基本不等式的应用 PPT
合集下载
基本不等式的几种应用技巧PPT课件

基本不等式的几种应用技巧
蒙城六中 陈涛
.
基本不等式的几种应用技巧
最值问题始终是高考数学的热点题 型之一,而利用基本不等式求函数的 最值是应用比较广泛且方便的解题方 法。本节课我们将对基本不等式应用 过程中的注意事项及常用的变形技巧 做简单的梳理。
.
基本不等式的几种应用技巧
基本不等式
ab ab(a0,b0) 2
.
小结
利用基本不等式求最值
(1)注意事项:一正,二定,三相等; (2)形式上不符合条件的,应先变形,再用基本不等
式,常用变形方法有: 添项,凑系数,拆项, “1”的代换等方法. (3)取不到等号时,用函数单调性求最值.
即 一 不 正 ,a 0 ,b 0 常 用 a b 2a b
二不定,需变形 三 不 等 当 13 x261时,等号成
即ymin623
三相等
.
基本不等式的几种应用技巧
题型三:凑系数
例3.已知 0x4,求 yx82x的最大值。
方法提示
对于求积的表达式的最值计算,若 要用基本不等式解决,就要努力构造 含变量的表达式的和为定值的结构,
我们常通过凑相应的变量系数来解决。
方法分析 对于常见的分子为二次式,分 母为一次式的分式函数求最值,我 们常将分子中的变量凑成分母的形 式,然后分离分式,再用基本不等 式解决。
.
基本不等式的几种应用技巧
解: x 1 , x 1 0 ,
y
x2
3x1
x125 x1 5
x1
x1
x1 5 52 x1• 5 5
x1
x1
2 55
当且仅 x当 12 5,即x 51时等号
.
基本不等式的几种应用技巧
蒙城六中 陈涛
.
基本不等式的几种应用技巧
最值问题始终是高考数学的热点题 型之一,而利用基本不等式求函数的 最值是应用比较广泛且方便的解题方 法。本节课我们将对基本不等式应用 过程中的注意事项及常用的变形技巧 做简单的梳理。
.
基本不等式的几种应用技巧
基本不等式
ab ab(a0,b0) 2
.
小结
利用基本不等式求最值
(1)注意事项:一正,二定,三相等; (2)形式上不符合条件的,应先变形,再用基本不等
式,常用变形方法有: 添项,凑系数,拆项, “1”的代换等方法. (3)取不到等号时,用函数单调性求最值.
即 一 不 正 ,a 0 ,b 0 常 用 a b 2a b
二不定,需变形 三 不 等 当 13 x261时,等号成
即ymin623
三相等
.
基本不等式的几种应用技巧
题型三:凑系数
例3.已知 0x4,求 yx82x的最大值。
方法提示
对于求积的表达式的最值计算,若 要用基本不等式解决,就要努力构造 含变量的表达式的和为定值的结构,
我们常通过凑相应的变量系数来解决。
方法分析 对于常见的分子为二次式,分 母为一次式的分式函数求最值,我 们常将分子中的变量凑成分母的形 式,然后分离分式,再用基本不等 式解决。
.
基本不等式的几种应用技巧
解: x 1 , x 1 0 ,
y
x2
3x1
x125 x1 5
x1
x1
x1 5 52 x1• 5 5
x1
x1
2 55
当且仅 x当 12 5,即x 51时等号
.
基本不等式的几种应用技巧
2.4 基本不等式及其应用.ppt

若 a、b∈R+,且 ab=P,P 为定值,则 a b 2 P ,
等号当且仅当 a=b 时成立。
例 5、
(1)若 x 0 ,则 4x 9 的最小值是
;
x
(2) 若 x 1,则 4x 9 的最小值是
;
x 1
(3)若 x 1 ,则 2x2 9x 10 的最小值 x 1
是
。
例 6、已知 a 0,b 0, c 0,
我们把 a b 和 ab 分别叫做正数 a、b 的算术平均数和几何平 2
均数.
几何解释:
A
B
C
DE
3、例题
例 1、(1)设 a,b, c R ,求证:
a2 b2 c2 ab ac bc ; (2)已知 x, y R ,求证:
(x y)(x2 y2 )(x3 y3 ) 8x3 y3 .
例 2、(1)已知 xy 0 ,求证: y x 2 ; xy
(2)已知 xy 0 ,求证: y x 2 ; xy
(3)试比较 y x 与 2 的大小。 xy
例 3、已知 x 0, y 0 ,求证: x2 y2 x y 。 yx
4、练习 1、用不等号填空:
若 x 0 ,则 x 1 2 ,若 x 0 ,则 x 1 2 。
2、新课 基本不等式 1:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
变形:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
如果 a,bR,那么a2 b2 2 ab ,当且仅当 a b 时等号成立 .
基本不等式 2:
如果 a,b R ,那么 a b ab,当且仅当a b时等号成立 . 2
1
2 1
ab a b 2
等号当且仅当 a=b 时成立。
例 5、
(1)若 x 0 ,则 4x 9 的最小值是
;
x
(2) 若 x 1,则 4x 9 的最小值是
;
x 1
(3)若 x 1 ,则 2x2 9x 10 的最小值 x 1
是
。
例 6、已知 a 0,b 0, c 0,
我们把 a b 和 ab 分别叫做正数 a、b 的算术平均数和几何平 2
均数.
几何解释:
A
B
C
DE
3、例题
例 1、(1)设 a,b, c R ,求证:
a2 b2 c2 ab ac bc ; (2)已知 x, y R ,求证:
(x y)(x2 y2 )(x3 y3 ) 8x3 y3 .
例 2、(1)已知 xy 0 ,求证: y x 2 ; xy
(2)已知 xy 0 ,求证: y x 2 ; xy
(3)试比较 y x 与 2 的大小。 xy
例 3、已知 x 0, y 0 ,求证: x2 y2 x y 。 yx
4、练习 1、用不等号填空:
若 x 0 ,则 x 1 2 ,若 x 0 ,则 x 1 2 。
2、新课 基本不等式 1:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
变形:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
如果 a,bR,那么a2 b2 2 ab ,当且仅当 a b 时等号成立 .
基本不等式 2:
如果 a,b R ,那么 a b ab,当且仅当a b时等号成立 . 2
1
2 1
ab a b 2
基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
最新基本不等式实际应用题(1)教学讲义PPT

5000 + 16× 2
x·3025 = 6760 x
只 有 x = 3025 即 x = 55取 " = "
x
4 8 4 0 = 8 8 ,a = 5 5 < 1
x
88
例2:某种生产设备购买时费用为10万元,每年的设备管
理费共计9千元,这种生产设备的维修费各年为:第一年2
千元,第二年4千元,第三年6千元,依每年2千元的增量
2a
+ 6
3b
(4,6) xy20
=
13 6
+( b a
+
a b
)
13 6
+
2
=
25 6
,故选A
2
zaxby
-2 0
2
x
拓展提高
1.已 知 ab0 ,求 a2 16 的 最 小 值 。 b(ab)
a b 0, a b 0
0 b(a b) (b a b )2 a2
2
4
16 b(a
练习:设计一副宣传画,要求画面面积为4840cm2,画面
的宽与高的比为a(a<1),画面的上下各留出8cm的空白,
左右各留5cm的空白,怎样确定画面的高与宽的尺寸,能
使宣传画所用纸张面积最小?
解:设画面的宽为xcm,面积为S
S =(x +10)( 4840 +16) x
= 5000 +16(x + 3025) x
(3)一段长为36m的篱笆围成一个矩形菜园,问这 个矩形的长、宽各为多少时,菜园的面积最大?
面积最大值是多少?
解:设矩形菜园的长为xm,宽为ym,则
2(x+y)=36 即 x+y=18
高中数学新人教A版必修第一册 微专题1基本不等式的应用技巧 课件(16张)

第二章 一元二次函数、方程 和不等式
微专题1 根本不等式的应用技巧
在运用基本不等式求代数式的最值时,常常会用凑项、拆项、常 值的代换、消元代换、取平方等技巧,无论运用哪种方式,必须把握 三个条件:
(1)“一正”——各项为正数; (2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.
类型 4 消元代换 【例 4】 (1)已知 a>0,b>0,且 2a+b=ab-1,求 a+2b 的最小 值; (2)若实数 x,y 满足 xy+3x=30<x<12,求3x+y-1 3的最小值.
[解] (1)由 2a+b=ab-1 得 a=1+b-3 2>0,解得 b>2.所以 a+2b =5+b-3 2+2b-2≥5+2 b-3 2·2b-2=5+2 6,当且仅当b-3 2= 2b-2,即 b=2+ 26时等号成立.所以 a+2b 的最小值是 5+2 6.
2,当且仅
当 2a2=b2+1,即 a=b=1 时取“=”,故 a b2+1的最大值为 2.
类型 2 拆项
【例 2】 已知 x≥25,则x2-2x4-x+4 5有(
)
A.最大值45
B.最小值54
C.最大值 1
D.最小值 1
D [法一:∵x≥52,∴x-2>0,则x2-2x4-x+4 5=12x-2+x-1 2≥21 ×2 x-2·x-1 2=1,等号在 x-2=x-1 2,即 x=3 时取得.
(2)∵实数 x,y 满足 xy+3x=30<x<12, ∴x=y+3 3,∴0<y+3 3<21,解得 y>3. 则3x+y-1 3=y+3+y-1 3=y-3+y-1 3+6
≥2 y-3·y-1 3+6=8, 当且仅当 y=4,x=37时,等号成立. 所以3x+y-1 3的最小值为 8.
微专题1 根本不等式的应用技巧
在运用基本不等式求代数式的最值时,常常会用凑项、拆项、常 值的代换、消元代换、取平方等技巧,无论运用哪种方式,必须把握 三个条件:
(1)“一正”——各项为正数; (2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.
类型 4 消元代换 【例 4】 (1)已知 a>0,b>0,且 2a+b=ab-1,求 a+2b 的最小 值; (2)若实数 x,y 满足 xy+3x=30<x<12,求3x+y-1 3的最小值.
[解] (1)由 2a+b=ab-1 得 a=1+b-3 2>0,解得 b>2.所以 a+2b =5+b-3 2+2b-2≥5+2 b-3 2·2b-2=5+2 6,当且仅当b-3 2= 2b-2,即 b=2+ 26时等号成立.所以 a+2b 的最小值是 5+2 6.
2,当且仅
当 2a2=b2+1,即 a=b=1 时取“=”,故 a b2+1的最大值为 2.
类型 2 拆项
【例 2】 已知 x≥25,则x2-2x4-x+4 5有(
)
A.最大值45
B.最小值54
C.最大值 1
D.最小值 1
D [法一:∵x≥52,∴x-2>0,则x2-2x4-x+4 5=12x-2+x-1 2≥21 ×2 x-2·x-1 2=1,等号在 x-2=x-1 2,即 x=3 时取得.
(2)∵实数 x,y 满足 xy+3x=30<x<12, ∴x=y+3 3,∴0<y+3 3<21,解得 y>3. 则3x+y-1 3=y+3+y-1 3=y-3+y-1 3+6
≥2 y-3·y-1 3+6=8, 当且仅当 y=4,x=37时,等号成立. 所以3x+y-1 3的最小值为 8.
基本不等式(共43张)ppt课件

15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
不等式ppt课件

不等式的应用场景
01
02
03
04
数学领域
解决各种不等关系的问题,如 最值、范围等。
物理领域
描述物理现象和规律,如力学 、电磁学等。
经济领域
描述经济变量之间的关系,如 价格、成本等。
实际生活
描述日常生活中的不等关系, 如时间、距离等。
02
不等式的类型
算术平均数与几何平均数的不等式
总结词
算术平均数与几何平均数的不等式是一种基本的不等式,它反映了平均值与方 差之间的关系。
实际应用定义
描述实际生活中两个量之 间的不等关系,如价格、 距离等。
不等式的性质
加法单调性
即同向不等式相加,不等号不 改变方向。
反身性
任何实数都大于它本身。
传递性
如果a>b,b>c,则a>c。
乘法单调性
即不等式乘以一个正数,不等 号不改变方向;乘以一个负数 ,不等号改变方向。
非空性
不等式的两边都可以取无穷大 或无穷小。
03
不等式的证明方法
利用导数证明不等式
总结词
导数是一阶导数的简称,它描述了函数在某一点的变化率, 可以用来判断函数的单调性和凹凸性,从而帮助我们证明不 等式。
详细描述
首先,我们需要找到不等式两边的函数,然后求导,通过比 较导数值的大小来判断函数的单调性,从而得出不等式的证 明结论。
利用拉格朗日中值定理证明不等式
详细描述
柯西不等式表明,对于任何实数x 和y,都有$x^2+y^2 \geq 2xy$ ,当且仅当x=y时等号成立。这 个不等式在解决一些最优化问题 时非常有用。
排序不等式
总结词
排序不等式是一种基于排序原理的不 等式,它反映了有序实数之间的差值 与乘积之间的关系。
基本不等式及其应用ppt课件

【解析】 x+x-4 1=(x-1)+x-4 1+1≥ 2 x-1·x-4 1+1=5.(当且仅当 x=3 时取等号)
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习: (1)已知x 0,求f (x) 3x 12 的最值; x
(2)已知x 0,求f (x) 3x 12的最值; x
(3)已知x 2,求f (x) x 4 的最值; x2
课后练习 1.已知a 0,b 0, ab a b 3 则ab的最小值是_________
2. 已知a 0,b 0,ab a b 3, 则a b的最小值是 ________。
探究1:求y x 1(x 0)的最小值 x
问题探究
探究1:求y x 1(x 0)的最小值 x
变式1:求y x 1 (x 0)的最大值 x
问题探究
探变究式22:求y
x
x
1
2
(
x
2)最小值
变式2
(3)若x 3,函数f (x) x 1 ,当x为何值时,函数 x3
有最值,并求其最值。
总结:
(1) 从特殊到一般 (2)掌握配凑法 (3)基本不等式求最值条件
一正,二定,三等
ab a b 的应用 2
知识回顾
1. 重要不等式________________ 2. 基本不等式________________
1. 两个重要的不等式
(1)a, b R,那么a2 b2≥2ab ,当且仅当a b时,等号成立
(2) ab≤ a b (a>0,b>0),当且仅当a b时,等号成立。 2
2. 利用基本不等式求最值
已知 x, y 都是正数, P, S 是常数.
(1) xy=P x+y≥2 P(当且仅当 x=y 时, 取“=”号).
(2)
x+y=S
xy≤
ቤተ መጻሕፍቲ ባይዱ
1 4
S2(当且仅当
x=y
时,
取“=”号).
3.不等式的简单应用:主要在于求最值
把握 “七字方针” 即 “一正,二定,三相等”
问题探究
问题探究
探探究究32:求y x2 2x 1 (x 2)的最小值
x2
合作学习
(1)求y x2 1 (x 1)的最小值 x 1
(2)求y x 1 (x 2)的最小值 x2
问题探究
探究4 x>0,y>0,且 2 + 8 =1,求x+y的最小值
xy
变式4
已知x 0 y 0, x y 1.求 4 9 的最小值; xy