数值计算方法复习提纲

合集下载

(整理)数值计算方法期末复习天津理工大学

(整理)数值计算方法期末复习天津理工大学

数值计算方法期末复习概念题:1.算法的优劣性计算量的大小是衡量算法优劣的一个重要标准尽量节约存储量,也是设计算法时需要考虑的一个因素2.截断误差(方法误差)无穷过程用有限过程近似引起的误差舍入误差(计算误差)无论用计算机、计算器计算还是笔算,都只能用有限位小数来代替无穷小数或用位数较少的小数来代替位数较多的有限小数,产生舍入误差3.有效数字(注意事项4点)p7(1)用四舍五入取准确值的前n位x*作为近似值,则x*必有n个有效数字例如,л=3.1415926…,取3.14作为近似值,则有3位有效数字,取3.142作为近似值,则有4位有效数字(2)有效数字位数相同的两个近似数,绝对误差不一定相同例如,设x1*= 12345, x2*=12.345,二者均有5位有效数字,前者的绝对误差为1/2,后者的绝对误差为1/2×10-3(3)把任何数乘以10p等于移动该数的小数点,这样并不影响其有效数字的位数4.相对误差的定义p5⏹定义x的近似值x*的相对误差相对误差限可由绝对误差限求出,反之,绝对误差限也可由相对误差限求出5.减少相对误差的若干规则p14 (4点)a)两个相近的数相减,会严重损失有效数字b)防止大数“吃掉”小数c)在除法运算中要避免出现除数的绝对值远远小于被除数绝对值的情形(绝对值太小的数不宜做除数)d)简化计算步骤,减少运算次数选用e)数值稳定性好的计算公式6.逐步扫描法p227.二分法(二分估计式)p24就是将方程根所在的区间平分为两个小区间,再判断根属于哪个小区间;把有根的小区间再平分为二,再判断根所在的更小的区间,对分;重复这一过程,最后求出所要的近似值⏹1.计算f (x)在有解区间[a, b]端点处的函数值,f (a),f (b)⏹2.计算f (x)在区间中点处的值f (x0)判断若f (x0) = 0,则即是根,否则检验:(1)若f (x0)与f (a)异号,则知解位于区间[a, x0],以x0代替b;(2)若f (x0)与f (a)同号,则知解位于区间[x0, b],x0代替a反复执行步骤2、3,误差估计式8.解方程的集中方法(课件)9.高斯消元法的弊端a)如果用作除数为主元素,消元过程中可能出现为零的情况,此时消元过程无法进行下去b)如果主元素很小,由于舍入误差和有效位数消失等因素,其本身常常有较大的相对误差,用其作除数,会导致其它元素数量级的严重增长和舍入误差的扩散,使得所求的解误差过大,以致失真10. 代数插值的推论:当f(x)是次数不超过n的多项式时,其n次插值多项式就是f(x)本身11. 牛顿科特斯公式的系数的性质p197 (3点)⏹柯特斯系数C k之和为1⏹柯特斯系数C k具有对称性,即C k=C n-k⏹柯特斯系数有时为负12. 复数求积分的思想p208为减小因区间过大而造成的误差过大,将积分区间等分成若干等份,每份成为一个子区间,然后对每个子区间用低阶的求积公式(如梯形公式、辛普森公式或科特斯公式等)求积,再利用积分的区间可加性,把各区间上的积分加起来,得到复化求积公式13.变步长求积分的思想p208⏹变步长积分法思想:将区间逐次对分进行计算,用前后两次计算的结果进行估计,若合乎精度要求,就停止计算;否则再次对分,重复以上计算过程,直至达到精度要求为止14.欧拉公式的几何意义p231欧拉公式的几何意义:用一条初始点重合的折线,来近似表示微分方程的解(积分曲线)3中导出方法14. 局部截断误差和阶p232局部截断误差和阶⏹定义:在y n准确的前提下,即y n=y(x n)时,用数值方法计算y n+1的误差称为该数值方法计算y n+1时的局部截断误差⏹定义:数值方法的局部截断误差为O(h p+1),则称这种数值方法的阶数为p 计算题:1.绝对误差(公式)2.有效数字3.4.相对误差5.6.二分法7.迭代法8.9.列主元高斯消元法10.11.克洛特分解法12.13.雅克比迭代法高斯赛德尔迭代(简答只需要写出公式)14.15.线性插值10.抛物线插值11.12.拉格朗日插值的公式13.牛顿科特斯公式n=1 n=2 的公式14.15.复化梯形16.复化辛普森17.欧拉公式(o(h^2))18.19.改进欧拉公式20.21.四阶龙格库塔法公式求一阶差微分的数值(o(h^5))。

数值计算方法复习

数值计算方法复习

第三章 常微分方程的差分方法 熟练掌握欧拉法及改进的欧拉法的思想及算法的 求解过程. 求解过程 熟练掌握龙格-库塔法的思想及求解过程 库塔法的思想及求解过程. 熟练掌握龙格 库塔法的思想及求解过程 第四章 方程求根的迭代法 熟练掌握迭代法收敛的判定方法. 熟练掌握迭代法收敛的判定方法. 熟练掌握牛顿法的思想及求解过程. 熟练掌握牛顿法的思想及求解过程 熟练掌握弦截法及快速弦截法的思想及其求解过程. 熟练掌握弦截法及快速弦截法的思想及其求解过程 第五章 线性方程组的迭代法 熟练掌握雅可比迭代的求解过程及收敛的判定方法. 熟练掌握雅可比迭代的求解过程及收敛的判定方法. 熟练掌握塞德尔迭代的求解过程及收敛的判定方法. 熟练掌握塞德尔迭代的求方程组的直接法 熟练掌握约当消去法的思想及其求解方法. 熟练掌握约当消去法的思想及其求解方法. 熟练掌握高斯消去法的思想及其求解方法. 熟练掌握高斯消去法的思想及其求解方法. 熟练掌握选主元消去法的思想及其求解方法. 熟练掌握选主元消去法的思想及其求解方法. 熟练掌握追赶法的思想及其求解方法. 熟练掌握追赶法的思想及其求解方法. 熟练掌握平方根法的思想及其求解方法. 熟练掌握平方根法的思想及其求解方法.
数值计算方法复习
引言: 了解算法的构成要素. 了解算法的构成要素 掌握有效数字的概念及求解方法. 掌握有效数字的概念及求解方法 第一章 插值方法 熟练掌握拉格朗日插值方法的思想及求解思路. 熟练掌握拉格朗日插值方法的思想及求解思路 熟练掌握牛顿插值方法的思想及求解思路. 熟练掌握牛顿插值方法的思想及求解思路 掌握埃特金方法的思路及对低阶多项式的构造方法. 掌握埃特金方法的思路及对低阶多项式的构造方法. 第二章 数值积分 掌握解决数值积分问题的基本思想及代数精度的概念. 掌握解决数值积分问题的基本思想及代数精度的概念 熟练掌握牛顿-柯斯特公式及其思想 柯斯特公式及其思想. 熟练掌握牛顿 柯斯特公式及其思想 熟练掌握复化求积公式的的思想及求解过程. 熟练掌握复化求积公式的的思想及求解过程 熟练掌握龙贝格加速公式. 熟练掌握龙贝格加速公式

数值计算方法 第3章复习

数值计算方法 第3章复习

1 第3章 插值法与数据拟合一、考核知识点拉格朗日插值法及其余项、牛顿插值、最小二乘法、超定方程组。

二、考核要求:1.熟练掌握拉格朗日插值法及其余项。

2.掌握牛顿插值。

3.了解最小二乘法的基本思想,熟练掌握求最小二乘多项式与超定方程组最小二乘解的方法。

三、重、难点分析例1 已知,3)9(,2)4(==f f 用线性插值计算)5(f ,并估计误差。

解 取插值节点x 0= 4,x 1= 9,两个插值基函数分别为)9(51)(1010--=--=x x x x x x l )4(51)(0101-=--=x x x x x x l 故有 565)4(53)9(52)()()(11001+=-+--=+=x x x y x l y x l x L 2.25655)5()5(1=+=≈L f 误差为 )(2)95)(45(!2)()5(2ξξf f R ''-=--''=例2 求过点(0,1)、(1,2)、(2,3)的三点插值多项式。

解:由Lagrange 插值公式又0120120,1,2;1,2,3x x x y y y ======故例3已知f(0)=8, f(1)= -7.5, f(2)= -18;用牛顿插值法求f(x)在[0,2]之间的近似零点。

0201122012010210122021()()()()()()()()()()()()()x x x x x x x x x x x x L x y y y x x x x x x x x x x x x ------=++------2(1)(2)(0)(2)(0)(1)()123(01)(02)(10)(12)(20)(21)1x x x x x x L xx ------=⨯+⨯+⨯------=+2例4求下列超定方程组的最小二乘解。

⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x1 解 令 ⎪⎩⎪⎨⎧--=-+=-+=2724213212211x x u x x u x x u23222121u u u x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x 由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ得法方程组 ⎩⎨⎧=+=+166213232121x x x x解得 7231=x 7112=x所以最小二乘解为 7231=x 7112=x2 解 方程组写成矩阵形式为 正规方程组为即解得12114127112x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦12114111111127121121112x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦1232132616x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦122311,77x x ==。

(完整word版)《数值计算方法》复习资料全

(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值分析计算方法复习提纲

数值分析计算方法复习提纲

数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。

在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。

一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算截断误差根据泰勒余项进行计算。

基本的问题是(1)1()(01)(1)!n n f x x n,已知ε求n。

例1.1:计算e 的近似值,使其误差不超过10-6。

解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。

由麦克劳林公式,可知211(01)2!!(1)!n x xn x x e e x x n n当x=1时,1111(01)2!!(1)!e e n n故3(1)(1)!(1)!n e R n n 。

当n=9时,R n (1)<10-6,符合要求。

此时, e≈2.718 285。

2、绝对误差、相对误差及误差限计算绝对误差、相对误差和误差限的计算直接利用公式即可。

基本的计算公式是:①e(x)=x *-x =△x =dx② *()()()ln r e x e x dxe x d x x x x③(())()()()e f x f x dx f x e x ④(())(ln ())r e f x d f x⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ⑥121212((,))((,))(,)f x x f x x f x x⑦ x注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式()()r e x e x x或x, 这样计算简单。

(完整)数值计算方法复习

(完整)数值计算方法复习

2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1。

了解数值分析的研究对象与特点。

2。

了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0。

229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。

了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3。

理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4。

掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。

为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。

数值计算方法重点复习内容

数值计算方法重点复习内容
及其收敛性判定;
Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式

《数值计算方法》复习资料

《数值计算方法》复习资料

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i0
i0
2) 解之即得(1)的最小二乘解
2021/3/1
-14-
14
02:59
❖ 一般曲线拟合
利用最小二乘原理求矛盾方程组的最小二乘解(会 计算) (★)
❖ 插值条件、插值点
❖ 插值多项式
插值多项式的存在、唯一性:
❖ 故Ln(x)与Nn(x)等价
Lagrang插值多项式(★)
❖ 构造
f (
x)
n
lk (
k0
x )yk
n
(
k0
n i0
(x ( xk
xi xi
) )
yk
ik
❖ 余项
n
lk ( x ) 1
k0
❖ 线性插值、抛物插值公式及其截断误差
复习
2021/3/1
-1-
1
02:59
第一章 绪论及误差估计
误差的来源、分类(★) 误差的估计(★)
❖ 绝对误差、绝对误差限 ❖ 相对误差、相对误差限 ❖ 有效数字 ❖ 和、差、积、商的误差
数值计算(近似计算)的基本原则(★)
2021/3/1
-2-
2
02:59
第2章 非线性方程求根
非线性方程求根的基本步骤(★)
第5章 最小二乘法与曲线拟合
最小二乘原理及正规方程组的构造(计算) (★)
❖ 多项式拟合: y=a0+a1x+…+amxm (1)
1) 对应的正规方程组:CTCa=CTy
n
n
xi
CTC
i0 n
xi2
i0
....
n
xim
n
xi
i0 n
xi2
i0
n
xi3
ቤተ መጻሕፍቲ ባይዱi0
....
n
xm1 i
(n)!

推论:若f ( x ) Pn ( x ), f [ x0 Newton插值公式的构造(★)
,
,
xk
]
a0n,,kk
n n
1) 步骤
2) 估算某点的近似值:
❖ Nn(x)=f(x0)+f[x0,x1](x-x0)+…+f[x0,x1,…,xn] (x-x0)(x-x1)…(x-xn-1)
2021/3/1
❖ 追赶法
1) 适用于:三对角方程组
2) 实质:作Crout分解
❖ 改进平方根法
1) 适用条件:对称正定矩阵
2) 计算量减半
2021/3/1
-6-
6
02:59
迭代法:
❖ 向量与矩阵的范数: (★)
1) 向量范数:1-范数、2-范数、∞-范数
2) 矩阵范数(算子范数):1-范数、2-范数、∞-范数
.... ....
.... .... ....
n
n xim
i0
n
x m 1 i
i0
n
,
xim2
i0
....
n
x
2 i
m
i0
yi
n
a
a0
a1
a2
,
C
T
...
am
y
i0
xi
yi
n
i0
xi2
yi
.....
n
xim yi
(3)
i0
i0
-12-
12
02:59
Hermit插值
❖ 基本思想 ❖ 插值多项式的构造方法
1) Lagrange型构造法(基函数构造法) 2) Newton型构造法(重节点的差商)
了解高次插值会产生Runge现象,解决办法:分段 低次插值(★)
了解三次样条插值的基本原理
2021/3/1
-13-
13
02:59
1) 充分条件: x=Bx+f, ||B||<1
2) 充要条件: x=Bx+f,B的谱半径 ( B ) <1 ❖ Jacobi迭代:
1) 公式:x=Jx+f(其中: J=I-D-1A,f=D-1b) 2) 收敛的条件: (★)
a) 充要条件: ( J ) <1
b) 充分条件:||J||<1 c) Ax=b的系数矩阵A (非迭代矩阵 J ) :严格对角占优 3) 会手工计算(★)
1) 重根时的改进 2) 避免求一阶导数的改进:弦截法
2021/3/1
-4-
4
02:59
第3章 线性方程组求解
线性方程组的求解方法: (★)
❖ 直接法
❖ 迭代法
直接法:(各种方法的适用条件、手工计算)
❖ Guass顺序消元法
1) 适用条件: a) 系数矩阵A是严格对角占优的矩阵
n
|| aii | | aij |, A的每行主对角元的绝对值 同行其余元素的绝对值之和 ji i 1 b) 顺序阶主子式为正
2) 算法步骤(★ ★ ★ )
2021/3/1
-5-
5
02:59
❖ 列主元Gauss消元法(★)
1) 选主元的必要性
2) 算法的改进
❖ Gauss-Jordan 消元法
1) 思想、方法
2) Gauss-Jordan消元法的应用:求矩阵的逆矩阵
❖ 三角分解法
1) Doolittle分解(★)
2) Crout分解(★)
2021/3/1
-11-
11
02:59
Newton插值
❖ 差商及其性质: (★)
1) 对称性 f [x0 ,, xk ] f [xi0 ,, xik ]
2)
f
[
x0 ,, xn
]
n i0
(
xi
x0
)(
xi
f ( xi ) xi1 )( xi
xi1
)(
xi
xn
)
f [x0 ,, xn ]
f (n) ( )
❖ 判断根存在性 ❖ 有根区间的隔离 ❖ 根的精确化
二分法求根
❖ 基本原理 ❖ 误差估计
2021/3/1
-3-
3
02:59
简单迭代法
❖ 迭代原理 ❖ 迭代格式的收敛性判断 ❖ 收敛速度的度量
Newton迭代法
❖ 原理 ❖ 算法步骤(★) ❖ 收敛的阶 ❖ 手工计算(★) ❖ newton迭代法的改进
d) 方程组Ax=b的系数矩阵A(非迭代矩阵):对称正定
e) 若方程组的Jacobi迭代收敛并且||J||<q1,则该方程 组的Gauss-Seidel迭代也收敛
3) 能写出其迭代矩阵(★)
2021/3/1
-9-
9
02:59
么么么么方面
Sds绝对是假的
-10-
02:59
第4章 插值法
插值的基本概念:
2021/3/1
-8-
8
02:59
❖ Guass-Seidel迭代法:Ax=b
1) 迭代公式:x=Gx+f ,其中 G=(D-L)-1U,f= =(D-L)-1 b
2) 收敛性判断: (★)
a) 充要条件: ( G ) <1
b) 充分条件:||G||<1
c) 方程组Ax=b的系数矩阵A(非迭代矩阵):严格对角 占优
3)
矩阵的谱半径:
( A)
max
1 i n
|
i
|
a) ρ( A) ≤||A||
b) 若矩阵 A 对某个算子范数满足 ||A|| < 1, 则必有: I±A可逆、 I A1 1
1 || A ||
4) 矩阵的条件数: cond(A)=||A||||A-1||
2021/3/1
-7-
7
02:59
❖ 迭代法原理及收敛条件:求解 Ax=b (★)
相关文档
最新文档