1--中考数学压轴题解题技巧及训练mdy
中考数学压轴题解题技巧及训练完整版

中考数学压轴题解题技巧完整版数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题;函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质;求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法图形法和代数法解析法;几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点或动线段运动,对应产生线段、面积等的变化,求对应的未知函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究;一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线圆与圆的相切时求自变量的值等;求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系即列出含有x、y的方程,变形写成y=fx的形式;找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法;求函数的自变量的取值范围主要是寻找图形的特殊位置极端位置和根据解析式求解;而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值;解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;关键是掌握几种常用的数学思想方法;一是运用函数与方程思想;以直线或抛物线知识为载体,列解方程或方程组求其解析式、研究其性质;二是运用分类讨论的思想;对问题的条件或结论的多变性进行考察和探究;三是运用转化的数学的思想;由已知向未知,由复杂向简单的转换;中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究;解中考压轴题技能技巧:一是对自身数学学习状况做一个完整的全面的认识;根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”;所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍;二是解数学压轴题做一问是一问;第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问;过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质;三是解数学压轴题一般可以分为三个步骤;认真审题,理解题意、探究解题思路、正确解答;审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计;解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等;认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃;中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活;所以,解数学压轴题,一要树立必胜的信心,要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高;示例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点. 1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8 …………………1分将A4,8、C8,0两点坐标分别代入y=ax2+bx得 8=16a+4b,b=40=64a+8b 解得a=-12∴抛物线的解析式为:y=-1x2+4x …………………3分22①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t . ∴点E的坐标为4+12t,8-t.∴点G 的纵坐标为:-124+12t 2+44+12t=-18t 2+8. …………………5分 ∴EG=-18t 2+8-8-t =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. (11)分中考数学三类押轴题专题训练第一类:选择题押轴题1. 湖北襄阳3分如果关于x 的一元二次方程2kx 10-+=有两个不相等的实数根,那么k 的取值范围是 A .k <12 B .k <12且k ≠0 C .﹣12≤k <12 D .﹣12≤k <12且k ≠0题型方程类代数计算; 2. 武汉市3分下列命题: ①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;OAFCEB④若240b ac->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是.A.只有①②③B.只有①③④C.只有①④D.只有②③④.题型方程、等式、不等式类代数变形或计算;3. 湖北宜昌3分已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是A.第四象限 B.第三象限 C.第二象限 D.第一象限题型代数类函数计算;4. 湖北天门、仙桃、潜江、江汉油田3分已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为﹣1,0,3,0.对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有A.3个 B.2个 C.1个 D.0个题型函数类代数间接多选题;5. 山东济南3分如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为A.21B.5C.1455D.52题型几何类动态问题计算;6. 福建3分如图,点O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交于点E、F,则A . EF>AE+BF B. EF<AE+BF=AE+BF ≤AE+BF题型几何类证明;7. 湖北武汉3分在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为A.11+1132 B.11-1132C.11+1132或11-1132D.11-1132或1+32题型几何类分类问题计算;8. 湖北恩施3分如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是A.3 B.2 C.3 D.2题型几何类面积问题计算;9. 湖北咸宁3分中央电视台有一个非常受欢迎的娱乐节目:墙来了选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为.A.B.C.D.题型几何类识图问题判断;10. 湖北黄冈3分如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设Q 点运动的时间t 秒,若四边形QPCP ′为菱形,则t 的值为 A. 2 B. 2C. 22 D. 4题型几何类动态问题计算;11. 湖北十堰3分如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边;⑤AOCAOB93SS6+4+=.其中正确的结论是 A .①②③⑤ B .①②③④ C .①②③④⑤ D .①②③ 题型几何类间接多选题;12. 湖北孝感3分如图,在菱形ABCD 中,∠A =60o,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G,连接BD 、CG .给出以下结论,其中正确的有①∠BGD =120o ;②BG +DG =CG ;③△BDF ≌△CGB ;④2ADE 3S =AB 4∆. A .1个 B .2个 C .3个 D .4个 题型几何类间接多选题;13. 湖南岳阳3分如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E,AD 与CD 相交于D,BC 与CD 相交于C,连接OD 、OC,对于下列结论:①OD 2=DECD ;②AD+BC=CD ;③OD=OC ;④S 梯形ABCD =CDOA ;⑤∠DOC=90°,其中正确的是题型几何类间接多选题;14. 山东东营3分 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数xy 4=的图象相交于C ,D 两点,分别过C ,D两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是A .①②B . ①②③C .①②③④D . ②③④ 题型坐标几何类间接多选题;15. 湖北黄石3分如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)2题型坐标几何类计算题;16. 浙江湖州3分如图,已知点A4,0,O 为坐标原点,P 是线段OA 上任意一点不含端点O,A,过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C,射线OB 与AC 相交A .①②⑤ B .②③④ C .③④⑤ D .①④⑤ yxDCA B O FE第13题图=原题12题nS =+⋅⋅⋅⋅⋅⋅+++2011321S S S S 于点D .当OD=AD=3时,这两个二次函数的最大值之和等于 A 5453C .3D .4题型坐标几何类动态问题计算题;17. 山东省威海3分已知:直线n 为正整数与两坐标轴围成的三角形面积为 , 则 题型坐标几何类规律探究计算题;18. 湖北鄂州3分在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为1,0,点D的坐标为0,2,延长CB交x 轴于点A 1,作正方形A 1B 1C 1C,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,………按这样的规律进行下去,第2012个正方形的面积为 A.2010)23(5⋅ B.2010)49(5⋅ B. C.2012)49(5⋅ D.4022)23(5⋅ 题型坐标几何类规律探究计算题; 19广西柳州3分小兰画了一个函 数的图象如图,那么关于x 的分式方程的解是 A .x=1 B .x=2 C .x=3 D .x=4 题型坐标几何类图像信息题; 考点 ; 方法 ;20浙江宁波3分勾股定理是几何中的一个重要定理;在我国古算书周髀算经中就有“若勾三,股四,则弦五”的记载;如图1是由边长相等的小正方形和直角三角形构第10题C DE FABOx y4 4 A .Oxy4 4 B .Oxy4 4 C .Oxy4 4 D .成的,可以用其面积关系验证勾股定理;图2是由图1放入矩形内得到的,∠BAC=90O ,AB=3,AC=4,点D,E,F,G,H,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为A 、 90B 、 100C 、 110D 、 121 题型几何图形信息题;考点 ; 方法 ;21.湖北十堰3分如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是题几何图形图像信息题;考点 ; 方法 ;22湖北十堰3分.如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的五个出口中的一个;下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1、2、3号出水口的出水量之比约为1:4:6;④若净化材料损耗的速度与流经表面水的数量成正比,则更换最慢的一个三角形材料约为更换最快的一个三角形材料使用时间的8倍;其中正确的判断有A.1个 B.2个 C.3个D.4个题型生活中的数学问题;第二类:填空题押轴题1. 湖北武汉3分在平面直角坐标系中,点A的坐标为3,0,点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是▲.题型坐标几何类取值范围探究题;考点;方法 ;2. 湖北黄石3分如图所示,已知A点从点1,0出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=600,又以P0,4为圆心,PC为半径的圆恰好与OA所在直线相切,则t= ▲ .题型坐标几何类动态问题计算题;考点;方法 ;3. 湖北十堰3分如图,直线y=6x,y=23x分别与双曲线kyx在第一象限内交于点A,B,若S △OAB =8,则k= . 题型坐标几何类综合问题计算题;考点 ; 方法 ; 4. 湖北十堰3分.如图,平行四边形AOBC 中,对角线交于点E,双曲线经过A 、E 两点,若平行四边形AOBC 的面积为18,则k =________. 题型坐标几何类综合问题计算题;考点 ; 方法 ; 5. 湖北十堰3分已知函数1+-=x y 的图象与x 轴、y 轴分别交于点C 、B,与双曲线xky =交于点A 、D , 若AB+CD= BC ,则k 的值为 . 题型坐标几何类综合问题计算题;考点 ; 方法 6. 甘肃兰州3分2012兰州如图,M 为双曲线y =上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于点D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B ,则ADBC 的值为 ;题型坐标几何类综合问题计算题;考点 ; 方法 ; 7.湖北武汉3分如图,□ABCD 的顶点A,B 的坐标k上,边AD交y轴于点E,分别是A-1,0,B0,-2,顶点C,D在双曲线y=x且四边形BCDE的面积是△ABE面积的5倍,则k=_____.题型坐标几何类综合问题计算题;考点;方法 ;8、河南省如图,点A,B在反比例函数的图像上,过点A,B作轴的垂线,垂足分别为M,N,延长线段AB交轴于点C,若OM=MN=NC,△AOC的面积为6,则k值为4题型坐标几何类综合问题计算题;考点;方法 ;9、湖北天门、仙桃、潜江、江汉油田3分平面直角坐标系中,⊙M的圆心坐标为0,2,半径为1,点N在x轴的正半轴上,如果以点N为圆心,半径为4的⊙N与⊙M相切,则圆心N的坐标为▲.题型坐标几何类综合问题计算题;考点;方法 ;10.福建南平3分如图,正方形的边长是4,点在边上,以为边向外作正方形,连结、、,则的面积是_____________.题型几何类综合问题计算题;考点;方法 ;11.攀枝花如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是.题型几何类综合问题计算题;考点;方法 ;12.安徽在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是B. C. 10或或题型几何类综合问题计算题;考点;方法 ;13、江苏扬州3分如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.题型几何、函数类综合问题计算题;考点;方法 ;14. 湖北黄冈3分某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y千米与货车行驶时间x小时之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为33,75;4④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是▲填序号题型函数图像与实际问题类多选题;考点;方法 ;15. 湖北孝感3分二次函数y =ax 2+bx +ca ≠0的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 ▲ 填正确结论的序号.①abc <0 ;②a -b +c <0; ③3a +c <0; ④当-1<x <3时,y >0. 题型二次函数图像和性质多选题;考点 ; 方法 ;16. 湖北咸宁3分对于二次函数2y x 2mx 3=--,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m 1=;③如果将它的图象向左平移3个单位后过原点,则m 1=-;④如果当x 4=时的函数值与x 2008=时的函数值相等,则当x 2012=时的函数值为3-.其中正确的说法是 ▲ .把你认为正确说法的序号都填上题型二次函数图像和性质多选题;考点 ; 方法 ;17. 湖北随州4分设242a 2a 10b 2b 10+-=--=,,且1-ab 2≠0,则522ab +b 3a+1a ⎛⎫- ⎪ ⎪⎝⎭= ▲ . 题型代数类综合创新问题计算题;考点 ; 方法 ;18. 湖北鄂州3分已知,如图,△OBC 中是直角三角形,OB 与x 轴正半轴重合,∠OBC=90°,且OB=1,BC=3,将△OBC 绕原点O 逆时针旋转60°再将其各边扩大为原来的m 倍,使OB 1=OC,得到△OB 1C 1,将△OB 1C 1绕原点O 逆时针旋转60°再将其各边扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2,……,如此继续下去,得到△OB 2012C 2012,则m= ▲ ;点C 2012的坐标是 ▲ ; 题型坐标几何类规律探究计算题;考点 ; 方法 ;19、湖北仙桃如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;…,依此类推,则第n 个正方形的边长为_________. 题型坐标几何类规律探究计算题; 考点 ; 方y12344321xA P A P A P P A OPN 2P2 N 1N 2 N 3 N 4 N 5 P 4P 1P 2P 3M 2M 3M 4n+1N 3P 34n 法 ;20、如图,P 1是反比例函数在第一象限图像上的一点,点A 1的坐标为2,0,若△P 1OA 1、△P 2A 1A 2、…、△P n A n-1A n 均为等边三角形,则A n 点的坐标是. 题型坐标几何类规律探究计算题;考点 ; 方法 ;21、湖北十堰3分如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,通过逐一计算S 1,S 2,…,可得S n = .题型几何规律探究类计算题;点 ;方法 ; 第三类:解答题押轴题 一、对称翻折平移旋转类1.年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线与抛物线关于y 轴对称.点A O B 1l x ,D C 分别是抛物线1l 、2l 的顶点CD 交y轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点对称点,试判断以P 、Q 、C 、DyxA OB PN图2C 1C 4Q EF 3在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分 3.恩施 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B两点, A 点在原点的左侧,B 点的坐标为3,0,与y 轴交于C 0,-3点,点P 是直线BC 下方的抛物线 上一动点.1求这个二次函数的表达式.2连结PO 、PC,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形若存在,请求出此时点P 的坐标;若不存在请说明理由. 3当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积. 二、动态:动点、动线类4.辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根.1求这条抛物线的解析式; 2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点,是否存在这样 APO B E C xy yxAOB P M 图1C 1C 2C 3 21 第1A Q C PB 图①A Q C PBC A B N M 第7题的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.5.山东省青岛市已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm,BC =3cm,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为ts0<t <2,解答下列问题: 1当t 何值时,PQ ∥BC2设△AQP 的面积为y 2cm ,求y 与t 之间的函数关系式;3是否存在某一时刻t,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分若存在,求出此时t 的值;若不存在,说明理由;4如图②,连接PC,并把△PQC 沿QC 翻折,得到四边形PQP ′C,那么是否存在某一时刻t,使四边形PQP ′C 为菱形若存在,求出此时菱形的边长;若不存在,说明理由. 6.吉林省如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设....点和线段是面积为0的三角形,解答下列问题: 1点P 、Q 从出发到相遇所用时间是__________秒;2点P 、Q 从开始运动到停止的过程中,当△APQ是等边三角形时x 的值是__________秒; 3求y 与x 之间的函数关系式. 7.浙江省嘉兴市如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,合成一点C ,构成△ABC ,设x AB =. 1求x 的取值范围;2若△ABC 为直角三角形,求x 的值; 3探究:△ABC 的最大面积三、圆类8.青海 如图10,已知点A3,0,以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B,过B 作⊙A 的切线l.1以直线l C0,9,求此抛物线的解析式;图D A QC P第11题C x yA O BED图1 x y A C B C D G 图2 2抛物线与x 轴的另一个交点为D,过D 作⊙A 的切线DE,E 为切点,求此切线长;3点F 是切线DE 上的一个动点,当△BFD 与EAD △相似时,求出BF 的长 . 9.天水如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +ca >0的图象顶点为D与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为3,0,OB=OC ,OA:OC=1:31求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; ,点是直线AG下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大求此时点P 的坐标和△AGP 的最大面积.10.潍坊市如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C . 1求抛物线的解析式;2过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.11、山东济宁如图,在平面直角坐标系中,顶点为4,1-的抛物线交y 轴于A 点,交x 轴于B ,C 两点点B 在点C 的左侧. 已知A 点坐标为0,3.1求此抛物线的解析式;2过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;P ,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大并求出此时P 点的坐标和PAC ∆的最大面积.12、如图,抛物线m :k h x y ++-=2)(41与x 轴的交点为B A 、,与y 轴的交点为C ,顶点为)425,3(M ,将抛物线m 绕点B 旋转 180,得到新的抛物线n ,它的顶点为D .O x y NC D EFBM A1求抛物线n 的解析式;2设抛物线m 的对称轴与x 轴的交点为G ,以G 为圆心,B A 、两点间的距离为直径作⊙G ,试判断直线CM 与⊙G 的位置关系,并说明理由.四、比例比值取值范围类13.2010年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标;2将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.14. 湖南省长沙市如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. 1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.15.北京市如图,在平面直角坐标系xOy 中,我把由两条射线AE ,BF 和以AB 为直径的半圆所组成的图形叫作图形C 注:不含AB 线段;已知A 1-,0,B 1,0,AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上;1求两条射线AE ,BF 所在直线的距离;2当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,写出b 的取值范围;当一次函数y x b =+的图象与图形C 恰好只有两个公共点时,写出b 的取值范围;16.河南 如图,在平面直角坐标系中,直线y=21x+1 与抛物线y= ax 2 + bx-3 交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3. 点P 是直图9 B A P x C Q O y 第26题图。
中考数学压轴题解题技巧练习(含答案)

中考数学压轴题解题技巧练习数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
此类题基本在第24题,满分12分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。
中考数学压轴题解题技巧与方法.doc

中考数学压轴题解题技巧和方法杜庄中学中考数学压轴题解题技巧和方法1、大胆取舍一i保中考数学相对高分〃有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。
〃针对中考数学如何备考,著名数学特级老师说,这几个月的备考一走要有选择。
首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,—走要立足于基础和难易度适中,太难的可以放弃。
在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。
在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布: 作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的题认真做一做,把根本没有感觉的难题放弃不做。
干万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精力。
〃2、做到基本知识不丢一分某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
首先要梳理知识网络,思路清晰知己知彼。
思考中学数学学了什么,教材在排版上有什么规律z琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。
其次要掌握数学考纲,对考试心中有谱。
掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。
根据考纲和自己的实际情况来侧重复习,也能提高有限时间的利用效率。
3.做好中考数学的最后冲刺距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。
压轴题坚持每天一道,并及时总结方法,错题本就发挥作用了。
最后每周练习一套中考模拟卷,及时总结考试问题。
我们做题的原则是先搞懂搞透错题,再做新题。
如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。
中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。
中考数学压轴题解题方法大全和技巧[1]
![中考数学压轴题解题方法大全和技巧[1]](https://img.taocdn.com/s3/m/ab82fe5069dc5022abea005d.png)
(直打版)中考数学压轴题解题方法大全和技巧(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)中考数学压轴题解题方法大全和技巧(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)中考数学压轴题解题方法大全和技巧(word版可编辑修改)的全部内容。
中考数学压轴题解题技巧湖北竹溪城关中学明道银解中考数学压轴题秘诀(一)数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线.求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
此类题基本在第24题,满分12分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
【初中数学】中考数学压轴题解题技巧+题型汇总

【初中数学】中考数学压轴题解题技巧+题型汇总2022中考数学压轴题题型思路数学压轴题9种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2.图形位置关系中考数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5.多种函数交叉综合问题中考数学所涉及的函数就一次函数,反比例函数以及二次函数。
作为福建中考,近年,反比例函数连续四年作为填空压轴出现,一次函数与二次函数作为解答题压轴题出现,特别是第三问区分度大,难度大,在中考中面对这类问题,有步骤有分,对优生而言尽量多得分。
中考数学压轴题解题技巧及训练(完整版)

2014年中考数学压轴题解题技巧数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
数学中考压轴题题型及解题技巧(一)

数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧
1. 单选题
•理解题意:仔细阅读题目,确保理解题目的要求和限制条件。
•画图辅助分析:针对几何题目,可以通过画图来帮助理解和解答问题。
•排除法:通过逐个排除选项,找出符合题目要求的答案。
2. 多选题
•筛选关键信息:将题目中的关键信息提取出来,对比选项中的信息,选择合适的答案。
•逻辑推理:通过逻辑分析,推断出哪些选项是肯定正确的,哪些是肯定错误的。
•试验法:将选项应用到一些具体的例子中进行试验,排除不符合题目要求的选项。
3. 填空题
•空中填数法:根据已知条件和问题要求,将空缺处需要填写的数进行逐步推导,不断试错,找出符合题目要求的答案。
•利用关系式:通过已知的关系式或者公式,将题目中的其他已知条件和空缺的部分进行联立,解方程求解空缺处的答案。
4. 解答题
•分析问题:对于解答题,首先要充分理解问题的要求和限制条件,有针对性地进行分析。
•简洁明了的表达:在解答问题时,要尽量用简洁明了的语言和符号,避免冗长和歧义。
•举例和论证:通过举例和论证来证明所给答案的正确性,增加解答的可信度。
5. 解题策略
•看清关键信息:题目中常常会有一些关键信息,通过仔细阅读题目,抓住这些关键信息来辅助解题。
•分析题目结构:将问题分解为更小的问题,并且对每个小问题进行分析和解答。
•多角度思考:尝试从不同的角度和方法来考虑问题,增加解题的灵活性和创造力。
通过以上的解题技巧和策略,在数学中考中解答压轴题将会更加
得心应手。
希望同学们能够充分理解和掌握这些技巧,取得好的成绩!。
中考数学压轴攻略

中考数学压轴题攻略
一、中考数学压轴题命题规律
1. 知识分布:数形结合思想、分类讨论思想、函数与方程思想、应用题。
2. 题型:几何压轴题、代数压轴题、几何代数综合压轴题。
3. 解题方法:构造法、分类讨论法、反证法、图解法。
二、中考数学压轴题难度的原因
1. 题目的设计包含了多个知识点,要求学生具有发散思维和综合能力。
2. 题目的解题方法多样,要求学生有深入的思考和研究。
3. 题目信息量大,需要学生有筛选和整理信息的能力。
4. 题目设计有陷阱,要求学生细心审题,避免失误。
三、中考数学压轴题解题策略
1. 认真审题,理解题意,确定解题思路。
2. 挖掘已知条件,找出关键信息和隐藏信息。
3. 运用所学知识,将问题分解为若干个较小的部分,逐一解决。
4. 综合各部分的结果,得出答案。
四、中考数学压轴题训练方法
1. 多做真题,熟悉题型和解题方法。
2. 注重基础知识的掌握,不要忽视课本上的例题和练习题。
3. 培养自己的思维能力和解决问题的能力。
4. 学会总结和归纳,找出自己的薄弱环节,针对性地加强训练。
5. 在考试中保持冷静,不要因为遇到难题而影响心态。
五、中考数学压轴题注意事项
1. 注意时间分配,不要在难题上花费太多时间。
2. 注意解题步骤的清晰和完整,不要跳步或省略步骤。
3. 注意答案的准确性和规范性,不要犯低级错误。
4. 注意心态的调整,不要因为遇到难题而产生负面情绪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题解题技巧湖北竹溪城关中学明道银数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。
因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。
解中考压轴题技能技巧:一是对自身数学学习状况做一个完整的全面的认识。
根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。
所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
二是解数学压轴题做一问是一问。
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
三是解数学压轴题一般可以分为三个步骤。
认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。
所以,解数学压轴题,一要树立必胜的信心,要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
示例:(以2009年河南中考数学压轴题)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E.①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值. 解:(1)点A 的坐标为(4,8) …………………1分 将A(4,8)、C (8,0)两点坐标分别代入y=ax 2+bx得8=16a+4b0=64a+8b 解得a=-12,b=4 ∴抛物线的解析式为:y=-12x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t . ∴点E的坐标为(4+12t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分 ∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分中考数学《三类押轴题》专题训练第一类:选择题押轴题1. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10-+=有两个不相等的实数根,那么k 的取值范围是【 】 A .k <12 B .k <12且k≠0 C .﹣12≤k <12 D .﹣12≤k <12且k≠0【题型】方程类代数计算。
【考点】 ; 【方法】 。
2. (2008武汉市3分)下列命题: ①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.【题型】方程、等式、不等式类代数变形或计算。
【考点】 ; 【方法】 。
3. (2012湖北宜昌3分)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】A .第四象限B .第三象限C .第二象限D .第一象限 【题型】代数类函数计算。
【考点】 ; 【方法】 。
4. (2012湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax2+bx+c的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0;④8a+c >0.其中正确的有【 】A .3个B .2个C .1个D .0个 【题型】函数类代数间接多选题。
【考点】 ; 【方法】 。
OAFCEB5. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )A1 BCD .52【题型】几何类动态问题计算。
【考点】 ; 【方法】 。
6. (2012年福建3分)如图,点O是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( )A . EF>AE+BF B. EF<AE+BFC.EF=AE+BFD.EF ≤AE+BF【题型】几何类证明。
【考点】 ; 【方法】 。
7. (2012湖北武汉3分)在面积为15的平行四边形ABCD 中,过点A作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为【 】 A .11B .11C .11或11D .11或1【题型】几何类分类问题计算。
【考点】 ; 【方法】 。
8. (2012湖北恩施3分)如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A=120°,则图中阴影部分的面积是【 】 AB .2C .3 D【题型】几何类面积问题计算。
【考点】 ; 【方法】 。
9. (2012湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【】.A .B .C .D .【题型】几何类识图问题判断。
【考点】 ; 【方法】 。
10. (2012湖北黄冈3分)如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm ,点P 从点A 出发,沿AB 方向以每cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′.设Q 点运动的时间t 秒,若四边形QPCP′为菱形,则t 的值为【 】A.B. 2C.D. 4【题型】几何类动态问题计算。
【考点】 ; 【方法】 。
11. (2012湖北十堰3分)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S 四形边⑤AOC AOB S S += .其中正确的结论是【 】A .①②③⑤B .①②③④C .①②③④⑤D .①②③ 【题型】几何类间接多选题。
【考点】 ; 【方法】 。
12. (2012湖北孝感3分)如图,在菱形ABCD 中,∠A =60º,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论,其中正确的有【 】①∠BGD =120º;②BG +DG =CG ;③△BDF ≌△CGB ;④2ADE S ∆. A .1个 B .2个 C .3个 D .4个 【题型】几何类间接多选题。