12、16、18交流-直流-接地AC、DC、GND:输入信号与放大器连接方式选择开关:交流AC:放大器输入端与信号连接由电容器来耦合;接地GND:输入信号与放大器断开,放大器的输入端接地;直流DC:放大器输入与信号输入端直接耦合;10、15衰减器开关VOLTS/DIV用于选择垂直偏转系数,共12档;如果使用的是10:1的探极,计算时将幅度×10;14、19垂直微调旋钮VARIBLE垂直微调用于连续改变电压偏转系数,此旋钮在正常情况下应位于顺时针方向旋到底的位置;将旋钮逆时针旋转到底,垂直方向的灵敏度下降到倍以上;44断续工作方式开关CH1 CH2二个通告按断续方式工作,断续频率为250kHz,适用于低扫速;43、40垂直移位POSITION调节光迹在屏幕中的垂直位置;42垂直方式工作开关VERTICAL MODE用于选择垂直偏转系统的工作方式通道1选择CH1:屏幕上仅显示CH1的信号;通道2选择CH2:屏幕上仅显示CH2的信号;双踪选择DUAL:屏幕上显示双踪,自动以交替或断续方式,同时显示CH1和CH2上的信号;叠加ADD:显示CH1和CH2输入信号的代数和;39CH2极性开关INVERT:按此开关时CH2显示反相信号;48CH1信号输出端CH1 OUTPUT:输出约100mV/div的通道1信号;当输出端接50Ω匹配终端时,信号衰减一半,约50mV/div,该功能可用于频率计显示等;3、水平方向部分HORIZONTAL20主扫描时间系数选择开关TIME/DIY用于选择扫描时间因数,从µs~div范围共20档;24扫描微调控制键VARIBLE此旋钮以顺时方针方向旋转到底时,处于校准位置,扫描由Time/div开关指示;此旋钮以逆时方针方向旋转到底时,扫描减慢倍以上;当按键21未按入,按钮24调节无效,即为校准状态;35水平移位POSITION用于调节光迹在水平方向移动;顺时针方向旋转该旋钮向右移动光迹,逆时针方向旋转向左移动光迹;36扩展控制键MAG×10按下去时,扫描因数×10扩展YB4320G为×5;扫描时间是Time/div开关指示数值的1/101/5;37延迟扫描B时间系数选择开关B Time/div分十二档,在µs~div范围内选择B扫描速率;41水平工作方式选择38延迟时间调节旋钮22接地端子GND:示波器外壳接地端;4、触发系统TRIGGER29触发源选择开关SOURCE通道1触发CH1,X-Y:CH1通道信号为触发信号,当工作方式在X-Y方式时,拨动开关应设置于此档;通道2触发CH2:CH2通道的输入信号是触发信号;电源触发LINE:电源频率信号作触发信号;外触发EXT:外触发输入端的触发信号是外部信号,用于特殊信号的触发;27交替触发TRIG ALT在双踪交替显示时,触发信号来自于两个垂直通道,此方式可用于同时观察两路不相关信号;26外触发输入插座EXT INPUT:用于外触发信号的输入;33触发电平旋钮TRIG LEVEL用于调节被测信号在某选定电平触发,当旋钮转向“+”时显示波形的触发电平上升,反之触发电平下降;32电平锁定LOCK;无论信号如何变化,触发电平自动保持在最佳位置,不需人工调节电平;34释抑HPLDOFF:当信号波形复杂,用电平旋钮不能稳定触发时,可用“释抑”旋钮使波形稳定同步;25触发极性按钮SLOPE:触发极性选择,用于选择信号的上升沿河下降沿触发;31触发方式选择TRIG MODE自动AUTO:在“自动”扫描方式时,扫描电路自动进行扫描;在没有信号输入或输入信号没有被触发同步时,屏幕上仍然可以显示扫描基线;常态NORM:有触发信号时才产生扫描;在没有信号和非同步状态下,没有扫描线显示;当输入信号的频率低于50Hz时,请用“常态”触发方式;单次SINGLE:当“自动”AUTO、“常态”NORM两键同时弹出被设置于单次触发工作状态,当触发信号来到时,准备READY指示灯亮,单次扫描结束后指示灯熄,复位键RESET按下后,电路又处于待出发状态;二、示波器使用步骤1、示波器通电预热;2、调节低频信号发生器面板上的有关旋钮,使输出信号为某个要求的频率和电压值例如1000Hz,5mV;3、用示波器观察低频信号发生器的输出信号的频率、周期和幅值、并与低频信号发生器面板上表示出的输出信号的频率和电压值相比较看是否一致;三、示波器测量方法1、电压测量在测量输入信号电压时,应将灵敏度选择开关“V/div”的“微调”旋钮顺时针方向旋至“校准”的位置,这样就可以按照“V/div”的指示值直接计算出被测信号的电压值;由于被测信号一般含有交流分量和直流分量,所以在测试时应注意选择输入耦合开关;①交流电压的测量a.将Y轴输入耦合开关“DC-⊥-AC”置于“AC”处,若信号频率较低,则应置于“DC”处;b.将被测信号波形移至示波器的示波管屏幕的中心位置,并按照坐标刻度的分度读取整个波形所占Y轴方向的刻度数;c.如果使用探头测量,应将探头的衰减量计算在测量结果中;例如:双踪示波器的Y轴灵敏度开关“V/div”位于“div”的位置上,“微调”置于校准位置,如果被测量的信号波形所占Y轴的坐标幅度Y为4div如图3所示,则此时的信号电压峰-峰值为;即:V P-P=V/div×Ydiv=×4=V信号电压有效值为:V=÷2×=V如果采用探头测量,示波器面板上的开关位置不变,显示的波形幅度仍为4div,则考虑探头衰减10倍的因素,被测信号电压的有效值为:V=÷2××10=V②直流电压的测量如图4所示图3 示波器交流电压的测量 a.将触发方式开关置于“自动”或“高频”的自激工作状态,调节相关旋钮使示波器的屏幕上显示出水平时基线;b.将Y轴输入耦合开关“DC-⊥-AC”置于“⊥”位置,并调整垂直移位旋钮使时基线位于示波器屏幕中部的零电平参考基准线位置,此时的时基线位置即为零电平参考基准线的位置;c.将Y轴输入耦合开关置于“DC”位置,记下示波器屏幕上时基线与零电平参考基准线之间的距离H,如图所示;d.将“V/diV”的指示值与时基线和零电平参考基准线之间的距离H相乘,即可得到所测信号的直流电压值;图4 示波器直流电压的测量2、周期和频率的测量首先按照交流电压的测量操作步骤在示波器的屏幕上稳定地显示出被测信号的波形,然后将示波器的水平扫描开关“t/div”的“微调”旋钮按顺时针的方向旋至“校准”位置;从示波器显示屏幕上直接读出被测信号波形一个周期在水平方向所占的格数A,如图5所示,然后将其与“t/div”的指示值相乘便可得到被测信号的周期;图5 示波器周期和频率的测量例如:双踪示波器的X轴灵敏度开关“t/div”位于“div”的位置上,“微调”置于校准位置,如果被测量的信号波形一个周期在水平方向所占的格数A为8div,则此时的该信号的周期为:T=t/div×A=×8=4ms由于信号的频率是周期的倒数,所以该被测信号的频率为:f=1/T=1/4=250Hz如果能在示波器的屏幕上显示出多个被测信号的周期,则可读取在X轴方向lOdiv的范围内被测信号波形的周期数,再计算出信号频率的方法来进行测量;采用这种方法可以减小频率的测量误差,其计算公式如下:f=N/10×t/div3、相位的测量采用双踪示波器可以测量两个同频率信号之间的相位关系,将示波器的Y轴触发源开关置于“YB”位置,然后利用内触发的形式启动示波器扫描,可以测得两个信号之间的相位差;如图6所示,信号的一个周期在示波器的水平方向上占8div;由于一个信号周期为360゜,因此一个div应为45゜;通过读取两个信号在水平方向上的间隔数Tdiv,并由以下的计算方法得到两个被测信号的相位差;Φ相位差=Tdiv ×45°/div=1×45°=45°图6 示波器相位的测量。
模拟示波器的调节与使用实验报告

模拟示波器的调节与使用实验报告一、引言示波器是一种用于显示电信号波形的仪器,在电子领域被广泛使用。
通过示波器,我们可以观察和分析电路中的信号变化,从而更好地理解电路的工作原理。
本实验旨在模拟示波器的调节与使用过程,通过实际操作,掌握示波器的基本功能和操作方法。
二、实验器材1. 示波器:模拟示波器2. 信号源:函数发生器3. 电缆:用于连接示波器和信号源三、实验步骤1. 连接信号源和示波器:将函数发生器的输出端与示波器的输入端用电缆连接好,确保连接牢固可靠。
2. 打开示波器:按下示波器的开关,等待示波器启动。
3. 调节触发方式:示波器可以通过内部触发或外部触发来同步显示波形。
在本实验中,我们选择内部触发。
调节示波器上的触发方式选择开关,选择内部触发。
4. 调节触发级别:触发级别决定了触发电平的位置,可以通过调节示波器上的触发级别旋钮来设置。
根据实际信号的幅值,调节触发级别使得触发点位于波形的合适位置。
5. 设置时间基准:时间基准是指示波器上时间轴的刻度,可以通过调节示波器上的时间/频率旋钮来设置。
根据实际需要,选择合适的时间基准,使得波形能够清晰地显示出来。
6. 设置垂直灵敏度:垂直灵敏度是指示波器上垂直轴的刻度,可以通过调节示波器上的垂直灵敏度旋钮来设置。
根据实际信号的幅值,选择合适的垂直灵敏度,使得波形能够充分显示。
7. 调节水平位置:水平位置是指示波器上波形在水平轴上的位置,可以通过调节示波器上的水平位置旋钮来设置。
根据实际需要,调节水平位置,使得波形位于适当的位置。
8. 调节触发源:触发源是指示波器上触发电平的来源,可以通过调节示波器上的触发源选择开关来设置。
在本实验中,我们选择信号源作为触发源。
9. 调节触发电平:触发电平是指示波器上触发点的电平,可以通过调节示波器上的触发电平旋钮来设置。
根据实际信号的幅值,调节触发电平使得触发点位于波形的合适位置。
10. 观察波形:完成以上调节后,我们可以观察到函数发生器输出的信号波形在示波器屏幕上显示出来。
示波器的调节和使用

偏转因数(mV/div)
Y(div) Upp(mV)
时基因数(ms/div)
X(div) T(ms)
f(Hz)
实验内容
三、李萨如图形测量
画出频率比为1:2、2:1和1:3的李萨如图形并记录相应的 信号频率: (1:2) fx= (2:1) fx = (1:3) fx= f y= fy = fy =
水平直线与图形相交的 点数 f x 垂直直线与图形相交的 点数
实验内容
一、示波器校准信号(方波)测量 1、显示与观察 2、校准信号电压峰-峰值( Upp )测量 3、校准信号周期( T )测量 4、校准信号频率( f )测量
项目 校准信号
偏转因数(mV/div)
Y(div) Upp(mV)
时基因数(ms/div)示波器的调节和使用来自形显示原理波形显示原理
只在竖直偏转板上加正弦 电压的情形
只在水平偏转 板上加一锯齿 波电压的情形 示波器显示正弦波原理图
触发同步 扫描时由于锯齿波周期性复原,要求光点所画 的轨迹和第一周期的完全重合,再由视觉残留, 观察到一个稳定的波形 。
Tx=nTy , fy=nfx
触发同步
X(div) T(ms) f(Hz)
实验内容
二、测量信号(正弦波200Hz,2V、方波1.5KHz,4V、三 角波3KHz,1.5V) 1、显示与观察,并记录波形(要求将一个周期的波 形分别画在准备好的坐标绘图纸上) 2、待测信号电压峰-峰值( Upp )测量 3、待测信号周期( T )测量 4、待测信号频率( f )测量
信号发生器面板介绍
交流电压和周期的测量
1.6格
假设:“ V/div ” 档位置于2V/div “ TIME/div ”的档位在0.5ms/div
示波器的调节和使用

示波器的调节和使用示波器是一种用来观察和分析电信号的仪器,它可以显示信号的波形、幅度、频率和相位等信息。
在电子工程、通信工程、自动化控制等领域中广泛应用。
本文将详细介绍示波器的调节和使用。
一、示波器调节:1.校准示波器:示波器使用前需要进行校准,以保证显示的准确性。
通常要校准时间基准、垂直灵敏度、触发电平等参数。
具体校准步骤需参照示波器的使用说明书。
2.调节时间基准:示波器的时间基准决定了波形在水平方向上的显示。
一般示波器可以调节水平的扫描速率,通过调节扫描速率可以放大或缩小波形的显示范围。
另外可以调节时间基准的位置,使波形居中或偏移显示。
3.调节垂直灵敏度:示波器的垂直灵敏度决定了波形的纵向放大倍数。
可以通过调节垂直灵敏度来放大或缩小波形的幅度。
一般示波器的垂直灵敏度有固定值和可调节两种,可根据需要选择合适的灵敏度。
4.调节触发电平:示波器的触发电平决定了波形触发的时机,当波形的电平超过或低于设定的触发电平时,示波器开始采集波形数据并显示。
触发电平的调节对于获取稳定的波形显示很重要,一般示波器的触发电平可以通过旋钮调节,并配有可调节的电平刻度。
5.调节触发模式:示波器的触发模式决定了波形触发的方式。
常见的触发模式有自由运行、单次、外部触发等。
自由运行模式是连续触发,示波器会不间断地显示波形。
单次模式是只触发一次,示波器会在触发后显示波形并停止触发。
外部触发是通过外部信号来触发。
二、示波器使用:1.连接信号源:首先需要将示波器与需要检测的信号源连接,可以使用探头或直接连接信号源的输出端口。
在连接时要注意正负极性的对应,以免引起短路或损坏设备。
2.调节时间基准:根据需要调节示波器的时间基准,使波形的显示范围合适,可以通过扫描速率和位置来调节。
3.调节垂直灵敏度:根据需要调节示波器的垂直灵敏度,使波形的幅度显示合适。
可以通过旋钮或按钮来调节。
4.调节触发电平:根据需要调节示波器的触发电平,以确保波形的稳定显示。
示波器的调试和使用原理

示波器的调试和使用原理示波器是一种用于观察和测量电信号的重要仪器。
它能够实时显示电压波形,并能够通过测量电压的峰值、频率、相位差等参数,帮助工程师分析电路的性能和故障。
一、示波器的调试原理:示波器的调试主要包括校准和检验两个方面。
校准是为了保证示波器的测量准确性和稳定性,以及解决示波器本身存在的故障;检验是为了验证示波器在使用中的准确性。
1. 校准过程:(1)校准示波器的时间基准:通过对准参考信号和示波器显示的波形,调节示波器的时间基准,使其时间轴准确。
(2)校准示波器的电压增益:通过对准标准信号和示波器显示的波形,调节示波器的电压增益,使其显示的电压测量值准确。
(3)校准示波器的触发电平:通过对准触发信号和示波器显示的波形,调节示波器的触发电平,使其能够准确触发信号。
(4)校准示波器的频率响应:通过对准标准信号和示波器显示的波形,调节示波器的垂直增益和水平扫描速率,使其能够准确显示波形的频率。
2. 检验过程:(1)检验示波器的垂直分辨率:通过输入一系列的标准信号,根据示波器的显示结果,判断示波器的垂直分辨能力是否符合要求。
(2)检验示波器的时间分辨率:通过输入一系列的高频信号,根据示波器的显示结果,判断示波器的时间分辨能力是否符合要求。
(3)检验示波器的带宽:通过输入一系列的高频信号,根据示波器的显示结果,判断示波器的带宽是否能够准确显示高频信号的波形。
二、示波器的使用原理:示波器的使用原理基于电脑显示技术和模拟电子技术。
主要包括采样、存储、加工和显示几个关键步骤。
1. 采样:示波器通过外部探头将要测量的信号接入示波器的输入端口。
示波器内部的采样系统会按照一定的时间间隔对输入信号进行采样,采样率要满足奈奎斯特采样定理,即采样率要大于信号最高频率的两倍。
采样的目的是将连续的时间域信号转换为离散的数字信号。
2. 存储:示波器会将采样得到的离散信号存储起来,形成一个数据序列。
这样的数据序列包含了信号的幅值、时间和采样率等信息。
实验二示波器的调节与使用

实验二示波器的调节与使用一、实验目的:1.了解示波器的基本构造与原理2.学会示波器的调节与使用方法二、实验器材:示波器、信号发生器、接线板、万用表等。
三、实验原理:示波器是一种用来显示电信号波形的仪器,常用于电子电路的调试与测试。
它能够将电信号的波形转换成可视化的图像,方便工程师进行观察与分析。
示波器主要由屏幕、扫描电子枪、若干个控制电路组成。
示波器的调节与使用需要掌握以下几个要点:1.调节示波器的亮度与对比度,使得波形清晰可见。
2.调节示波器的水平与垂直灵敏度,使得波形适合显示在屏幕上。
3.选择合适的触发方式与触发电平,使得波形稳定显示。
4.调节示波器的扫描速度,使得波形的周期在屏幕上可见。
四、实验步骤:1.接线:将信号发生器的输出端口与示波器的输入端口通过接线板连接起来。
2.接通电源:将示波器及信号发生器的电源开关打开。
3.调节亮度与对比度:通过示波器面板上的相关旋钮,调节示波器的亮度与对比度,使得屏幕上的波形清晰可见。
4.调节水平与垂直灵敏度:通过示波器面板上的相关旋钮,分别调节示波器的水平与垂直灵敏度,使得波形适合显示在屏幕上。
5.选择触发方式与触发电平:通过示波器面板上的相关旋钮,选择合适的触发方式(如边沿触发、脉冲触发等)与触发电平,使得波形稳定显示。
6.调节扫描速度:通过示波器面板上的相关旋钮,调节示波器的扫描速度,使得波形的周期在屏幕上可见。
五、实验注意事项:1.在调节示波器时,应注意避免碰到高压部分,以免电击或损坏仪器。
2.在调节示波器时,应先将水平与垂直灵敏度调至最小,再逐渐增加至合适的值,以避免电流过大导致电路故障。
3.在观察波形时,应注意波形的垂直与水平偏移量,及时调整示波器的相关参数,使得波形在屏幕上居中显示。
4.在实验结束后,应将示波器及信号发生器的电源开关及时关闭,以免浪费能源或造成安全隐患。
六、实验结果与分析:经过调节与使用示波器,我们能够清晰地观察到信号发生器输出的电信号波形,从而进行进一步的分析与判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字示波器的调节与使用一、实验目的1.了解示波器的结构与示波原理2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形3.学会用示波器测正弦交流信号的电压幅值及频率4.学会用李萨如图法,测量正弦信号频率二、实验仪器RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器三、实验原理1、双踪示波器的原理:双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。
Y CH1Y CH2图1. 双踪示波器原理方框图其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。
由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。
如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。
为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。
当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。
如果同步电路信号从仪器外部输入,则称为“外同步”。
2.示波器显示波形原理:如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。
如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。
图2.示波器显示正弦波形的原理3、数字存储示波器的基本原理数字存储示波器的基本原理框图如图3所示:图3.数字存储示波器的基本原理框图数字示波器是按照采样原理,利用A/D变换,将连续的模拟信号转变成离散的数字序列,然后进行恢复重建波形,从而达到测量波形的目的。
输入缓冲器放大器(AMP)将输入的信号作缓冲变换,起到将被测体与示波器隔离的作用,示波器工作状态的变换不会影响输入信号,同时将信号的幅值切换至适当的电平范围(示波器可以处理的范围),也就是说不同幅值的信号在通过输入缓冲放大器后都会转变成相同电压范围内的信号。
A/D单元的作用是将连续的模拟信号转变为离散的数字序列,然后按照数字序列的先后顺序重建波形。
所以A/D单元起到一个采样的作用,它在采样时钟的作用下,将采样脉冲到来时刻的信号幅值的大小转化为数字表示的数值。
这个点我们称为采样点。
A/D转换器是波形采集的关键部件。
多路选通器(DEMUX)将数据按照顺序排列,即将A/D变换的数据按照其在模拟波形上的先后顺序存入存储器,也就是给数据安排地址,其地址的顺序就是采样点在波形上的顺序,采样点相邻数据之间的时间间隔就是采样间隔。
数据采集存储器(Acquisition Memory)是将采样点存储下来的存储单元,他将采样数据按照安排好的地址存储下来,当采集存储器内的数据足够复原波形的时候,再送入后级处理,用于复原波形并显示。
处理器(μP)及显示内存(Display Memory)。
处理器用于控制和处理所有的控制信息,并把采样点复原为波形点,存入显示内存区,并用于显示。
显示单元(Display)将显示内存中的波形点显示出来,显示内存中的数据与LCD显示面板上的点是一一对应的关系。
4、李萨如图形的基本原理如果在示波器的CH1通道加上一正弦波,在示波器的CH2通道加上另一正弦波,当两正弦波信号的频率比值为简单整数比时,在荧光屏上将得到李萨如图形,如下图所示。
这些李萨如图形是两个相互垂直的简谐振动合成的结果,它们满足其中,f x代表CH1通道上正弦波信号的频率,f y代表CH2通道上正弦波信号的频率,n x代表李萨如图形与假想水平线的切点数目,n y代表李萨如图形与假想垂直线的切点数目。
四、实验内容与步骤1、观察各种波形并测量正弦波形的电压、周期和频率。
调节信号发生器,分别观察三角波、方波、正弦波形三种,熟悉信号发生器和示波器的使用。
选择三个频率段正弦波形,分别测量对应波形电压(峰-峰值)、周期和频率。
将数据填入表格,并计算绝对误差。
(注:标准值即信号发生器显示的值)2、利用李萨如图形测频率将两信号发生器分别从示波器的CH1输入端和CH2输入端输入,将CH1和CH2输入端信号置于XY模式,可保持CH1输入端信号发生器的频率不变(例如f x=100Hz),调节CH2输入端信号发生器的频率,使屏中出现大小适中的图形,即出现如讲义中所示的李莎如图形,计算出f y,读出信号发生器上CH2输入端信号的频率f y?,比较f y和f?。
y1、观察各种波形正弦波、锯齿波和三角波,测量3种正弦波形的电压、频率和周期,计算相对误差。
(注:标准值即信号发生器显示的值)2、利用李萨如图形测频率(拍照片)五、思考题1.若在示波器上看到的波形幅度太小,应调节哪个旋钮,使波形的大小适中?2.怎样用示波器定量地测量交流信号的电压有效值和频率?3.观察两个信号的合成李萨如图形时,应如何操作示波器?实验仪器RIGOL DS1000E 型数字存储示波器相关知识储示波器的主要技术指标:垂直档位状态 通道标志操作菜单 水平时基档位状态 触发位移显示 波形显示窗耦合方式 运行状态 边沿触发 脉宽触发 斜率触发触发模式触发中状态 触发状态菜单操作键液晶显示USB 接口外触发输入 常用菜单 运行控制水平控制 垂直控制 多功能旋钮 触发位置 内存中触发位置 当前窗口位模拟信号输入触发控制探头补偿信号输出f定义:单位时间内完成的完整 A/D 转换的最高次数。
最大取1.最大取样速率max样速率主要由 A/D转换器的最高转换速率来决定。
最大取样速率愈高,仪器捕捉信号的能力愈强。
数字存储示波器在某个测量时刻的实际取样速率可根据示波器当时设定的扫描时间因数(t/div)推算。
其推算公式为式中,N——每格的取样数,t/div——扫描时间因数,扫描一格所占用的时间,亦称扫描速度。
2.存储带宽:存储带宽与取样速率密切相关。
根据奈奎斯特取样定理,如果取样速率大于或等于信号最高频率分量的2倍,便可重现原信号波形。
实际上,在数字存储示波器的设计中,为保证显示波形的分辨率,往往要求增加更多的取样点,一般一个周期取4~10点。
带宽是决定示波器准确测量信号的能力的基本参数之一。
带宽是表征示波器能准确测量的频率范围。
带宽的定义是指正弦输入信号衰减至真实幅值的70.7%(-3dB)的频率点。
没有足够的带宽,示波器就不能观测到高频的变化。
幅值将会失真,信号沿将会变得平缓,细节将会丢失。
5倍原则:示波器需要的带宽=测量信号的最高频率分量的频率 X 55倍原则可以提供+/-2%的测量误差,对于通常的应用已足够。
3.分辨率:分辨率用于反映存储信号波形细节的综合特性。
分辨率包括垂直分辨率和水平分辨率。
垂直分辨率与 A/D 转换器的分辨率相对应,常以屏幕每格的分级数(级/div) 表示。
水平分辨率由存储器的容量来决定,常以屏幕每格含多少个取样点(点/div)表示。
4.储容量:存储容量又称记录长度,用记录一帧波形数据占有的存储容量来表示,常以字(word)为单位。
存储容量与水平分辨率在数值上互为倒数关系。
数字存储器的存储容量通常采用 256B,512B,1KB,4KB 等。
存储容量愈大,水平分辨率就愈高。
但存储容量并非越大越好,由于仪器最高取样速率的限制,若存储容量选取不恰当,往往会因时间窗口缩短而失去信号的重要成分,或者因时间窗口增大而使水平分辨率降低。
5.读出速度:读出速度是指将存储的数据从存储器中读出的速度,常用(时间)/div表示。
其中,时间等于屏幕中每格内对应的存储容量×读脉冲周期。
使用时,示波器应根据显示器、记录装置或打印机等对速度的不同要求,选择不同的读出速度。
注意事项1、AC 电源输入应该在100V-240V,47-63Hz ± 10%的选择电压范围以内。
2、第一次使用前先确认安装正确的保险丝值:100 V- 240 VAC 输入电压 : T 2A / 250V。
3、接地警告: 为避免电击,电源线的地线必须接地。
使用本机时,为确保使用者的安全及周边仪器安全,在与产品的输入与输出端子连接之前,确认产品已正确接地。
4、保险丝的更换、保险丝规格及更换方式:请依后面板标示值选用保险丝。
更换保险丝的步骤:更换前必须先切断电源,并将电源线从电源插座上取下来,换保险丝前先将仪器电源开关(POWER)关闭。
保险丝的型号: T2A/250V。
5、开机前先确定保险丝已装设妥当。
警告:为了确保有效的防火措施,只限于更换特定样式和额定值的保险丝。