电子顺磁共振课(05)
电子顺磁共振谱ESR

谱图解析方法
直接解析法
数据库比对法
通过观察谱线的位置、形状和强度, 结合已知的物质性质和结构信息,直 接解析出被测物质的磁性参数和结构 特征。
将实验谱图与已知的ESR谱图数据库 进行比对,通过相似度匹配来确定被 测物质的类型和结构。
计算机模拟法
利用计算机模拟ESR谱图,通过比较 模拟结果与实验谱图,可以更准确地 解析出被测物质的磁性参数和结构特 征。
应用领域拓展
随着ESR技术的不断发展,其应用领域也在不断拓展,从最初的自由 基研究逐渐拓展到生物医学、环境科学、能源科学等多个领域。
ESR技术面临的挑战
样品制备难度大
由于ESR对样品的纯度和均匀度 要求较高,因此样品制备难度较 大,需要较高的实验技巧和经验。
谱图解析难度高
由于ESR谱图较为复杂,不同组分 的信号容易相互干扰,因此谱图解 析难度较高,需要较高的专业知识 和技术水平。
电子顺磁共振谱(ESR
目录
CONTENTS
• 电子顺磁共振谱(ESR)概述 • ESR实验技术 • ESR谱图解析 • ESR在科学研究中的应用 • ESR技术展望与挑战
01 电子顺磁共振谱(ESR)概述
CHAPTER
ESR定义与原理
定义
电子顺磁共振谱(ESR)是一种研究物质中未成对电子的共振谱技术,通过测量物质在磁场中的电子磁矩变化来 获取物质内部结构和电子状态信息。
选择合适的微波频率,以 避免信号损失和干扰,提 高分辨率。
功率与时间
调整微波功率和曝光时间, 以获得最佳的信号强度和 信噪比。
实验数据处理与分析
数据预处理
对采集到的数据进行滤波、去噪等处理,以提高 信噪比。
参数拟合
《电子顺磁共振》课件

根据样品的属性和需求,选择合适的测量 参数,如磁场强度、射频频率等。
六、实验步骤
1
样品制备
将样品制备成薄片或粉末,保证样品的纯度和适合的形态。
2
设置仪器参数
根据实验要求设置仪器的磁场强度、射频波功率等参数。
3
获取光谱
使用适当的实验方法获取样品的电子顺磁共振光谱。
4
数据处理
对实验得到的数据进行处理和解析,提取有用的谱学信息。
发掘新在更 多领域发挥重要作用。
九、结语
1 总结
电子顺磁共振是一种重要的谱学技术,为材料科学和生命科学研究提供了关键的实验手 段。
2 感谢
感谢各位的聆听和关注,祝愿大家在电子顺磁共振领域有所收获。
3 参考文献
1. Smith, J. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, 2018. 2. Johnson, R. L. Electron Paramagnetic Resonance: Basic Principles and Practical Applications. Springer, 2017.
控制系统
用于控制脉冲导引磁铁和检 测器,调节样品参数和记录 实验数据。
四、实验方法与技术
简介
电子顺磁共振实验方法包括X波段和Q波段等多 种光谱法。
与核磁共振的比较
电子顺磁共振与核磁共振是两种不同的谱学技术, 具有不同的原理和应用领域。
五、样品制备和测量参数的选择
1 样品制备方法
2 选择测量参数
样品制备是电子顺磁共振实验的关键步骤, 包括样品纯化、制备成薄片或粉末等。
电子顺磁共振

电子顺磁共振
电子顺磁共振(Electron Paramagnetic Resonance, EPR),又称电子自旋共振(Electron Spin Resonance, ESR),是一种基于电子自旋状态的谱学技术。
在电子顺磁共振中,样品中的顺磁性物质(通常是有未成对电子的物质)被置于强磁场中,然后通过给样品施加一定的微波能量,来使电子跃迁至高能级,并获取由跃迁所产生的能量
差的信息。
通过测量微波辐射的吸收或发射信号的强度和
频率,可以获得样品中顺磁性物质的电子自旋状态和相互
作用等信息。
电子顺磁共振技术在化学、生物学、材料科学等领域具有
广泛的应用。
它可以用来研究分子结构、电子能级和跃迁、自旋态和相互作用以及物质性质等方面的问题。
常见的应
用包括研究自由基、配合物和纳米颗粒的结构与性质、化
学反应机理、辐射效应以及生物分子的结构和功能等。
电子顺磁共振技术的优点在于它可以提供非破坏性的测量
方法,并且可以在常温和常压下进行实验。
此外,电子顺
磁共振谱图的分辨率和灵敏度较高,可以提供高分辨的结
构和动力学信息。
然而,电子顺磁共振技术也有一些限制,例如只能应用于含有未成对电子的物质、对于样品要求较
高的纯度和浓度、以及信号受到多种因素干扰等。
因此,
在实际应用中需要综合考虑这些因素,并结合其他的技术
手段进行分析研究。
电子顺磁共振实验讲义

近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利( Pauli)首先提出了电子自旋的概念。
1944 年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一 . 实验目的1.了解电子顺磁共振的原理。
2.掌握 FD-TX-ESR-II 型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH 的 g 因子。
二 . 实验原理A、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ与总角动量 P J之间满足如下关系:g B P J P J(1)J式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比g B(2)其中 g 为朗德因子。
对于原子序数较小(满足L-S 耦合)的原子的朗德因子可用下式计算,J(J 1) S(S1) L(L 1)g 1(3)2J(J1)由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S),则 g=2。
核磁共振与电子顺磁共振波谱法ppt课件

3.2 1H-核磁共振波谱
• 3.2.2 谱图表示方法
横坐标表示的是化学位移和耦合常数,而纵坐 标表示的是吸收峰的强度。
由于屏蔽效应而引起质子共振频率的变化量极 小,很难分辨,因此,采用相对变化量来表示化 学位移的大小。一般选用四甲基硅烷(TMS)为标准 物,因为:
CH 3
H 3 C Si CH 3 CH 3
.
3.2 1H-核磁共振波谱
• 3.2.2 谱图表示方法
a) 由于四个甲基中12 个H 核所处的化学环境完全相 同,因此在核磁共振图上只出现一个尖锐的吸收峰;
b) 屏蔽常数 较大,因而其吸收峰远离待研究的峰的
高磁场(低频)区; c) TMS—化学惰性、溶于有机物、易被挥发除去;
此外,也可根据情况选择其它标准物。 含水介质:三甲基丙烷磺酸钠。 高温环境:六甲基二硅醚。
.
3.2 1H-核磁共振波谱
• 3.2.1 化学位移及自旋-自旋分裂
.
3.2 1H-核磁共振波谱
• 3.2.1 化学位移及自旋-自旋分裂
分子内部相邻碳原子 上氢核自旋也会相互干 扰,通过成键电子之间 的传递,形成相邻质子 之间的自旋-自旋耦合, 而导致谱峰发生分裂, 即自旋-自旋分裂。
.
3.2 1H-核磁共振波谱
H=H0 - H0=(1- )H0 :屏蔽常数。
0=2μβH /h= 2μβ(1-)H0/h H0=0h/2μβ(1-) 当0固定,氢核的电子密度越大↑→ 屏蔽效应↑→ ↑→ H0 ↑
.
化学位移:
chemical shift
H0=0h/2μβ(1-)
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。
(整理)电子顺磁共振实验讲义

近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利(Pauli)首先提出了电子自旋的概念。
1944年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一.实验目的1.了解电子顺磁共振的原理。
2.掌握FD-TX-ESR-II型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH的g因子。
二.实验原理A 、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ 与总角动量P J 之间满足如下关系:B J J J gP P μμγ=-= (1)式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比B gμγ=- (2)其中g 为朗德因子。
对于原子序数较小(满足L -S 耦合)的原子的朗德因子可用下式计算,(1)(1)(1)12(1)J J S S L L g J J +++-+=++ (3) 由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S ),则g=2。
《电子顺磁共振》课件

水质监测
通过电子顺磁共振技术可以检测 水体中的重金属离子、有机污染 物等有害物质,为水质监测和治 理提供技术支持。
土壤污染修复
电子顺磁共振技术可以用于土壤 污染修复过程中的自由基监测, 有助于了解土壤污染的修复机制 和效果评估。
05
电子顺磁共振的未来发展与 挑战
技术创新与突破
检测方法的改进
01
提高检测灵敏度、分辨率和稳定性,实现更快速、准确和自动
样品固定
采用适当的固定方法将样 品固定在实验装置中,以 便进行实验操作。
实验操的电子顺磁共振实验装 置。
参数设置
根据实验样品的特点,设置合适的实验参数,如 磁场强度、微波频率等。
实验操作
按照实验步骤进行操作,记录实验数据。
数据处理与分析
数据整理
整理实验获得的数据,确保数据的准确性和完整性。
通过电子顺磁共振技术可以研究催化剂的活性中心和反应过程中电 子结构的改变,有助于优化催化剂的性能。
化学键断裂与形成
电子顺磁共振可以检测化学键的断裂和形成过程中自由基的变化, 有助于理解化学键的本质和化学反应的动力学过程。
在生物学研究中的应用
自由基生物学
电子顺磁共振技术可以用于研究自由基生物学,探索自由 基在生物体内的生成、代谢和作用机制,以及自由基对生 物体的影响。
现状
目前,EPR已经成为一种重要的物理表征手段,广泛应用于 各个学科领域。
应用领域
物理
EPR在物理领域中主要用于研究物质 的电子结构和磁性性质,如铁电体、 超导体等。
生物学
EPR在医学领域中用于研究生物组织 的结构和功能,如肿瘤、心血管疾病 等。
化学
EPR在化学领域中用于研究分子的电 子结构和反应机理,如自由基反应、 化学键断裂等。
电子顺磁共振 优质课件

微波源 检波器
系
主机
统
连
线
图
电磁铁
CH2
示波器
DPPH顺磁共振谱线的观测
1、将装有DPPH样品的试管放入微波系统的样品插孔中 ;
2、按照系统电路连接图连接系统个组成部分之间的通信电缆和 电源线。
3、打开电源开关,调节短路活塞,直流输出,调出共振吸收波 形。
4、调节直流调节电位器,使得共振吸收信号等间距。
g / BB
由原子物理可知:
原子磁矩完全由电子自旋磁矩贡献:g=2 原子磁矩完全由电子的轨道磁矩所贡献:g=1 通过g因子的测量可以判断电子运动的情况,进而可以 得知关于原子结构的信息。
实现共振的方法
为满足共振条件 E B 可采用两种方法:扫场 法、扫频法,本实验采用扫场法。 微波源频率固定(9.37GHz),连续改变外磁场的磁感应 强度,当满足共振条件时发生电子自旋共振。
微波电源
直流输出 扫描输出
微波源
检波器
系
主机
统
连
线
图
电磁铁
锁相放大器
电流输出 调制输出 IN
吸收曲线实验结果(一次微分信号)
六、注意事项
由于仪器的样品是使用玻璃管封装,故在放置样品的时 候,要谨防玻璃管折断后破碎。
本实验在操作的过程中,要严格按照说明书上说明的操 作步骤去做实验,实验中的每一步都需要细心地完成。
6、谐振腔:
A
谐振腔耦合膜片 样品
B 可变短路调节器
通过调节可变短路调节器的位置,使微波在谐振腔内形成 驻波,得到最强的电子顺磁共振信号。
FD-TX-ESR-I 电子顺磁共振仪
电源
直流调节
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子顺磁共振
• 电子顺磁共振 • Electron Paramagnetic Resonance (EPR) • 电子自旋共振 • Electron Spin Resonance (ESR)
•磁共振学科: •NMR 研究核的 Zeemen 效应 • •ESR 研究电子的Zeemen 效应 •始于1944 年,前苏联ЗAВОЙСКИЙ 发现 ESR现象
(2) 轴对称结构
• 若分子含有一个二重或多重对称轴,则X与Y 相同,称之为轴对称情况.
• 例如: ROO·
g 11
gxx = g yy = g zz
g┴
g 11
g┴
g 11 = g zz ,
g ┴ = g xx = g yy
(3).非轴对称结构 • 对于更低的对称体系, 例如: 斜方(CuCl2),不
= (9.274 x 10-21尔/高斯)(3487.5高斯)
(3)
•则: Eα= + 1/2 g β HZ • Eβ= - 1/2 g β HZ
(4)
• 当H = 0 时,Eα= 0,Eβ = 0 ,Eα= Eβ = 0
• 当H = 0 时,Eα= Eβ
Eα
Eα= + 1/2 g β HZ ΔE=hυ
Eβ
Eβ= - 1/2 g β HZ
电子的Zeemen 效应
•一 . ESR的研究对象 •1 自由基 •2 过渡族金属离子及其化合物
1.自由基:
·CH3
·CH2 CH3
OH
O
O2 乙醇
(1).有机化学 (2).光化学 (3).辐射化学
OH
O
(4).吸烟过程产生的自由基: 1. 固相: 焦油中的醌,氢醌自由基。 2. 气相: 烟雾中的烷氧基,活性氧自由基。 3. 最新报道: 以自由基形式存在的呢咕丁导致吸烟上瘾。
5.生物体:
半醌自由基 活性氧自由基
HO ·,
O2- ·
2.过渡族金属离子及其化合物
3d1
V4+
3d5
Fe3+ , Mn2+
3d9
Cu2+ ,
4d1
Mo5+ ,
5d1
W5+
4f 7
Eu2+ , Gd3+
在分子筛,催化剂,蔟合物,纳米材料,生物酶中 都有上述过渡族金属离子。
• 3.其他 晶格缺陷:局部电中性破坏,形成点缺陷,
电子顺磁共振谱
• 讲课内容: 1.ESR基本原理 2.波谱参数 3.ESR谱的解析 4.实验方法
参考书: 1.电子自旋共振波谱
裘祖文,科学出版社,1980.
2.高等结构分析
马礼敦,复旦大学出版社,2002
目录
一 ESR的研究对象 二 ESR基本原理 三 波谱参数: g 因子 四 超精细结构确(h f s ) 五 线宽与线型 六 谱线的强度 七 ESR谱的特征 八 样品 九 实验方法 十 具有超精细结构的溶液ESR谱
含三重或多重对称轴,g因子在X,Y,Z方向的 主值都不相同.即 gxx = g yy = g zz g1 g2
g3
5. g 因子的测量与计算
• (1)绝对测量方法:
根据共振条件 hυ = g βH
hυ 微波频率
g=
βH
谱线位置的磁场强度
例1. 计算DPPH的g 因子
hυ g=
βH
( 6.626 x 10-27尔.秒)(9.78 x109 Hz)
例如: F心 电子中心 V心 空穴中心 辐照石英沙 Ag2O3 - O –
4. ESR的局限性: 必须含有未成对电子,是顺磁性物质。
• 解决办法:
• (1) 辐照, 电解, 氧化还原 方法 相应的自由基 或离子.
制成
• (2) 自旋标记法: 将带: 用自旋俘获剂俘获短寿命自 由基.
ESR谱仪
ESR谱仪的主控制台
电磁铁中的谐振腔
二.ESR的基本原理
1.小磁体在直流磁场中的行为
θ
E = -μ· H = -μH cosθ
(1)
当θ= 0,cosθ= 1,E = -μH 能量最低
当θ= 1800,cosθ= -1,E = +μH 能量最高
2.电子的自旋磁距与自旋角动量的关系
根据量子力学:
μ = - g βS
(2)
电子的自旋磁距
电子的自旋角动量
g 因子 玻尔磁子
3. 将(2)代入(1) 求E:
• E = -μ· H
= - (-g β S ) ·Н = g β S·Н
选H方向为Z方向,则
E = g β S· H = g β HZ MS MS 取 + 1/2 E = + 1/2 g β HZ 令MS = + 1/2为Eα自旋态 令MS = - 1/2为Eβ自旋态
g = 1.9 ---- 10 之间 晶场的作用:自旋磁距的贡献
轨道磁距的贡献
引出局部磁场的问题
**g因子在本质上反映了分子内部局部磁场的特征,
它是提供分子结构信息的一个重要参数.
• 2. g因子的特点: • (1)自由基: g ge 精确到小数后4位
负离子 > 正离子
(2)过渡族金属离子及其化合物 d壳层电子数小于半充满 g < ge d壳层电子数大于半充满 g > ge d壳层电子数等于半充满 g ge
4.能级差ΔE
• ΔE= Eα- Eβ • = 1/2 g β H + 1/2 g β H = g β H • ΔE = g β H
5. ESR现象
6. 电子自旋共振条件
hυ = g βH
吸收信号
1次微分信号 (ESR谱)
三.波谱参数: g因子
• 1.g因子的定义
• μ = - g βS
• (1) 自由电子 g = ge = 2.0023 • (2) 自由 基 g ge = 2.0 • (3) 顺磁分子体系 : g 的分布范围广
3. g因子的几种实际情况
• (1)自由电子 • (2)自由原子 • (3)中介情况
g = g e = 2.0023 g = g J 气体
很少见
μ = - βg ·S
总的等效磁距 各向异性的
各向异性
等效磁距μ与磁场之间的相互作用能 = -μ· H = β H · g · S
电子的塞曼项 自旋哈密顿算符
g 各项异性 需求矩阵,求9个元素,对角化后:
gxx 0
g=
gyy
0
gzz
4.简化问题(简化g的计算)
• 从分子的对称性简化
• (1)对称结构
• 如八面体,立方体中的离子,
• gxx = g yy = g zz = g 0 • 谱的特征:
CuSO4
• 稀溶液,分子快速滚动 , 平均.
• g平均 = 1/3 (gxx + g yy + g zz )