五种基本作图详细步骤
初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。
还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。
2020中考数学知识点总结:五种基本作图

2020中考数学知识点总结:五种基本作图一、基本作图的有关概念:1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。
2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。
二、基本作图的原理和步骤:1.原理:边边边公理2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。
三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。
工具虽少但能正确地画出的图形,比度量法画出的图形更精确。
2019-2020学年数学中考模拟试卷一、选择题1.比较2,5,37的大小,正确的是 ( )A.2<5<37B.2<37<5C.37<2<5D.5<37<22.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B.C.D.3.如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=kx(k>0,x>0)的图象上,点A、B横坐标分别为2和6,对角线BD∥x轴,若菱形ABCD的面积为40,则k的值为()A.15B.10C.152D.54.如图,在△ABC中,以边BC为直径做半圆,交AB于点D,交AC于点E,连接DE,若=2=2,则下外说法正确的是()A.AB=AEB.AB=2AEC.3∠A=2∠CD.5∠A=3∠C5.下列四个命题中,错误的是()A.所有的正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.所有的正多边形是中心对称图形,正多边形的中心是它的对称中心C.所有的正多边形每一个外角都等于正多边形的中心角D.所有的正多边形每一个内角都与正多边形的中心角互补6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A .12B .14C .16D .1167.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD 中,点E 、F 分别在边BC 、AD 上,____,求证:四边形AECF 是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE =DF ;②∠B =∠D ;③BAE =∠DCF ;④四边形ABCD 是平行四边形.其中A 、B 、C 、D 四位同学所填条件符合题目要求的是( )A .①②③④B .①②③C .①④D .④8.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A .16B .13C .12D .239.已知x+1x =6,则x 2+21x =( ) A.38 B.36 C.34 D.3210.如图,在平面直角坐标系中2条直线为12:33,:39l y x l y x =-+=-+,直线1l 交x 轴于点A ,交y 轴于点B ,直线2l 交x 轴于点D ,过点B 作x 轴的平行线交2l 于点C ,点A E 、关于y 轴对称,抛物线2y ax bx c =++过E B C 、、三点,下列判断中:①0a b c -+=;②25a b c ++=;③抛物线关于直线1x =对称;④抛物线过点(),b c ;⑤四边形5ABCD S =四边形,其中正确的个数有( )A .5B .4C .3D .211.如图,过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE 、CF ,若AB =23,∠DCF =30°,则EF 的长为( )A .4B .6C .3D .2312.若一元二次方程26-0x kx +=的一个根是2x =,则原方程的另一个根是( )A .3x =B .3x =-C .4x =D .4x =- 二、填空题13.如图,OC 是O e 的半径,弦AB OC ⊥于点D ,点E 在O e 上,EB 恰好经过圆心O ,连接EC .若B E ∠=∠,32OD =,则劣弧AB 的长为__________.14.2018年6月14日,第21届世界杯足球赛在俄罗斯举行.小李在网上预定了小组赛和决赛两个阶段的门票共10张,总价为15800元,其中小组赛门票每张850元,决赛门票每张4500元,若设小李预定了小组赛门票x 张,决赛门票y 张,根据题意,可列方程组为_____.15.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.16.若222221[(3.2)(5.7)(4.3)(6.8)]4s x x x x =-+-+-+-是李华同学在求一组数据的方差时,写出的计算过程,则其中的x =_____.17.如图,点A 的坐标(﹣1,2),点A 关于y 轴的对称点的坐标为__________.18.若m是方程x2+x﹣1=0的一个根,则代数式2019﹣m2﹣m的值为_____.三、解答题19.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB 的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)连接BF,求证:四边形BCAF是矩形.20.等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,两边分别交BC、CD于M、N.(1)如图①,作AE⊥AN交CB的延长线于E,求证:△ABE≌△AND;(2)如图②,若M、N分别在边CB、DC所在的直线上时.①求证:BM+MN=DN;②如图③,作直线BD交直线AM、AN于P、Q两点,若MN=10,CM=8,求AP的长.21.某校1200名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.请根据以上信息,解答下列问题:(1)本次抽样调查的样本容量为____;(2)图①中“20元”对应扇形的圆心角的度数为_____°;(3)估计该校本次活动捐款金额为15元以上(含15元)的学生人数.22.已知线段AB与点O,利用直尺和圆规按下列要求作△ABC(不写作法,保留作图痕迹).(1)在图①中,点O是△ABC的内心;(2)在图②中,点O是△ABC的重心.23.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且DE=FE.(1)求证:AD为⊙O切线;(2)若AB=20,tan∠EBA=34,求BC的长.24.今年“五一”假期,某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1000米,斜坡BC的长为2002米,在C点测得B点的俯角为45°,已知A点海拔21米,C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡角.25.某公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含进价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表销售价格x(元/个)销售量y(万个)30≤x≤60110-x+860<x≤80120 x(1)求出当销售量为2.5万个时,销售价格为多少?(2)求出该公司销售这种计算器的净得利润w(万元)与销售价格x(元个)的函数关系式;(3)销售价格定为多少元时,该公司获得的利润最大?最大利润是多少?【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C A A C B B C B C C A A二、填空题13.2π14.10 850450015800 x yx y+=⎧⎨+=⎩15.16.517.(1,2)18.三、解答题19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据等边三角形的判定和性质,可证四边形BCFD为平行四边形;(2)先证四边形BCAF是平行四边形,由∠ACB=90°,可证四边形BCAF是矩形.【详解】(1)证明:∵∠ACB=90°,∠CAB=30°,∴BC=12AB,∠ABC=60°,∵△ABD是等边三角形,∴∠ABD=∠BAD=60°,AB=AD,∴∠ABC=∠BAD,∴BC∥DA,∵点E是线段AB的中点,∴CE=12AB=BE=AE,∵∠ABC=60°,∴△BCE是等边三角形,∴∠BEC=60°=∠ABD,∴BD∥CF,∴四边形BCFD为平行四边形;(2)证明:如图所示:∵BD∥CF,BE=AE,∴AF=DF=12 AD,∴BC=AF,又∵BC∥DA,∴四边形BCAF是平行四边形,∵∠ACB=90°,∴四边形BCAF是矩形.【点睛】考核知识点:矩形的判定.掌握平行四边形的判定和性质是关键.20.(1)见解析;(2)①见解析;②AP=310.【解析】【分析】(1)利用互余判断出∠EAB=∠NAD,即可得出结论;(2)先构造出△ADG≌△ABM,进而判断出,△AMG为等腰直角三角形,即可得出NM=NG,即可得出结论;(3)由(2)得出MN+BM=DN,进而得出CN=18-2BC,再利用勾股定理得求出CN=6,在判断出△ABP∽△ACN,得出AP AB1AN AC2==,再利用勾股定理求出AN,代入即可得出结论.【详解】解:(1)如图①,∵AE垂直于AN,∴∠EAB+∠BAN=90°,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠NAD+∠BAN=90°,∴∠EAB=∠NAD,又∵∠ABE=∠D=90°,AB=AD,∴△ABE≌△AND;………………(2)如图②,在ND上截取DG=BM,连接AG、MG,∵AD=AB,∠ADG=∠ABM=90°,∴△ADG≌△ABM,∴AG=AM,∠MAB=∠GAD,∵∠BAD=∠BAG+∠GAD=90°,∴∠MAG=∠BAG+∠MAB=90°,∴△AMG为等腰直角三角形,∴AN⊥MG,∴AN为MG的垂直平分线,∴NM=NG,∴DN﹣BM=MN,即MN+BM=DN;(3)如图③,连接AC,同(2),证得MN+BM=DN,∴MN+CM﹣BC=DC+CN,∴CM﹣CN+MN=DC+BC=2BC,即8﹣CN+10=2BC,即CN=18﹣2BC,在Rt△MNC中,根据勾股定理得MN2=CM2+CN2,即102=82+CN2,∴CN=6,∴BC=6,∴AC=62,∵∠BAP+∠BAQ=45°,∠NAC+∠BAQ=45°,∴∠BAP=∠NAC,又∵∠ABP=∠ACN=135°,∴△ABP∽△ACN,∴AP AB1 AN AC2==在Rt△AND中,根据勾股定理得AN2=AD2+DN2=36+144,解得AN=65,∴AP1 652=,∴AP=310.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,解(1)的关键是判断出∠EAB=∠NAD,解(2)的关键是判断出△AMG为等腰直角三角形,解(3)的关键是判断出△ABP∽△ACN.21.(1)50;(2)72°;(3)720【解析】【分析】(1)用捐款金额为5元的人数除以捐款金额为5元的人数所占百分比即可得抽查的总人数;即样本容量;(2)根据总人数可求出捐款金额为20元的人数,即可求出其所占百分比,乘以360°即可得答案;(3)先求出捐款金额为15元以上(含15元)的学生人数所占百分比,乘以1200即可得答案.【详解】(1)本次抽样调查的样本容量为:4÷8%=50故答案为:50(2)捐款金额为20元的人数为:50-4-16-12-8=10360°×1050=72°故答案为:72°(3)1210850++×1200=720.答:估计该校本次活动捐款金额为15元以上(含15元)的学生人数为720人.【点睛】本题主要考查了条形统计图,扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(1)见解析,(2)见解析【解析】【分析】(1)分别作∠OAC=∠OAB,∠OBA=∠OBC,两边交点为C,△ABC即为所求;(2)作AB的垂直平分线,根据重心的性质可确定出C点,则△ABC即为所求.【详解】解:(1)如图①,△ABC即为所求;(2)如图②,△ABC即为所求.【点睛】本题考查了尺规作图以及三角形内心和重心的性质,熟练掌握三角形内心是三角形内角角平分线交点,三角形重心是三边中线交点是解题关键.23.(1)详见解析;(2)285.【解析】【分析】(1)先利用角平分线定义、圆周角定理证明∠4=∠2,再利用AB为直径得到∠2+∠BAE=90°,则∠4+∠BAE=90°,然后根据切线的判定方法得到AD为⊙O切线;(2)解:根据圆周角定理得到∠ACB=90°,设AE=3k,BE=4k,则AB=5k=20,求得AE=12,BE=16,连接OE交AC于点G,如图,解直角三角形即可得到结论.【详解】(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵AB为直径,∴AE⊥BD,∵DE=FE,∴∠3=∠4,∵∠1=∠3,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵tan∠EBA=34,∴设AE=3k,BE=4k,则AB=5k=20,∴AE=12,BE=16,连接OE交AC于点G,如图,∵∠1=∠2,∴¶¶AE CE,∴OE⊥AC,∵∠3=∠2,∴tan∠EBA=tan∠3=34,∴设AG=4x,EG=3x,∴AE=5x=12,∴x=125,∴AG=485,∴AC=2AG=965,∴BC=22AB AC-=285.【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.24.(1)B点的海拔为521米;(2)斜坡AB的坡角为30°【解析】【分析】(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,构造直角三角形ABE和直角三角形CBD,然后解直角三角形(2)求出BE的长,根据坡度的概念解答.【详解】(1)如图所示,过点C作CF⊥AM,F为垂足,过点B作BE⊥AM,BD⊥CF,E、D为垂足.∵在C点测得B点的俯角为45°,∴∠CBD=45°,又∵BC=2002米,∴CD=400×sin30°=400×12=200(米).∴B点的海拔为721-200=521(米).(2)∵BE=521-21=500(米),AB=1000米,所以斜坡AB的坡角为30°【点睛】此题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,掌握运算法则是解题关键25.(1)当销售量等于2.5万个时,销售价格等于55元/个;(2)当30≤x≤60时,w=﹣0.1x2+10x﹣200;当60<x≤80时,w=2400x-+80;(3)销售价格定为50或80元/件时,获得的利润最大,最大利润是50万元.【解析】(1)根据销售量的代数式等于2.5,求出符合题意的解;(2)根据x的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(3)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.【详解】解:(1)由题意得,110-x+8=2.5,解得,x=55,答:当销售量等于2.5万个时,销售价格等于55元/个;(2)当30≤x≤60时,w=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200;当60<x≤80时,w=(x﹣20)•120x-402400x=-+80;(3)当30≤x≤60时,w=﹣0.1x2+10x﹣200=﹣0.1(x﹣50)2+50,∴当x=50时,w取得最大值50(万元);当60<x≤80时,w2400x=-+80,∵﹣2400<0,∴w随x的增大而增大,当x=80时,w最大=50万元,∴销售价格定为50或80元/件时,获得的利润最大,最大利润是50万元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处2.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现一处错误:将最低成绩写得更低了,计算结果一定不受影响的是( )A .中位数B .平均数C .方差D .合格人数3.如图,在Rt △ABC 中,∠C=90°,∠B=30°,AE 平分∠CAB ,EF ∥AC ,若AF=4,则CE=( )A.3B.33C.23D.2 4.如图是二次函数y =ax 2+bx+c 的部分图象,由图象可知,满足不等式ax 2+bx+c >0的x 的取值范围是( )A.﹣1<x <5B.x >5C.x <﹣1且x >5D.x <﹣1或x >55.如图,D 是BC 上的一点,DE AB DA CE ∥,∥,若65ADE ∠=︒,则B C ∠∠,的度数分别可能是( )A .46,68︒︒B .45,71︒︒C .46,70︒︒D .47,68︒︒6.下列计算结果正确的是( )A.(﹣a )2•a 6=﹣a 8B.(m ﹣n )(m 2+mn+n 2)=m 3﹣n 3C.(﹣2b 2)3=﹣6b 6D. 7.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是( )A.20元B.18元C.15元D.10元8.如图,矩形ABCD 中,E 是AB 的中点,F 是AD 边上的一个动点,已知AB =4,AD =2,△GEF 与△AEF 关于直线EF 成轴对称.当点F 沿AD 边从点A 运动到点D 时,点G 的运动路径长为( )A.2B.4πC.2πD.9.如图,在ABC ∆中,8AB =,6AC =,O 为ABC ∆角平分线的交点,若ABO ∆的面积为20,则ACO ∆的面积为是( )A .12B .15C .16D .1810.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),60AOC ∠=︒,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N(点M 在点N 的上方),若OMN ∆的面积为S ,直线l 的运动时间为t 秒(04)t ≤≤,则能大致反映S 与t 的函数关系的图象是( )A. B. C. D.11.关于反比例函数2y x =的图象,下列说法正确的是( ) A .图象经过点()1,1 B .两个分支分布在第二、四象限C .当x 0<时,y 随x 的增大而减小D .两个分支关于x 轴成轴对称 12.下列式子值最小的是( )A .﹣1+2019B .﹣1﹣2019C .﹣1×2019D .2019﹣1二、填空题 13.边长为4的正六边形内接于M e ,则M e 的半径是______.14.计算12﹣913的结果是_____. 15.不等式812x ->的解集是___________. 16.若a ﹣b =2,a+b =3,则a 2﹣b 2=_____.17.使式子12x-有意义的x 的值是_____. 18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____.三、解答题19.如图,点E 在△ABC 的边AB 上,过点B ,C ,E 的⊙O 切AC 于点C .直径CD 交BE 于点F ,连结BD ,DE .已知∠A=∠CDE ,AC=22,BD=1.(1)求⊙O 的直径.(2)过点F 作FG ⊥CD 交BC 于点G ,求FG 的长.20.某景区的三个景点A ,B ,C 在同一线路上.甲、乙两名游客从景点A 出发,甲步行到景点C ;乙先乘景区观光车到景点B ,在B 处停留一段时间后,再步行到景点C ,甲、乙两人同时到达景点C .甲、乙两人距景点A 的路程y(米)与甲出发的时间x(分)之间的函数图象如图所示:(1)甲步行的速度为_____米/分,乙步行时的速度为_____米/分;(2)求乙乘景区观光车时y 与x 之间的函数关系式;(3)问甲出发多长时间与乙在途中相遇,请直接写出结果.21.先化简,再求值:2121x x x +-+÷2(1)1x +-,其中x =3. 22.北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C 卫星发射升空,卫星进入预定轨道.如图,火星从地面C 处发射,当火箭达到A 点时,从位于地面雷达站D 处测得DA 的距离是6km ,仰角为42.4︒;1秒后火箭到达B 点,测得DB 的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,c os45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离CD ;(Ⅱ)求这枚火箭从A 到B 的平均速度是多少(结果精确到0.01)?23.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?(1)写出平均每天销售量y (箱)与每箱售价x (元)之间的函数关系;(2)写出平均每天销售利润W (元)与每箱售价x (元)之间的函数关系;(3)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(4)你认为每天赢利900元,是牛奶销售中的最大利润吗?为什么?24.已知A(m ,2),B(﹣3,n)两点关于原点O 对称,反比例函数y =k x的图象经过点A . (1)求反比例函数的解析式并判断点B 是否在这个反比例函数的图象上;(2)点P(x 1,y 1)也在这个反比例函数的图象上,﹣3<x 1<m 且x 1≠0,请直接写出y 1的范围.25.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知线段a 和∠α,求作:等腰△ABC ,使得顶角∠A =∠α,a 为底边上的高线.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A C A D B A D B AC B 二、填空题13.414.-315.x >1016.617.0x ≥且4x ≠18.310三、解答题19.(1)3;(2)22 【解析】【分析】(1)因为CD 是⊙O 的直径,所以∠CBD=90°,因为∠A=∠CDE=∠CBA ,可得BC=AC=22,因为BD=1,在Rt △CBD 中,用勾股定理即可得出⊙O 的直径;(2)由题意,可得FG ∥AC ,所以∠GFB=∠CAB=∠CBA ,即FG=GB=x ,根据sin ∠BCD=13BD CD =,得CG=3FG=3x ,由BC=22可列方程:x+3x=22,解得x 的值即可得出FG 的长.【详解】(1)∵CD 是⊙O 的直径,∴∠CBD=90°,∵∠A=∠CDE,∠CDE=∠CBA,∴∠CAB=∠CBA,∴BC=AC=22,∵BD=1,∴⊙O的直径CD=2222(22)13BC BD+=+=;(2)如图,∵过点B,C,E的圆O切AC于点C,直径CD交BE于点F,∴AC⊥CD,∵FG⊥CD,∴FG∥AC,∴∠GFB=∠CAB=∠CBA,∴FG=GB=x,∵sin∠BCD=13 BDCD=,∴13FGCG=,即CG=3FG=3x,∵BC=22,∴x+3x=22,∴FG=x=22.【点睛】本题考查圆的切线的性质,圆周角定理,锐角三角函数的定义,等腰三角形的判定和性质,解题的关键是掌握圆的切线的性质.20.(1)60,80;(2)y=300x﹣6000(20≤x≤30);(3)甲出发25分钟和50分钟与乙两次在途中相遇.【解析】【分析】(1)由图象得相应的路程和时间,利用路程除以时间得速度;(2)设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(k≠0),将(20,0),(30,3000)代入,求出k和b的值再代回即可;(3)先求出甲的函数解析式,再将其与乙乘观光车时的解析式联立得第一次相遇时间;在甲的解析式中,令y=3000,求得第二次相遇时间.【详解】(1)甲步行的速度为:5400÷90=60(米/分);乙步行的速度为:(5400﹣3000)÷(90﹣60)=80(米/分).故答案为:60,80;(2)解:根据题意,设乙乘景区观光车时y 与x 之间的函数关系式为y =kx+b(k≠0),将(20,0),(30,3000)代入得:200303000k b k b +=⎧⎨+=⎩解得:k 300b 6000=⎧⎨=-⎩. ∴乙乘景区观光车时y 与x 之间的函数关系式为y =300x ﹣6000(20≤x≤30)(3)设甲的函数解析式为:y =kx ,将(90,5400)代入得k =60,∴y =60x .由603006000y x y x =⎧⎨=-⎩得x =25,即甲出发25分钟与乙第一次相遇; 在y =60x 中,令y =3000得:x =50,此时甲与乙第二次相遇.甲出发25分钟和50分钟与乙两次在途中相遇.【点睛】本题是一次函数综合题,考查了待定系数法求函数解析式,以及行程问题的基本关系.本题难度中等.21.11x -;312+. 【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】 原式=2112(1)1x x x x +-+÷-- =211(1)1x x x x +-⋅-+ =11x -, 当x =3时,原式=131-=312+. 【点睛】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(Ⅰ)发射台与雷达站之间的距离CD 约为4.44km ;(Ⅱ)这枚火箭从A 到B 的平均速度大约是0.51/km s .【解析】【分析】(Ⅰ)在Rt △ACD 中,根据锐角三角函数的定义,利用∠ADC 的余弦值解直角三角形即可;(Ⅱ)在Rt △BCD 和Rt △ACD 中,利用∠BDC 的正切值求出BC 的长,利用∠ADC 的正弦值求出AC 的长,进而可得AB 的长,即可得答案.【详解】(Ⅰ)在Rt ACD V 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD V 中, 4.44km 45.5,BC CD BDC tan BDC CD∠∠==︒=,, ∴()4.4445.5 4.44 1.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD V 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.23.(1)y =﹣3x+240;(2)w =﹣3x 2+360﹣9600;(3)50;(4)不是,理由见解析.【解析】【分析】(1)销量=原销量-降低销量,举措写出函数关系式即可;(2)平根据均每天销售这种牛奶的利润等于每箱的利润×销售量得到W=(x-40)•y,整理即可;(3)令w=900时,得到一元二次方程求解即可;(4)观察图象,找到顶点即可知道当牛奶售价为多少时,平均每天的利润最大,最大利润为多少.【详解】(1)y =30+3(70﹣x )=﹣3x+240;(2)w =(x ﹣40)(﹣3x+240)=﹣3x 2+360﹣9600;(3)当w =900时,(x ﹣40)(﹣3x+240)=900整理得:x 2﹣120x+3500=0∴x 1=50,x 2=70,∵要使顾客得到实惠,∴x =70舍去∴每箱价格定为50元;(4)由w =(x ﹣40)(﹣3x+240)=﹣3x 2+360﹣9600得w =﹣3(x ﹣60)2+1200w最大=1200(元)∴赢利900元不是销售的最大利润.【点睛】本题考查了二次函数的应用:先把二次函数关系式变形成顶点式:y=a(x-k)2+h,当a<0,x=k时,y有最大值h;当a>0,x=k时,y有最小值h.也考查了利润的含义.24.(1)6yx=,点B在这个反比例函数的图象上;(2)y1<-2或y1>2.【解析】【分析】(1)先求出m的值,进而得出A、B的坐标,代入kyx=,求出反比例函数的解析式,再判断点B是否在反比例函数的图象上;(2)根据反比例函数的性质求解即可.【详解】(1)∵A(m,2),B(-3,n)两点关于原点O对称,∴m=3,n=-2,即A(3,2),B(-3,-2),∵反比例函数kyx=的图象经过点A,∴23k=,解得k=6,∴反比例函数的解析式为6yx =.当x=-3时,6623yx===--,∴点B在这个反比例函数的图象上.(2)根据k>0,y随x的增大而减小可得:y1<-2或y1>2.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,注意数形结合数学思想的应用.25.见解析【解析】【分析】先作∠MAN=∠α,在作∠MON的平分线AP,在AP上截取AD=a,然后过点D作AP的垂线分别交AM、AN 于B、C,则△ABC为所作.【详解】解:如图,△ABC为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定定理.。
五种基本的尺规作图

在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
工程制图的绘图的方法与步骤

绘图的方法与步骤第一节用绘图工具和仪器绘制图样工程图样通常都是用绘图工具和仪器绘制的,绘图的步骤是:先画底稿;然后,进行校对,根据需要进行铅笔加深或上墨;最后,再经复核,由制图者签字。
一、用制图工具和仪器铅笔加深的图样1、画底稿绘图时,采光应来自左前方。
通常用削尖的2H铅笔轻绘底稿,底稿一定要正确无误码,才能加深或上墨。
画底稿的顺序是:先按图形的大小和复杂程度,确定绘图比例,选定图幅,画出图框和标题栏;根据选定的比例估计图形及注写尺寸所占面积,布置图面。
然后,开始画图。
画图时,先画图形的对称轴线,中心线或主要轮廓线,再逐步画出细部。
图形完成后,画尺寸界线利尺寸线。
最后,对所绘制的底稿进行仔细校对,改正错误和缺点,并擦去不需要的图线。
2、铅笔加深铅笔加深时应做到线型粗细分明,符号国家标准的规定,宽度为O.5b的圈线(如粗实线、中虚线等)常用HB铅笔加深;宽度为0·35b的图线(如细实线、细点划线、折附线及波浪线等)常用削尖的H或2H铅笔适当用力加深;在加深圆弧时,圆规的铅芯应该比画直线时的铅笔芯软一号。
用铅笔加深时,一般先加深细点划线(中心线、对称线)。
为了使同类线型粗细一致,可以按线宽分批加深;先画粗实线,再画中虚线,然后画细实线,最后画双点划线、折断纠和波浪线。
加深同类型圈线的顺序,一般是先画曲线,后画直线;画同类型的直线时,通常是先从上向下加深所有的水平线,再从左向右加深所有的竖直线,然后加深所有倾斜线。
当图形加深完毕后,再加深尺寸线及尺寸界线等,然后,画尺寸起止符号 (45。
的中实线斜短划或尺寸箭头),填写尺寸数字和书写图名、比例等说明文字和标题栏。
在写字前,必须先按选定的字高用铅笔轻画格线(汉字画出长仿宋字的字格,数字与字母可只画出字存的两条边线)。
3、复核和签字加深完成后,必须认真复核,如发现错误,则应立即改正;最后,由制图者签字。
二、用制图工具和仪器绘制上墨图样用制图工具和仪器绘制上墨图样的程序,与绘制铅笔加深的图样相同。
初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图知识点总结
一、基本作图的有关概念:
1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。
2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。
二、基本作图的原理和步骤:
1.原理:边边边公理
2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。
三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。
工具虽少但能正确地画出的图形,比度量法画出的图形更精确。
常见考法
(1)考查五种基本作图中的一种,要求写出已知、求证、作法、证明过程。
有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理
数点;(3)利用尺规作图作一些正多边形(如正三角形、正六
边形等)。
误区提醒。
中考复习----五种基本尺规作图

D
A
C
B
l
②.如图,如果点C不在直线l上,应采取怎样的步骤,过 点C画出直线l的垂线?
图 24.4.10
A D
B
五种基本作图:
►做一条线段等于已知线段
►做一个角等于已知角
►做一条线段的垂直平分线
►做一个角的角平分线
►过一点做已知线段的垂线
构扒初中
魏利
做一条线段等于已知线段
做一个角等于已知角
五种 基本 作图
做一条线段的垂直平分线
做一个角的角平分线
过一点做已知线段的垂线
1.作一条线段等于已知线段
已知:线段AB. 求作:线段A′B′, 使A′B′=AB. 作法与示范:
A B
A′
B′
C′
2、作一个角等于已知角
已知: ∠AOB。
求作: ∠A`O`B`,使∠A`O`B`= ∠AOB。
B
D D`
B`
O
C
A
O`
C`
A`
3、画已知线段的垂直平分线
已知:线段AB。
求作:O.
C A B
D
4、平分已知角
►已知: ∠AOB。
►求作:射线OC,使
∠
AOC= ∠ BOC。
B
E
C
O
D
A
5.过定点作已知直线的垂线
中考数学题型解析与技巧点拨 专题五 尺规作图解题技巧(教师版学生版)

专题五 中考数学中的尺规作图解题技巧只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图不一定要写作图步骤,但必须保留作图痕迹.从各省市的中考来看,尺规作图题在选择题填空题和解答题都有考到,题目比较丰富,占的分值有3分,4分或者6分。
难度一般。
熟记下面五种基本的尺规作图,此类问题可破解。
五种基本尺规作图作一条线段等于已知线段步骤:1.作射线OP ; 2.在OP 上截取OA=a ,OA 即为所求线段作角的平分线步骤:1.以点O 为圆心,任意长为半径画弧,分别交OA 、OB 于点N 、M ; 2.分别以点M 、N 为圆心,大于21MN 的长为半径作弧,相交于点P ;3.画射线OP,OP 即为所求角平分线作线段的垂直平分线步骤:1.分别以点A 、B 为圆心,以大于21AB 的长为半径,在AB 两侧作弧;2.连接两弧交点所成直线即为所求线段的垂直平分线作一个角等于已知角步骤:1.在∠α上以点O 为圆心、以适当的长为半径作弧,交∠α的两边于点P 、Q ; 2.作射线O′A ;3.以O′为圆心、OP 长为半径作弧,交O′A 于点M ;4.以点M 为圆心,PQ 长为半径作弧,交前弧于点N ;5.过点N 作射线O′B ,∠BO′A 即为所求角 过一点作已知直线的垂线过直线外一点作已知直线的垂线步骤:1.在直线另一侧取点M ; 2.以P 为圆心,以PM 为半径画弧,交直线于A 、B 两点; 3.分别以A 、B 为圆心,以大于12AB 长为半径画弧,交M 同侧于点N ;4. 连接PN,则直线PN 即为所求垂线过直线上一点作已知直线的垂线步骤:1.以点O为圆心,任意长为半径向点O两侧作弧,交直线于A、B两点;2.分别以点A、B为圆心,以大于21AB长为半径向直线两侧作弧,交点分别为M、N;3.连接MN,MN即为所求垂线类型一:选择题中的尺规作图【例题展示】例题1(2017深圳市)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40° B.50° C.60° D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】基本作图;线段垂直平分线的性质.例题2(2018江苏省南通市)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于点E 、F ,再分别以E 、F 为圆心,大于21EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M ,若∠ACD=110°,则∠CMA 的度数为( )A .30°B .35°C .70°D .45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案. 【解答】解:∵AB ∥CD ,∠ACD=110°, ∴∠CAB=70°,∵以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于21EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M , ∴AP 平分∠CAB , ∴∠CAM=∠BAM=35°, ∵AB ∥CD ,∴∠CMA=∠MAB=35°. 故选:B .【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.例题3(2018湖北省襄阳市)如图,在△ABC 中,分别以点A 和点C 为圆心,大于21AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E .若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( )A .16cmB .19cmC .22cmD .25cm【分析】利用线段的垂直平分线的性质即可解决问题. 【解答】解:∵DE 垂直平分线段AC ,∴DA=DC ,AE=EC=6cm , ∵AB+AD+BD=13cm , ∴AB+BD+DC=13cm ,∴△ABC 的周长=AB+BD+BC+AC=13+6=19cm , 故选:B .【点评】本题考查基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.例题4(2018山东省潍坊市)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B 为圆心,以AB 长为半径作弧,两弧的交点为C ; (2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接BD,BC下列说法不正确的是( )A.∠CBD=30°B.C. 点C 是△ABD 的外心D.【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC , ∴△ABC 是等边三角形, 由作图可知:CB=CA=CD ,∴点C 是△ABD 的外心,∠ABD=90°, BD= AB , ∴S △ABD = AB 2, ∵AC=CD , ∴S △BDC = AB 2, 故A 、B 、C 正确,243AB S BDC =∆1cos sin 22=+D A 32343故选D .【点评】本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【跟踪训练】1.(2018湖北省宜昌市)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A .B .C .D .2.(2018贵州省安顺市) 已知△ABC(AC<BC),用尺规作图的方法在BC 上确定一点,使PA+PC=BC ,则符合要求的作图痕迹是( )A. B.C. D.3.(2018河南省)如图,已知平行四边形AOBC 的顶点O (0,0),A (﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )A .(5﹣1,2)B .(5,2)C .(3﹣5,2)D .(5﹣2,2)4.(2018云南省昆明市)如图,点A 在双曲线xky =(x >0)上,过点A 作AB ⊥x 轴,垂足为点B ,分别以点O 和点A 为圆心,大于21OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC=1,则k 的值为( )A .2B .2532 C .534 D .5252+ 5.(2018浙江省台州市)如图,在平行四边形ABCD 中,AB=2,BC=3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于21PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .21 B .1 C .56 D .23 6.(2018江苏省南通市)如图,Rt △ABC 中,∠ACB=90°,CD 平分∠ACB 交AB 于点D ,按下列步骤作图:步骤1:分别以点C 和点D 为圆心,大于21CD 的长为半径作弧,两弧相交于M ,N 两点; 步骤2:作直线MN ,分别交AC ,BC 于点E ,F ; 步骤3:连接DE ,DF .若AC=4,BC=2,则线段DE 的长为( )A .35 B .23 C .2 D .34 7.(2018四川省巴中)如图,在Rt △ABC 中,∠C=90°,按下列步骤作图:①以点B 为圆心,适当长为半径画弧,与AB ,BC 分别交于点D ,E ;②分别以D ,E 为圆心,大于21DE 的长为半径画弧,两弧交于点P ;③作射线BP 交AC 于点F ;④过点F 作FG ⊥AB 于点G .下列结论正确的是( )A .CF=FGB .AF=AGC .AF=CFD .AG=FG8.(2018云南省曲靖市)如图,在正方形ABCD 中,连接AC ,以点A 为圆心,适当长为半径画弧,交AB 、AC 于点M ,N ,分别以M ,N 为圆心,大于MN 长的一半为半径画弧,两弧交于点H ,连结AH 并延长交BC 于点E ,再分别以A 、E 为圆心,以大于AE 长的一半为半径画弧,两弧交于点P ,Q ,作直线PQ ,分别交CD ,AC ,AB 于点F ,G ,L ,交CB 的延长线于点K ,连接GE ,下列结论:①∠LKB=22.5°,②GE ∥AB ,③tan ∠CGF=LBKB,④S △CGE :S △CAB =1:4.其中正确的是( )A .①②③B .②③④C .①③④D .①②④类型二:填空题中的作图题【例题展示】1.(2018江苏省南京市)如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC=10cm ,则DE= cm .【分析】直接利用线段垂直平分线的性质得出DE 是△ABC 的中位线,进而得出答案. 【解答】解:∵用直尺和圆规作AB 、AC 的垂直平分线, ∴D 为AB 的中点,E 为AC 的中点, ∴DE 是△ABC 的中位线, ∴DE=BC=5cm .故答案为:5.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,正确得出DE 是△ABC 的中位线是解题关键.2.(2018山东省东营市)如图,在Rt △ABC 中,∠B=90°,以顶点C 为圆心,适当长为半径画弧,分别交AC ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于21EF 的长为半径画弧,两弧交于点P ,作射线CP 交AB 于点D .若BD=3,AC=10,则△ACD 的面积是 .【分析】作DQ ⊥AC ,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得. 【解答】解:如图,过点D 作DQ ⊥AC 于点Q ,由作图知CP 是∠ACB 的平分线, ∵∠B=90°,BD=3, ∴DB=DQ=3, ∵AC=10, ∴S △ACD =21AC •DQ=21×10×3=15, 故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.3.(2018江苏省淮安市)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于21AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .【分析】连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,根据AD 2=AC 2+CD 2构建方程即可解决问题; 【解答】解:连接AD .∵PQ 垂直平分线段AB , ∴DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,AD 2=AC 2+CD 2, ∴x 2=32+(5﹣x )2, 解得x=517, ∴CD=BC ﹣DB=5﹣517=58, 故答案为58. 【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.(2018吉林省长春市)如图,在△ABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A=32°,则∠CDB 的大小为 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC 中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD 中可求得∠CDB=∠CBD=21∠ACB=37°. 【解答】解:∵AB=AC ,∠A=32°, ∴∠ABC=∠ACB=74°, 又∵BC=DC , ∴∠CDB=∠CBD=21∠ACB=37°. 故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.【跟踪训练】1.(2018辽宁省葫芦岛市)如图,OP 平分∠MON ,A 是边OM 上一点,以点A 为圆心、大于点A 到ON 的距离为半径作弧,交ON 于点B 、C ,再分别以点B 、C 为圆心,大于21BC 的长为半径作弧,两弧交于点D 、作直线AD 分别交OP 、ON 于点E 、F .若∠MON=60°,EF=1,则OA= .2.(2018辽宁省抚顺市)如图,平行四边形ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆心,大于21AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是 .3.(2018内蒙古通辽市)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于21AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接AD .若AB=BD ,AB=6,∠C=30°,则△ACD 的面积为 .4.(2018湖北省枣阳市一模)如图,在△ABC 中,∠ACB=90°,∠B=32°.分别以A 、B 为圆心,大于AB 的长为半径画弧,两弧交于点D 和E ,连接DE ,交AB 于点F ,连接CF ,则∠AFC 的度数为 .类型三:解答题中的作图题 【例题展示】例题1(2018广东省 6分)如图,BD 是菱形ABCD 的对角线,∠CBD=75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.【分析】(1)分别以A 、B 为圆心,大于21AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF=∠ABD ﹣∠ABF 计算即可; 【解答】解:(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形, ∴∠ABD=∠DBC=21∠ABC=75°,DC ∥AB ,∠A=∠C . ∴∠ABC=150°,∠ABC+∠C=180°, ∴∠C=∠A=30°, ∵EF 垂直平分线线段AB , ∴AF=FB ,∴∠A=∠FBA=30°,∴∠DBF=∠ABD ﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.例题2(2018深圳市8分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE 中,CF=6,CE=12,∠FCE=45°,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于21AD 长为半径作弧,交EF 于点B ,AB ∥CD .(1)求证:四边形ACDB 为△FEC 的亲密菱形; (2)求四边形ACDB 的面积.【分析】(1)根据折叠和已知得出AC=CD ,AB=DB ,∠ACB=∠DCB ,求出AC=AB ,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可. 【解答】(1)证明:∵由已知得:AC=CD ,AB=DB , 由已知尺规作图痕迹得:BC 是∠FCE 的角平分线, ∴∠ACB=∠DCB , 又∵AB ∥CD , ∴∠ABC=∠DCB , ∴∠ACB=∠ABC , ∴AC=AB ,又∵AC=CD ,AB=DB ,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上, ∴四边形ACDB 为△FEC 的亲密菱形; (2)解:设菱形ACDB 的边长为x , ∵四边形ABCD 是菱形, ∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E , △EAB ∽△FCE则:CE ABFC FA =, 即6x 612x -=, 解得:x=4,过A 点作AH ⊥CD 于H 点, ∵在Rt △ACH 中,∠ACH=45°, ∴AH=222=AC,∴四边形ACDB 的面积为:428224=⨯.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.例题3(2018甘肃省定西市6分 )如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO ,进而以点O 为圆心,OB 为半径作⊙O 即可; (2)利用角平分线的性质以及直线与圆的位置关系进而求出即可. 【解答】解:(1)如图所示:(2)相切;过O 点作OD ⊥AC 于D 点, ∵CO 平分∠ACB , ∴OB=OD ,即d=r , ∴⊙O 与直线AC 相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.例题4(2018山东省威海市 8分 )如图,在△ABC 中,∠ABC=90°. (1)作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O (要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O 的直径为5,BC=4;求DE 的长(如果用尺规作图画不出图形,可画出草图完成(2)问)【答案】解:(1)⊙O 如图所示;(1)作OH ⊥BC 于H .是的切线, ,,四边形ECHO 是矩形,,, 在中,, ,, ,,∽,, ,.【解析】作的角平分线交AC 于E ,作交AB 于点O ,以O 为圆心,OB 为半径画圆即可解决问题; 作于首先求出OH 、EC 、BE ,利用∽,可得,解决问题;本题考查作图复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【跟踪训练】1.(2018四川省达州市)已知:如图,在四边形ABCD 中,AD ∥BC .点E 为CD 边上一点,AE 与BE 分别为∠DAB 和∠CBA 的平分线.(1)请你添加一个适当的条件 ,使得四边形ABCD 是平行四边形,并证明你的结论; (2)作线段AB 的垂直平分线交AB 于点O ,并以AB 为直径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O 交边AD 于点F ,连接BF ,交AE 于点G ,若AE=4,sin ∠AGF=54,求⊙O 的半径.2.(2018广东省潮州市一模)如图,△ABC是直角三角形,∠ACB=90°,(1)尺规作图:作⊙C,使它与AB相切于点D,与AC交于点E(保留作图痕迹,不写作法,请标明字母);(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,CD的长是.3.(2018广东省东莞市一模)如图,在Rt△ABC中,∠BAC=90°,∠C=30°.(1)请在图中用尺规作图的方法作出AC的垂直平分线交BC于点D,交AC于点E (不写作法,保留作图痕迹).(2)在(1)的条件下,连接AD,求证:△ABC∽△EDA.4.(2018广东省普宁市一模)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.5.(2018广西贵港市一模)根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).如图,已知△ABC中,AB=AC,BD是BA边的延长线.(1)作∠DAC的平分线AM;(2)作AC边的垂直平分线,与AM交于点E,与BC边交于点F;(3)联接AF,则线段AE与AF的数量关系为.6.(2018广东省南海市一模)如图所示,在△ABC中,AB=AC,∠A=36°.(1)作∠ABC的平分线BD,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)条件下,比较线段DA与BC的大小关系,请说明理由.。
5种基本作图方法的原理

5种基本作图方法的原理5种基本作图方法的原理概括如下:
一、直角坐标图
1. 建立直角坐标系,X Y轴代表变量。
2. 根据数据在坐标平面标出点的位置。
3. 连接点可得到曲线图形。
4. 显示变量之间的数量对应关系。
5. 直观显示曲线变化趋势和模式。
二、极坐标图
1. 极坐标以极轴和角度表示平面上的点。
2. 适合表示角度分布规律的数据。
3. 通过极角和半径长度描绘图形。
4. 常用于表示周期性和对称分布模式。
三、柱形图
1. 使用矩形柱表示分类数据的大小。
2. 柱的高度表示数量或类别的大小。
3. 便于直观比较不同类别的数量差异。
4. 可以绘制简单或分组组合柱形图。
四、饼图
1. 将数据用扇形切片表示,圆心角大小对应数量。
2. 饼图周长表示总量,弧长表示类别比例。
3. 直观展示部分与整体的占比情况。
4. 常用于结构比、成分分析等数据。
五、流程图
1. 以框图和箭头表示事件或工作的流程。
2. 顺序或分支关系一目了然。
3. 直观描述复杂流程的步骤或结构。
4. 用于操作流程、组织结构、逻辑关系表达。
这5种都是基础而重要的作图方法,原理简单直观,应用广泛,掌握后可以绘制出清晰有效的统计图表,进行数据分析和呈现。
组合应用也可以实现更丰富的作图展示效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图的基本步骤和作图语言
一、作线段等于已知线段
已知:线段a
求作:线段AB ,使AB =a 作法:1、作射线AC 2、在射线AC 上截取AB =a ,则线段AB 就是所要求作的线段
二、作角等于已知角
已知:∠AOB
求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB.
作法:
(1)作射线O ′A ′.
(2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D. (3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于点C ′. (4)以点C ′为圆心,以CD 长为半径画弧,交前面的弧于点D ′. (5)过点D ′作射线O ′B ′. ∠A ′O ′B ′就是所求作的角.
三、作角的平分线
已知:∠AOB,
求作:∠AOB 内部射线OC,使:∠AOC=∠BOC,
作法:(1)在OA 和OB 上,分别截取OD 、OE ,使OD=OE . (2)分别以D 、E 为圆心,大于的
DE 2
1
长为半径作弧,
在∠AOB 内,两弧交于点C . (3)作射线OC .OC 就是所求作的射线.
四、作线段的垂直平分线(中垂线)或中点
已知:线段AB
求作:线段AB 的垂直平分线 作法:
(1) 分别以A 、B 为圆心,以大于AB 的一半为半
径在AB 两侧画弧,分别相交于E 、F 两点 (2)经过E 、F ,作直线EF (作直线EF 交AB 于 点O )直线EF 就是所求作的垂直平分线 (点O 就是所求作的中点)
五、过直线外一点作直线的垂线. (1)已知点在直线外
已知:直线a 、及直线a 外一点A.(画出直线a 、点A)
求作:直线a 的垂线直线b ,使得直线b 经过点A. 作法:
(1)以点A 为圆心,以适当长为半径画弧,交直线a 于点
C 、D.
(2)以点C 为圆心,以AD 长为半径在直线另一侧画弧.(3)以点D 为圆心,以AD 长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A 、B 作直线AB.AB 就是所画的垂线b.(如图)
(2)已知点在直线上
已知:直线a 、及直线a 上一点A.
求作:直线a 的垂线直线b ,使得直线b 经过点作法:
(1) 以A 为圆心,任一线段的长为半径画弧, 交a 于C 、B 两点
(2) 点C 为圆心,以大于CB (3) 以点B 为圆心,以同样的长为半径画弧, 两弧的交点分别记为M
(4) 经过A 、M ,作直线AM 直线AM
A
O
常用的作图语言:
(1)过点×、×作线段或射线、直线;
(2)连结两点××;
(3)在线段××或射线××上截取××=××;
(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;
(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;(6)延长××到点×,使××=××。
二:作图题说明
在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。
(1)作线段××=××;
(2)作∠×××=∠×××;
(3)作××(射线)平分∠×××;
(4)过点×作××⊥××,垂足为点×;
(5)作线段××的垂直平分线××。