理解分数指数幂的概念掌握有理数指数幂的运算性质掌握指

合集下载

2.1.1指数与指数幂的运算 指数幂及其运算性质

2.1.1指数与指数幂的运算 指数幂及其运算性质

【例 3】
1
已知 a 2
+
1
a2
=3,求下列各式的值.
(1)a+a-1; (2)a2+a-2;
解:(1)将
1
a2
+
1
a2
=3
两边平方,
得 a+a-1+2=9,即 a+a-1=7. (2)将a+a-1=7两边平方,得a2+a-2+2=49, 所以a2+a-2=47.
3
3
(3) a2 a 2 .
1
1
知识探究
n am
1
m
an 0
没有意义
探究
1:整数指数幂表示的是相同因式的连乘积,那么分数指数幂
m
an
能否理解为
m
n
个 a 相乘(a>0,m,n∈N*,且 n>1),该式有何规定?
m
答案:不能.分数指数幂是根式的另一种写法,规定 a n = n am .
2.有理数指数幂的运算性质
(1)aras= ar+s
(4)常用的变换方法有: ①把小数化为分数,把根式化为分数指数幂; ②若指数是负数,则对调底数的分子和分母并将负指数化为正指数; ③把分数指数幂、负指数幂看成一个整体,借助有理式中的乘法公式及因式 分解进行变形. (5)注意灵活运用分式化简的方法和技巧.例如,①把分子、分母分解因式,可 约分的先约分;②利用分式的基本性质化繁分式为简分式,化异分母为同分母; ③把适当的几个分式先化简,各个击破;④适当利用换元法.
题型四
1
易错辨析——忽略 a n有意义出错
11
【例 4】 化简:(1-a)[(a-1)-2(-a )2 ]2 .

新课标高中数学人教A版必修一教材解读4

新课标高中数学人教A版必修一教材解读4

x �9 �0 的 x 取值范围; x x � lg 4 的最大值与最小值。 2 4
(2)当 x 在(1)中求得的范围内变动时,函数 f ( x) � lg 2 学生练习:设函数 定义域; (2)求
y � f ( x) ,且 lg(lg y ) � lg(3x ) �lg(3 � x ) ; (1)求 f ( x) 的表达式及
2 x �2 xy �3 y
x � xy �y
的值。
练习:课本:P54 练习 1、2、3 作业:P59 习题 2.1A:1、2、4;第 3 题做于书上 2.5指数函数及其性质(3 课时) 第一课时: 三维目标: 知识与技能:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握数形结合研 究指数函数性的方法与能力; 过程与方法:体验指数函数性质的形成过程,并学会由数及形,由形及数研究函数的方法; 情感、态度与价值观:体会指数函数是一种重要的函数模型,激发学生学习兴趣,培养创 新意识。 教材分析: 重点:指数函数的概念与性质 难点:数形结合的思想在研究指数函数中的应用 教学设想: 由细胞的分裂等实例引入----指数函数的定义------对底数范围规定的解释-----指数函数
bb 霜|BB 霜|BB 霜排行榜|美宝莲 BB 霜|好用的 BB 霜|什么牌子的 BB 霜好|韩国 BB 霜|露韩饰 BB 霜|BB 霜 是什么|什么牌子的 BB 霜好用|BB 霜怎么用|什么是 BB 霜|pba 柔肤全效 BB 霜|BB 霜的作用|最好的 BB 霜| 谜尚 BB 霜|
练习:课本 P64:练习 1 至 4 作业:课本 P74:A1、2 补充:1、求下列各式中 x 的取值范围: (1) lg( x �10)
2 log ( x � 1) ( x �1)

人教版高中数学必修第一册4.1指数 课时1n次方根与分数指数幂【课件】

人教版高中数学必修第一册4.1指数 课时1n次方根与分数指数幂【课件】
(2) 先乘除后加减,负指数幂化成正指数幂的倒数.
(3) 底数是负数,先确定符号;底数是小数,先化成分数;底数是带分
数,先化成假分数.
(4) 若是根式,应化为分数指数幂,尽可能用指数幂的形式表示,运用
指数幂的运算性质来解答.
【变式训练3】 计算下列各式:
【解】
【备选例题】
思路点拨:含字母的根式与分数指数幂的互化,从分数指数
15.5年,薇甘菊的侵害面积是多少?可否表示为S0·1.05715.5 hm2?
如果可以,数1.05715.5表示什么含义呢?
情境导学
2.初中我们已经学习过整数指数幂.在学习幂函数时,我们把




正方形场地的边长c关于面积S的函数c= 记作c= ,像 这样以
分数为指数的幂,叫做分数指数幂.
3.在初中,我们学习了平方根和立方根.4的平方根是多少?8
的立方根是多少?是不是任何数的平方根都有两个、立方根都只有
一个?若x5=32,x可以取什么值?若x4=16,x可以取什么值?你
能发现它们的共同特点吗?
初探新知
【活动1】探究n次方根的概念,深化对根式的认识和理解
【问题1】 我们知道:若x2=2,则x=± 2 ,± 2 称为2的平方根,(2)3=-8,-2称为-8的立方根.如果xn=a(n>1,n∈N*),那么x称为a的什
化成自然对数或常用对数;通过具体实例,引导学生了解对数函数的概念,
并能借助描点法、信息技术画出具体对数函数的图象, 探索并了解对数
函数的单调性与特殊点;让学生知道对数函数y=log x与指数函数y=ax
互为反函数(a>0,且a≠1).
知识要点及教学要求
3. 结合指数函数与对数函数的图象,指导学生进一步了解函数的零点与方

分数指数幂 知识讲解

分数指数幂 知识讲解

分数指数幂【学习目标】1. 掌握分数指数幂,并能利用分数指数幂进行运算.2. 会用计算器计算分数指数幂. 【要点梳理】要点一、分数指数幂把指数的取值扩大到分数,我们规定()0m na a =≥,()0m naa -=>,其中m n 、为正整数,1n >. 上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 要点诠释:(1)当m 与n 互素时,如果n 为奇数,那么分数指数幂中的底数a 可为负数.(2)指数的取值范围扩大到有理数后,方根就可以表示为幂的形式,开方运算可以转化为乘方形式的运算.要点二、有理数指数幂的运算性质设00a b p q >>,,、为有理数,那么 (1)pqp qp q p q a a a a a a +-=÷=,.(2)()qp pq aa =.(3)()pp pp p p a a ab a b b b ⎛⎫== ⎪⎝⎭,.【典型例题】类型一、分数指数幂的运算1、 把下列方根化为幂的形式:(1 (2; (3(4【思路点拨】根据分数指数幂的定义解题. 【答案与解析】解:(1135=;(2343 =;(3128-=;(41155122-⎛⎫==⎪⎝⎭.()0mna a=≥,其中m n、为正整数,1n>.举一反三:【变式】(2015.三台期末)a>,m n、为正整数,n>1)用分数指数幂可表示为()A.nma B.mna C.nma- D.mna-【答案】D;mna=,mna-=.2、口算:(1)1216;(2)1327;(3)12144;(4)14256.【思路点拨】可将分数指数幂表示成方根的形式再求值.【答案与解析】解:(1)12164==;(2)13273==;(3)1214412==;(4)142564==.【总结升华】求分数指数幂的值,就是求一个数的方根,一个正数的分数指数幂的值是一个正数.举一反三:【变式】口算:(1)1481-;(2)14116⎛⎫⎪⎝⎭;(3)1236.【答案】 解:(1)141813-==;(2)1411162⎛⎫==⎪⎝⎭;(3)12366==.3、(2015.黄石模拟)用计算器计算,结果保留三位小数:(1)135;(2)3457⎛⎫⎪⎝⎭;(3)2310.【答案与解析】解:(1)135 1.710≈;(2)3450.7777⎛⎫≈⎪⎝⎭; (3)2310 4.642≈.【总结升华】利用计算器,可直接求出一个分数指数幂的值,要熟悉求分数指数幂的值与相应的乘方、开方运算之间的关系.4、 计算: (1) ()13827⨯;(2)4112235⎛⎫⨯ ⎪⎝⎭;(3)3422335⎛⎫⨯ ⎪⎝⎭;(4)6113223⎛⎫÷ ⎪⎝⎭ 【答案与解析】解:(1) ()()1113333338272366⨯⨯=⨯==;(2) 41122223535925225⎛⎫⨯=⨯=⨯= ⎪⎝⎭;(3)3422233353591251125⎛⎫⨯=⨯=⨯= ⎪⎝⎭;(4)61111662333224 23232327⨯⨯⎛⎫÷=÷=÷=⎪⎝⎭.【总结升华】利用有理数指数幂的运算性质解题.。

指数与指数函数

指数与指数函数

§2.7 指数与指数函数考试要求 1.理解有理数指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质. 2.通过实例,了解指数函数的实际意义,会画指数函数的图象.3.理解指数函数的单调性、特殊点等性质,并能简单应用.知识梳理 1.根式(1)一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. (2)式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (3)(na )n =a .当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂正数的正分数指数幂:m na =na m (a >0,m ,n ∈N *,n >1). 正数的负分数指数幂:m n a-=1m na=1na m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于0,0的负分数指数幂没有意义. 3.指数幂的运算性质a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r (a >0,b >0,r ,s ∈Q ). 4.指数函数及其性质(1)概念:一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R .(2)指数函数的图象与性质a >10<a <1图象定义域R值域 (0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1当x <0时,y >1; 当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数常用结论1.指数函数图象的关键点(0,1),(1,a ),⎝⎛⎭⎫-1,1a . 2.如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则c >d >1>a >b >0,即在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)4(-4)4=-4.( × )(2)2a ·2b =2ab .( × )(3)函数y =⎝⎛⎭⎫13x-1的值域是(0,+∞).( × ) (4)若a m <a n (a >0,且a ≠1),则m <n .( × ) 教材改编题1.已知函数y =a ·2x 和y =2x+b都是指数函数,则a +b 等于( )A .不确定B .0C .1D .2 答案 C解析 由函数y =a ·2x 是指数函数,得a =1, 由y =2x +b 是指数函数,得b =0,所以a +b =1.2.计算:()(222327130π--+--________.答案 1 解析 原式=2333⎛⎪⨯⎫⎝⎭-+1-3-2=3-2+1-3-2=1.3.若指数函数f (x )=a x (a >0,且a ≠1)在[-1,1]上的最大值为2,则a =________.答案 2或12解析 若a >1,则f (x )max =f (1)=a =2;若0<a <1,则f (x )max =f (-1)=a -1=2,得a =12.题型一 指数幂的运算 例1 计算: (1)(-1.8)0+⎝⎛⎭⎫32-2·3⎝⎛⎭⎫3382-10.01+93; (2)()3112123324140.1aba b----⎛⎫⋅ ⎪⎝⎭⋅(a >0,b >0).解 (1)(-1.8)0+⎝⎛⎭⎫32-2·3⎝⎛⎭⎫3382-10.01+93 =1+2233222710938⎛⎫⎛⎫⋅-+ ⎪ ⎪⎝⎭⎝⎭=1+⎝⎛⎭⎫232·⎝⎛⎭⎫322-10+33 =1+1-10+27=19.(2)()3112123324140.1aba b----⎛⎫⋅ ⎪⎝⎭⋅=331322223322240.1a b a b--⋅⨯⨯=2×1100×8=425.思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加. ②运算的先后顺序.(2)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.跟踪训练1 计算: (1)933713332÷·aa a a -- ;(2)()13633470.001+16+238-⎛⎫-⋅ ⎪⎝⎭.解 (1)因为a -3有意义,所以a >0,所以原式=7139333322a a a a --⋅÷⋅=3a 3÷a 2=a ÷a =1.(2)原式=()()61113343234101+2+23-⎛⎫-⋅ ⎪⎝⎭-=10-1+8+23·32=89. 题型二 指数函数的图象及应用例2 (1)(多选)已知非零实数a ,b 满足3a =2b ,则下列不等关系中正确的是( ) A .a <bB .若a <0,则b <a <0C .|a |<|b |D .若0<a <log 32,则a b <b a 答案 BCD 解析 如图,由指数函数的图象可知,0<a <b 或者b <a <0,所以A 错误,B ,C 正确; D 选项中,0<a <log 32⇒0<a <b <1,则有a b <a a <b a ,所以D 正确.(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 答案 (0,2)解析 在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.∴当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.∴b的取值范围是(0,2).思维升华对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.跟踪训练2(多选)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1B.0<a<1C.b>0D.b<0答案BD解析由函数f(x)=a x-b的图象可知,函数f(x)=a x-b在定义域上单调递减,∴0<a<1,故B正确;分析可知,函数f(x)=a x-b的图象是由y=a x的图象向左平移所得,如图,∴-b>0,∴b<0,故D正确.题型三指数函数的性质及应用命题点1比较指数式大小例3设a=30.7,b=2-0.4,c=90.4,则()A .b <c <aB .c <a <bC .a <b <cD .b <a <c答案 D解析 b =2-0.4<20=1,c =90.4=30.8>30.7=a >30=1, 所以b <a <c .命题点2 解简单的指数方程或不等式例4 (2023·青岛模拟)已知y =4x -3·2x +3的值域为[1,7],则x 的取值范围是( ) A .[2,4] B .(-∞,0) C .(0,1)∪[2,4] D .(-∞,0]∪[1,2]答案 D解析 ∵y =4x -3·2x +3的值域为[1,7], ∴1≤4x -3·2x +3≤7. ∴-1≤2x ≤1或2≤2x ≤4. ∴x ≤0或1≤x ≤2.命题点3 指数函数性质的综合应用例5 已知函数f (x )=8x +a ·2x a ·4x (a 为常数,且a ≠0,a ∈R ),且f (x )是奇函数.(1)求a 的值;(2)若∀x ∈[1,2], 都有f (2x )-mf (x )≥0成立,求实数m 的取值范围. 解 (1)f (x )=1a ×2x +12x ,因为f (x )是奇函数, 所以f (-x )=-f (x ),所以1a ×12x +2x =-⎝⎛⎭⎫1a ×2x +12x , 所以⎝⎛⎭⎫1a +1⎝⎛⎭⎫2x +12x =0, 即1a +1=0,解得a =-1. (2)因为f (x )=12x -2x ,x ∈[1,2],所以122x -22x ≥m ⎝⎛⎭⎫12x -2x ,所以m ≥12x +2x ,x ∈[1,2],令t =2x ,t ∈[2,4],由于y =t +1t 在[2,4]上单调递增,所以m ≥4+14=174.思维升华 (1)利用指数函数的性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量.(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,要借助“同增异减”这一性质分析判断.跟踪训练3 (1)(多选)(2023·杭州模拟)已知函数f (x )=3x -13x +1,下列说法正确的有( )A .f (x )的图象关于原点对称B .f (x )的图象关于y 轴对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案 AC解析 对于A 中,由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,函数f (x )的图象关于原点对称,故选项A 正确,选项B 错误;对于C 中,设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+yy -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;对于D 中,对∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0,可得函数f (x )为减函数,而f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.(2)已知函数f (x )=24313ax x ⎛⎫ ⎪⎝⎭-+,若f (x )有最大值3,则a 的值为________.答案 1解析 令g (x )=ax 2-4x +3,则f (x )=⎝⎛⎭⎫13g (x ), ∵f (x )有最大值3,∴g (x )有最小值-1,则⎩⎨⎧a >0,3a -4a =-1,解得a =1.课时精练1.若m =5(π-3)5,n =4(π-4)4,则m +n 的值为( ) A .-7 B .-1 C .1 D .7 答案 C解析 m +n =π-3+|π-4|=π-3+4-π=1.2.已知指数函数f (x )=(2a 2-5a +3)a x 在(0,+∞)上单调递增,则实数a 的值为( ) A.12 B .1 C.32 D .2 答案 D解析 由题意得2a 2-5a +3=1,∴2a 2-5a +2=0,∴a =2或a =12.当a =2时,f (x )=2x 在(0,+∞)上单调递增,符合题意; 当a =12时,f (x )=⎝⎛⎭⎫12x 在(0,+∞)上单调递减,不符合题意. ∴a =2.3.函数y =a x -1a(a >0,且a ≠1)的图象可能是( )答案 D解析 当a >1时,0<1a <1,函数y =a x 的图象为过点(0,1)的上升的曲线,函数y =a x -1a 的图象由函数y =a x 的图象向下平移1a个单位长度可得,故A ,B 错误;当0<a <1时,1a >1,函数y =a x 的图象为过点(0,1)的下降的曲线,函数y =a x -1a 的图象由函数y =a x 的图象向下平移1a 个单位长度可得,故D 正确,C 错误.4.已知1122x x-+=5,则x 2+1x的值为( )A .5B .23C .25D .27 答案 B 解析 因为1122x x-+=5,所以21122x x ⎛⎫ ⎪⎝⎭-+=52,即x +x -1+2=25,所以x +x -1=23,所以x 2+1x =x +1x=x +x -1=23.5.(多选)(2023·泰安模拟)已知函数f (x )=|2x -1|,实数a ,b 满足f (a )=f (b )(a <b ),则( ) A .2a +2b >2B .∃a ,b ∈R ,使得0<a +b <1C .2a +2b =2D .a +b <0 答案 CD解析 画出函数f (x )=|2x -1|的图象,如图所示.由图知1-2a =2b -1,则2a +2b =2,故A 错,C 对. 由基本不等式可得2=2a +2b >22a ·2b =22a +b ,所以2a +b <1,则a +b <0,故B 错,D 对.6.(2023·枣庄模拟)对任意实数a >1,函数y =(a -1)x -1+1的图象必过定点A (m ,n ),f (x )=⎝⎛⎭⎫n m x 的定义域为[0,2],g (x )=f (2x )+f (x ),则g (x )的值域为( ) A .(0,6] B .(0,20] C .[2,6] D .[2,20]答案 C解析 令x -1=0得x =1,y =2,即函数图象必过定点(1,2), 所以m =1,n =2,f (x )=⎝⎛⎭⎫n m x=2x,由⎩⎪⎨⎪⎧0≤x ≤2,0≤2x ≤2,解得x ∈[0,1],g (x )=f (2x )+f (x )=22x +2x ,令t =2x , 则y =t 2+t ,t ∈[1,2], 所以g (x )的值域为[2,6]. 7.计算化简: (1)()1123232770.02721259-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭=________;(2)2312a ---⎛÷=________.答案 (1)0.09 (2)1566a b -解析 (1)112323277(0.027)21259-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭=(30.027)2+312527-259=0.09+53-53=0.09.232a --÷=2211333212113332a bb a a ba b ---⨯=2112112132332333·ab+-----=1566.a b -8.已知函数f (x )=3x +1-4x -5,则不等式f (x )<0的解集是________. 答案 (-1,1)解析 因为函数f (x )=3x +1-4x -5, 所以不等式f (x )<0即为3x +1<4x +5,在同一平面直角坐标系中作出y =3x +1,y =4x +5的图象,如图所示,因为y =3x +1,y =4x +5的图象都经过A (1,9),B (-1,1),所以f (x )<0,即y =3x +1的图象在y =4x +5图象的下方,所以由图象知,不等式f (x )<0的解集是(-1,1).9.已知定义域为R 的函数f (x )=a x -(k -1)a -x (a >0,且a ≠1)是奇函数.(1)求实数k 的值;(2)若f (1)<0,判断函数f (x )的单调性,若f (m 2-2)+f (m )>0,求实数m 的取值范围. 解 (1)∵f (x )是定义域为R 的奇函数,∴f (0)=a 0-(k -1)a 0=1-(k -1)=0,∴k =2,经检验k =2符合题意,∴k =2.(2)f (x )=a x -a -x (a >0,且a ≠1),∵f (1)<0,∴a -1a<0,又a >0,且a ≠1, ∴0<a <1,从而y =a x 在R 上单调递减,y =a -x 在R 上单调递增,故由单调性的性质可判断f (x )=a x -a -x 在R 上单调递减,不等式f (m 2-2)+f (m )>0可化为f (m 2-2)>f (-m ),∴m 2-2<-m ,即m 2+m -2<0,解得-2<m <1,∴实数m 的取值范围是(-2,1).10.(2023·武汉模拟)函数f (x )=a 2x +a x +1(a >0,且a ≠1)在[-1,1]上的最大值为13,求实数a 的值.解 由f (x )=a 2x +a x +1,令a x =t ,则t >0,则y =t 2+t +1=⎝⎛⎭⎫t +122+34, 其对称轴为t =-12. 该二次函数在⎣⎡⎭⎫-12,+∞上单调递增. ①若a >1,由x ∈[-1,1],得t =a x ∈⎣⎡⎦⎤1a ,a ,故当t =a ,即x =1时,y max =a 2+a +1=13,解得a =3或a =-4(舍去).②若0<a <1,由x ∈[-1,1],可得t =a x ∈⎣⎡⎦⎤a ,1a , 故当t =1a,即x =-1时, y max =⎝⎛⎭⎫1a 2+1a +1=13.解得a =13或a =-14(舍去). 综上可得,a =3或13.11.(多选)(2022·哈尔滨模拟)已知函数f (x )=a ·⎝⎛⎭⎫12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是( )A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案 ABD解析 ∵函数f (x )=a ·⎝⎛⎭⎫12|x |+b 的图象过原点, ∴a +b =0,即b =-a ,f (x )=a ·⎝⎛⎭⎫12|x |-a ,且f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-2·⎝⎛⎭⎫12|x |+2,故A 正确; 由于f (x )为偶函数,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于在(-∞,0)上,f (x )=2-2·2x 单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;∵⎝⎛⎭⎫12|x |∈(0,1],∴f (x )=-2·⎝⎛⎭⎫12|x |+2∈[0,2),故D 正确. 12.(2022·长沙模拟)若e x -e y =e ,x ,y ∈R ,则2x -y 的最小值为________.答案 1+2ln 2解析 依题意,e x =e y +e ,e y >0,则e 2x -y =e 2x e y =(e y +e )2e y =e y +e 2e y +2e ≥2e y·e 2e y +2e =4e , 当且仅当e y=e 2e y ,即y =1时取“=”, 此时,(2x -y )min =1+2ln 2,所以当x =1+ln 2,y =1时,2x -y 取最小值1+2ln 2.13.(2023·龙岩模拟)已知函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系为( )A .f (c x )≥f (b x )B .f (c x )≤f (b x )C .f (c x )>f (b x )D .f (c x )=f (b x )答案 A解析 根据题意,函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),则有b 2=1,即b =2, 又由f (0)=3,得c =3,所以b x =2x ,c x =3x ,若x <0,则有c x <b x <1,而f (x )在(-∞,1)上单调递减,此时有f (b x )<f (c x ),若x =0,则有c x =b x =1,此时有f (b x )=f (c x ),若x >0,则有1<b x <c x ,而f (x )在(1,+∞)上单调递增,此时有f (b x )<f (c x ),综上可得f (b x )≤f (c x ).14.(2023·宁波模拟)对于函数f (x ),若在定义域内存在实数x 0满足f (-x 0)=-f (x 0),则称函数f (x )为“倒戈函数”.设f (x )=3x +m -1(m ∈R ,m ≠0)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是________.答案 ⎣⎡⎭⎫-23,0 解析 ∵f (x )=3x +m -1是定义在[-1,1]上的“倒戈函数”,∴存在x 0∈[-1,1]满足f (-x 0)=-f (x 0),∴03x -+m -1=-03x -m +1,∴2m =-03x --03x +2,构造函数y =-03x --03x+2, x 0∈[-1,1], 令t =03x ,t ∈⎣⎡⎦⎤13,3,则y =-1t-t +2=2-⎝⎛⎭⎫t +1t 在⎣⎡⎦⎤13,1上单调递增, 在(1,3]上单调递减,∴当t =1时,函数取得最大值0,当t =13或t =3时, 函数取得最小值-43,∴y ∈⎣⎡⎦⎤-43,0, 又∵m ≠0,∴-43≤2m <0, ∴-23≤m <0.。

数学分数指数幂

数学分数指数幂

思源个性化学习讲义【知识精要】1.分数指数幂的意义: 一般地,我们规定 n m nm a a = ()1,0>≥n n m a 为正整数,、 ,这就是正数a 的正分数指数幂的意义. 规定nm n maa-=1()1,0>>n n m a 为正整数,、其中的nm nm a a -、叫做分数指数幂,a 是底数整数指数幂和分数指数幂统称为有理数指数幂.注:(1)0的正分数指数幂为0, 0的负分数指数幂无意义. (2)若无特殊说明,底数中的字母均为正数。

2. 当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r ,s ,均有下面的运算性质:设q p b a 、,0,0>>为有理数(1)q p q p qp q p a a a a a a -+=÷=⋅,(2)()pq qpa a =(3)()p p pp p pb a b a b a ab =⎪⎭⎫ ⎝⎛=,【热身练习】1. 把下列方根化为分数指数幂的形式(1)310 (2)32101(3)3100 (4)41002. 求值(1)21169 (2)3264 (3) 239- (4)⎪⎪⎭⎫ ⎝⎛-43256( )A.3B.3-C.3±D.81 4.当a _________时,式子23a 有意义 5. 若0>a ,则43a 和53-a 用根式形式表示分别为 和6.56b a 和mm 3用分数指数幂形式表示分别为 和【精解名题】 1. (1)23425-⎪⎭⎫⎝⎛= ;(2) 63125.132⨯⨯= ________2. 计算:631010⨯=__________________3.3151写成幂的形式______________4.化为分数指数幂的形式为 ___________________5. 583221)22(--化为分数指数幂得 _________________________6.式子 ( )7. 已知32121=+-aa ,求下列各式的值。

4.1.1n次方根与分数指数幂课件(人教版)

4.1.1n次方根与分数指数幂课件(人教版)
③负数没有偶次方根
④ 0的任何次方根都是0.记作:n 0 0.
学习目标
新课讲授
课堂总结
思考:为什么负数没有偶次方根?
因为在实数的定义里,两个数的偶次方根结果是非负数,即任意 实数的偶次方是非负数.
学习目标
新课讲授
课堂总结
式子 n a 叫做根式,这里n叫做根指数 ,a叫做被开方数.
根指数
被开方数
学习目标
新课讲授
课堂总结
①当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.
这时,a的n次方根用符号 n a 表示.例如 5 32 2, 5 32 2, 3 a6 a2.
②当n是偶数时,正数的n次方根有两个,这两个数互为相反数.正数a的正
的n次方根用符号 n a 表示,负的n次方根用符号n a表示.两者也可以合 并写成 n a (a 0) .例如 4 16 2, 4 16 2, 4 16 2.
(2)在对根式进行化简时,若被开方数中含有字母参数,则要注意字母参数的 取值范围,即确定 n an 中a的正负,再结合n的奇偶性给出正确结果.
学习目标
新课讲授
课堂总结
知识点2:分数指数幂
视察以下式子,试总结出规律(a>0):
10
210 (25 )2 25 2 2 ;
12
3 312 3 (34 )3 34 3 3 ;
学习目标
新课讲授
课堂总结
练一练
11
化简 (1 a)[(a 1)2(a)2 ]2.
1
解:由 (a)2 有意义,可知-a≥0,故a≤0,
11
所以 (1 a)[(a 1)2(a)2 ]2
1
11
(1 a)[(a 1)2]2[(a)2 ]2

2.1.1 指数幂及其运算

2.1.1 指数幂及其运算

先将根式化为分数指数幂的形式,再运用分数指数幂的运算性
质进行化简.
11
11
7
【解析】(1)原式=a3 ·a4 =a3 +4 =a12 .
111
111
7
(2)原式=a2 ·a4 ·a8 =a2 +4 +8 =a8 .
23
23
13
(3)原式=a3 ·a2 =a3 +2 =a 6 .
1
1
2 13
213
73
了灵活运用运算法则外还要关注条件中的字母是否有隐含的条
件.
1
【正解】由(-a)2 知-a≥0,故 a-1<0.
11
∴(1-a)[(a-1)-2(-a)2 ]2
=(1-a)(1-a)-1·(-a)14=(-a)14 .
【警示】在利用指数幂的运算性质时,要关注条件中有无
隐含条件,在出现根式时要注意是否为偶次方根,被开方数是
(1)4 2+1·23-2 2·64-3 ;
11
(2)
a-b
1
1
-a+b1-2a21 ·b2
a2 +b2
a2 -b2
【解析】(1)原式=22 2+2·23-2 2·2-4=21=2.
1
1
1
1
1
1
(2)原式=a2
+b2 ·a2 a21+b12
-b2
-a21 a2
-b2
1
-b2
2
1
=a2
1
-b2
- a 1 2
方法二:a2+a-2=a2+2aa-1+a-2-2aa-1
=(a+a-1)2-2=25-2=23.
1
1
(2)∵(a2 -a-2 )2=a+a-1-2=5-2=3,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 答案:答C 案:B
4.若函数y=(a2-3a+3)·ax为指数函数,则有 (C )
A.a=1或2
B.a=1
C.a=2
D.a>0且a≠1
解析
a 0且a 1, a 0且a 1,
a
2
3a
3
1,
a
2
3a
2
0.
∴a=2.
❖ 5.方程3x-1= 的解是________.
❖ 解析:3x-1=3-2,∴x-1=-2,解得x =-1.
3
3
1
(2)由x 2
1
a2
a
1 2
,
得x
a
1
2,
a
x2 4x x(x 4) (a 1 2)(a 1 2)
a
a
(a 1)2 4 a2 (1)2 2 (a 1)2,
a
a
a
a 1 原式 a
a 1 a
(a 1)2 a a2.
(a 1)2 a
❖学习指数函数的图象与性质是为研究其它 函数图象与性质提供了典型范例,性质是对 图象的刻画,而图象是对性质的直观反映, 通过图象可进一步加强对性质的记忆和理解, 利用指数函数的图象与性质可解决与指数函
a≠1. ❖ (2)指数函数的外形只能是y=ax,像y=
❖ (本题满分5分)(2009·山东)函数y= 的图象大致为( )
【答题模板】
❖解析:y=
=1+
,当x>0时,
e2x-1>0且随着x的增大而增大,
❖故y=1+
>1且随着x的增大而减小,
即函数y在(0,+∞)上恒大于1
❖且单调递减,又函数y是奇函数,故选A.
(-∞,0)上递减;
❖(2)解法一:f(x)的图象向左平移一个单位即 可得到f(x+1)的图象. ❖由 |2x + 1 - 1| = |1 - 2x| , 得 3·2x = 2 , 即 x = log2 . ❖因此f(x)的图象与f(x+1)图象交点的横坐标 为log2 .当x<log2 时,f(x+1)<
定时检测
一、选择题
1.下列等式3 6a3 2a; 3 2 6 (2)2 ;34 2 4 (3)4 2
中一定成立的有
( A)
A.0个
B.1个
C.2个
D.3个
解析
3 6a3 3 6a 2a;
3 2 3 2 0, 6 (2)2 6 22 3 2 0,
❖ 1. 根式的定义
n次方根
❖ 一般地,若xn=a(n>1,n∈N*)则x叫做a

. n叫做根指数,a叫做被开方
数.
❖ 2.根式的运算性质
❖ 3.分数指数幂的意义
❖ (1) n>1).
(a>0,m,n∈N*,且
❖ (2) n>1).
(a>0,m,n∈N*,且
❖ (3)0的正分数指数幂等于0,0的负分数指
❖ 答案:-1
❖ 6解.析:(2设0A1点0坐·标高是(三x,2x)调,则研C(x),4如x),图B(x,0,4x),过由原B点点在函O数的y=2直x的图象上,
则 =4x,则x0=2x,又O,A,B在一条直线上
,解得x=1,
❖ 因此A线点坐与标为函(1,数2).y=2x的图象交于A、B两点,
答案:(1,2)
❖ 【例2】已知f(x)=|2x-1|.
❖ (1)求函数f(x)的单调区间;(2)比较f(x+1) 与f(x)的大小.
❖ 解答:(1)解法一:由f(x)=|2x-1|=
❖ 当x>可0时作,f′(出x)>函0即f数(x)在的(0,图+∞象)上递如增;图 .因此函数f(x)在
当x<0时,f′(x)<0即f(x) 在(-∞,0)上递减.
a>1
0<a<1
图象
性质
函的 数变 值化
(1)定义域:R
(2)值域:(0,+∞)
(3)过点(0,1),即x=0时,y=1
(4)在R上是增函数
x 0时,y 1; x 0时,0 y 1.
(4)在R上是减函数
x 0时,0 y 1; x 0时,y 1.
❖ 1.右图是指数函数(1)y=ax,(2)y=bx,(3)y =cx,(4)y=dx的图象,则a,b,c,d与1的 大小关系是( )
❖ 【例1】 计算 下列各式:
变式2 求值
(1)化

:(0.027)
1 3
( 1 )2
(2
7
)
1 2
(
2 1)0;
7
9
1
(2)若a 2
1
a2
1
x 2 (a
1),求
x
2
x2 4x 的 值.
x 2 x2 4x

(1)原式 (
27
1
)3
72
(
25
)
1 2
1
1 000
9
10 49 5 1 45.
❖ A.0 解析B.:1 f(xC).=2 3x在D.3(0,2]上递增,则f(x)=
解析:A={x∈Z|1≤2-x<3}={0,1},B={x∈R|log2x>1,或log2x<-1}
=3(x0(,0<)x∪≤(22,)+的∞) 值域为(1,9].
∴∁RB=(-∞,]∪[ ,2],∴A∩(∁RB)={0,1}.
- (a>0,
❖变式3.已知函数f(x)=
(a>0且a≠1).
❖ (1)求f(x)的定义域和值域;(2)讨论f(x)的 奇偶性;(3)讨论f(x)的单调性
❖ 解 答 : (1) 易 得 f(x) 的 定 义 域 为
①{x当|ax>∈1时,R∵}a.x+1设为增y函=数,且ax+1>0. ①
,解得ax=-
【方法规律】
❖1.对于分数指数幂的理解应注意以下问题 ❖ (1)分数指数幂不表示相同因式的乘积,而 是根式的另一种写法,分数指数幂 ❖ 与根式可以相互转化. ❖ (2)分数指数幂不能随心所欲地约分,例如 要将 写成 等必须认真考查a的
❖ 2.指数函数 ❖ 对指数函数定义的理解 ❖ (1)指数函数y=ax的底数a需满足a>0,且
❖ A.a<b<1<c<d
B.b<a<1<d<c
❖ C.1<a<b<c<d
D.a<b<1<d<c
❖ 2.函数f(x)=3x(0<x≤2)的值域为( )
❖ A.(0,+∞) B.(1,9] C.(0,1) D.[9,
+∞)
3.若A={x∈Z|2≤22-x<8},B={x∈R||log2x|>1},则A∩(∁RB)的元素个数为( )
变式2.
❖ 若直线y=2a与函数y=|ax-1|(a>0, 且a≠1)的图象有两个公共点, ❖则a的取值范围是________. ❖解析:数形结合.由图可知0<2a<1,∴0 <a< .
❖利用指数函数的图象和性质可研究复合函
数的图象和性质,比如:函数y=
,y

,y=lg(10x-1)等.
❖【例3】 判断函数f(x)= a≠1)的奇偶性.
相关文档
最新文档