运筹学 运输问题

合集下载

运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)运筹学运输问题个人总结前言运筹学是一门应用数学学科,旨在通过数学模型和优化算法解决现实生活中的决策问题。

其中,运筹学运输问题是运筹学的基础领域之一,涉及到在给定条件下最佳化资源利用、降低成本、提高效率等方面的问题。

正文在个人学习运筹学运输问题的过程中,我总结了以下几个重要要点:1.运输网络规划:运输问题的首要任务是确定运输网络的结构和连接方式。

这包括确定供应商、仓库、需求点之间的连接关系,以及各个节点的运输容量和成本等。

通过合理规划运输网络,可以实现资源的合理分配和供需的良好匹配。

2.运输成本优化:在确定了运输网络之后,需要通过优化算法求解最佳的运输方案。

这涉及到在满足各种限制条件下,如最小化运输成本、最大化资源利用率等指标的优化问题。

常用的算法包括线性规划、整数规划、动态规划等。

3.路线优化和物流调度:针对具体的运输任务,需要进行路线优化和物流调度。

通过合理的路径规划和物流调度,可以降低运输时间和成本,提高物流效率。

常用的算法包括最短路径算法、最优传送门问题等。

4.风险管理和决策支持:在运输过程中,会存在各种不确定性和风险因素。

因此,需要通过风险管理和决策支持技术来应对不确定情况。

常见的方法包括风险评估、灵敏度分析、决策树等。

结尾通过学习和研究运筹学运输问题,我深刻认识到其在现代物流和供应链管理中的重要性。

合理的运输规划和优化能够帮助企业降低成本、提高效率,实现可持续发展。

通过不断学习和实践,我将不断提升自己在这一领域的能力,并在实践中探索更多有创新性和实用性的解决方案。

运筹学运输问题个人总结(续)路线优化和物流调度在路线优化和物流调度方面,我学到了以下几个重要的观点:•路线优化:通过使用最短路径算法、最优传送门问题等优化算法,可以找到最佳路径来减少运输时间和成本。

另外,还可以考虑交通拥堵等因素,选择避开高峰期的最佳路径。

•物流调度:对于大规模的运输网络,物流调度成为一个重要的挑战。

运筹学 04 运输问题

运筹学 04 运输问题

x23
2,12 2 a2’’=0 b3’=10 第2行
x13
16,10 10 a1’=6 b3’’=0 第3列
产量 16 10 22
新产量 新销量 划去
14
销量
8
14
12
14
西北角法步骤 运价表中找出西北角(左上角)运价cij 在该处确定运量xij=min(ai,bj) 计算剩余产量ai’=ai-xij和剩余销量bj’=bj-xij,则出现 (1)ai’=0,bj’≠0——划去第i行运价; (2)ai’≠0,bj’=0——划去第j列运价; (3)ai’=0,bj’=0——划去第i行或第j列运价 重复上述,直到获得(m+n-1)个运输数量
例2:某部门三个工厂生产同一产品的产量、四个销售点的 销量及单位运价如下表。求最低运输费的运输方案。
产地 A1 A2 A3 销量
B1 4 2 8 4
B2 12 10 5 3
B3 4 3 11 5
B4 11 9 6 6
产量 8 5 9
解答
由于总产量=8+5+9=22,总销量=4+3+5+6=18,总产量>总销 量,属于产大于销的产销不平衡运输问题。增加一个销地, 销量b5=22-18=4;运价为0。得到产销平衡表如左表。表上作 业法结果见右表。 产地 B1 B2 B3 A1 4 12 4 A2 2 10 3 A3 8 5 11 销量 4 3 5 B4 11 9 6 6 B5 产量 0 8 0 5 0 9 4 产地 B1 A1 1 A2 4 A3 10 销量 4 B2 3 3 B3 4 1 9 5 B4 0 6 6 B5 产量 4 8 1 5 5 9 4
设xij为从Ai运输到Bj的产品数量,若Σai=Σbj,则称为产销平衡 的运输规划问题,数学模型为 min f=c11x11+…+c1nx1n+c21x21+…+cmnxmn xi1+xi2+…+xin=ai (i=1,2,…,m) x1j+x2j+…+xmj=bj (j=1,2,…,n) xij≥0 (i=1,2,…,m;j=1,2,…,n)

运筹学 运输问题

运筹学 运输问题

运筹学运输问题
运筹学是一门研究如何最优地规划和管理资源以实现预定目标的学科。

在运筹学中,运输问题是其中一个重要的应用领域。

运输问题主要关注如何有效地分配有限的资源到不同的需求点,以最小化总体运输成本或最大化资源利用效率。

这些资源可以是货物、人员或其他物资。

运输问题通常涉及到多个供应地点和多个需求地点之间的物流调度。

运输问题的目标是找到一种最佳的调度方案,使得满足所有需求的同时,总运输成本达到最小。

为了解决运输问题,可以采用线性规划、网络流和启发式算法等方法。

在运输问题中,需要确定以下要素:
1. 供应地点:确定从哪些地点提供资源,例如仓库或生产基地。

2. 需求地点:确定资源需要分配到哪些地点,例如客户或销售点。

3. 运输量:确定每个供应地点与需求地点之间的运输量。

4. 运输成本:确定不同供应地点与需求地点之间运输的成本,可以
包括距离、时间、燃料消耗等因素。

通过数学建模和优化技术,可以对这些要素进行量化和分析,以求得最佳的资源分配方案。

这样可以降低运输成本、提高物流效率,并且满足不同地点的需求。

总而言之,运输问题是运筹学中的一个重要领域,涉及到如何有效地规划和管理资源的物流调度。

通过数学建模和优化方法,可以找到最优的资源分配方案,从而实现成本最小化和效率最大化。

运筹学运输问题案例

运筹学运输问题案例

运筹学运输问题案例
以下是一个简单的运筹学运输问题的案例:
假设有一个公司需要将产品从三个工厂运输到四个销售点。

工厂和销售点的位置以及它们之间的运输成本如下:
工厂A到销售点1:10元
工厂A到销售点2:20元
工厂A到销售点3:30元
工厂A到销售点4:40元
工厂B到销售点1:20元
工厂B到销售点2:30元
工厂B到销售点3:10元
工厂B到销售点4:40元
工厂C到销售点1:30元
工厂C到销售点2:10元
工厂C到销售点3:20元
工厂C到销售点4:20元
公司希望找到一种运输策略,使得总运输成本最低。

可以使用运筹学中的运输模型来解决这个问题。

首先,我们需要确定每个工厂向每个销售点运输的货物数量。

为了最小化总成本,可以使用线性规划来求解这个问题。

在Excel或其他电子表格软件中,可以使用“Solver”插件来找到最优解。

根据最优解,我们可以计算出最低总运输成本。

例如,如果最优解是工厂A 向销售点1运输3个单位,向销售点2运输2个单位,向销售点3运输1
个单位,向销售点4运输0个单位;工厂B向销售点1运输2个单位,向
销售点2运输3个单位,向销售点3运输0个单位,向销售点4运输1个
单位;工厂C向销售点1运输1个单位,向销售点2运输0个单位,向销
售点3运输3个单位,向销售点4运输2个单位,那么最低总运输成本为150元。

运筹学运输问题-图文

运筹学运输问题-图文
❖ 建模:设xij为从产地Ai运往销地Bj的物资数量(i=1, …m;j=1,…n。
销地 B1
B2
...
Bn
产量
产地
A1
X11 X12
...
X1n
a1
A2
X21 X22
...
X2n
a2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Am
Xm1 Xm2
...
Xmn
am
销量
b1
b2
...
bn
则运输问题的数学模型如下:
产销平衡表
销地 B1
B2
...
Bn
产量
产地
A1
a1
A2
a2
.
.
.
.
.
.
Am
am
销量
b1
b2
...
bn
单位运价表
销地
B1
B2
...
Bn
产地
A1
c11
c12
...
c1n
A2
c21
c22
...
c2n
.
.
.
.
.
.
.
.
.
.
.
.
Am
cm1
cm2
...
cmn
❖ 若总产量等于总销量(产销平衡),试确定总运费最省 的调运方案。
Table14 检验数表
销地
B1
B2
B3
B4
产地
A1

(典型例题)《运筹学》运输问题

(典型例题)《运筹学》运输问题
第四天送洗:y451200
xj0,yij0,zij0,(i=1,┈,4;j=1,┈,5)
2008/11
--22--
--《Ⅵ 产量
新购 1 第一天 M 第二天 M 第三天 M
第四天 M
1 1 1 1 0 5200
0.2 0.1 0.1 0.1 0 1000
2008/11
--21--
建立模型:
--《运筹学》 运输问题--
设 xj—第j天使用新毛巾的数量;yij—第i天送第j天使用快洗 餐巾的数量;zij—第i天送第j天使用慢洗餐巾的数量;
Min z=∑xj+∑∑0.2yij+∑∑0.1zij
第一天:x1=1000
需 第二天:x2+y12=700
求 约
m1
xij b j (j 1,2,...,n)
i1
x 0 (i 1,...,m,m 1; j 1,...,n) ij
2008/11
--16--
--《运筹学》 运输问题--
销>产问题单位运价表
产地销地 B1 B2 ┈
A1
C11 C12 ┈
A2
C21 C22 ┈
┊ ┆┊┈
Am Cm1 Cm2 ┈
2008/11
--8--
产销平衡表
--《运筹学》 运输问题--
单位运价表
B1 B2 B3 B4 产量
A1 (1) (2) 4 3 7 A2 3 (1) 1 (-1) 4 A3 (10) 6 (12) 3 9 销量 3 6 5 6
B1 B2 B3 B4 A1 3 11 3 10 A2 1 9 2 8 A3 7 4 10 5
Ⅰ Ⅱ
示。又如果生产出来的柴

运筹学运输问题.

运筹学运输问题.

b K bK aL ,划掉运价表的第L行;反之,
'
若 x LK bK ,则令a L
的第k列。
'
aL bK ,划掉运价表
(2)在运价表剩余元素中重复(1),直
至运价表元素全部被划掉。
例:某糖果公司下设三个工厂,每日产量分别为:A1 — 7吨、A2 —4吨、A3 —9吨。该公司将这些产品运往四个 门市部,各门市部每日销量为:B1 —3吨、B2 —6吨、 B3 —5吨、B4 —6吨。各工厂到各门市部的单位运价如 下表,试确定最优的运输方案。
运输问题求解思路图
下面通过例子介绍它的计算步骤。
一、初始方案的给定
1、最小元素法★ 2、Vogel法★
1、最小元素法
基本思路是:就近供应,即从运价表中 最小运价开始确定调运量,然后次小,一直 到给出初始调运方案为止。
(1)找出运价表中最小元素 CLK ,确 定 xLK minaL , bK ,若 x LK a L,则令
x11 x21 xm1 b1 x x x b 12 22 m2 2 x1n x2n xmn bn xij 0(i 1,2,m; j 1,2,n)
min
Z cij xij
若总产量等于总销量(产销平衡),试确定总运费最省
的调运方案。

建 模 : 设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n。 销地 产地 A1 A2
. . .
B1 X11 X21
. . .
B2 X12 X22
. . .
... ... ...
. . .

《管理运筹学》02-7运输问题

《管理运筹学》02-7运输问题
在运输问题中,混合整数规划可以处理更为复 杂的约束条件和多阶段决策过程。
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b=3000,2000,1000;
c=1.8,1.55,1.7,1.6,1.75,1.5;
enddata
[OBJ]min=@sum(link(i,j):c(i,j)*x(i,j));
x(1,1)+x(2,1)=3000;
x(1,2)+x(2,2)=2000;
x(1,3)+x(2,3)=1000;
x(1,1)+x(1,2)+x(1,3)=4000;
x(2,1)+x(2,2)+x(2,3)=2000;
@for(link(i,j):x(i,j)>0;);
End
运行程序后可得可得:供应商甲运到A校区1000t煤,供应商甲运到B校
区2000t煤,供应商甲运到C校区1000t煤,供应商乙运到A校区2000t煤,
供应商乙运到B校区0t煤,供应商乙运到C校区0t煤,总运费最低为:
c=c(1,1),c(1,2),…,c(1,n),
c(2,1)c(2,2),…c(2,n),

c(m,1),c(m,2),…c(m,n);
enddata
[OBJ]min=@sum(link(i,j):c(i,j)*x(i,j));
@for(row(i):@sum(arrange(j):x(i,j))=a(i););
11.15,0,0,0,11.30;
enddata
[OBJ]min=@sum(link(i,j):c(i,j)*x(i,j));
x(1,1)=10;
x(1,2)+x(2,2)=25;
x(1,3)+x(2,3)+x(3,3)=25;
x(1,4)+x(2,4)+x(3,4)+x(4,4)=20;
x(1,1)+x(1,2)+x(1,3)+x(1,4)<=25;
售价也相同,两处煤矿能够供应的数量分别为4000t和2000t,其单位运价如
表3-3所示。试给出该学校总运费最低的取暖用煤调运方案
model:
sets:
row/1,2/:a;
arrange/1,2,3/:b;
link(row,arrange):c,x;
endsets
data:
a=4000,2000;
@for(arrange(j):@sum(row(i):x(i,j))=b(j););
@for(link(i,j):x(i,j)>=0;);
End
二、实验过程记录:
3.1某学校有A,B,C三个校区,每年冬天分别需要取暖用煤3000t,2000t,1000t,根据实际情况,拟从甲地和乙地两处煤矿调运用煤。已知两处煤矿的煤的质量相同,
产销平衡模型:
产销不平衡模型:
产大于销
销大于产
2、产销平衡问题的运输问题模型给出一般的LINGO模型如下:
model:
sets:
row/1…m/:a;
arrange/1…n/:b;
link(row,arrange):c,x;
endsets
data:
a=a(1),a(2),…,a(m);
b=b(1),b(2),…b(n);
link(row,arrange):c,x;
endsets
data:
a=...;
b=...;
c=...;
enddata
[OBJ]min=@sum(link(i,j):c(i,j)*x(i,j));
@for(link(i,j):x(i,j)>=0;);
实验报告成绩(百分制)__________实验指导教师签字:__________
费用最少,或运输路线最短?这类问题的数学模型就是运输规划模型,事实上
运输规划是一类特殊的线性规划。
运输规划分为,产销平衡和产销不平衡两个问题。当产销不平衡时,我们
可以通过增加销售地或者增加产地从而使得该类问题转化为产销平衡问题。本
次实验主要研究运输问题中的产销平衡和产销不平衡的求解。
1、掌握线性规划问题求解原理;
9800.00.
3.4某机械制造厂按合同规定需要于当年每个季度末分别提供10,15,25,
20台同型号的拖拉机已知该厂各季度的生产能力及生产每台拖拉机的成本费
用如表3-6所示。又如果生产出来的拖拉机当季不交货,每台每积压一个季度
需储存和维护保养等费用0.15万元。要求在完成合同的情况下,做出使该
厂全年生产(包括储存、维护)费用为最小的决策方案。
实验报告
课程名称:___运筹学 ____ 项目名称:_运输问题
姓名:__专业:_ 班级:班学号:同组成员:___
一、实验准备:
在社会、经济和军事等领域中,经常会遇到大宗物资的调运问题,如煤、
钢铁、木材、粮食、军事装备等,如果有若干个生产或储存地,则根据已有的
交通网,应如何制定调运方案?将这些物资运到消费(或使用)地,使总的运输
台,第二季度卖10台,第三季度卖0台,第四季度卖5台;第三季度生产拖
拉机在第一季度卖0台,第二季度卖0台,第三季度卖25台,第四季度卖5
台;第四季度生产拖拉机在第一季度卖0台,第二季度卖0台,第三季度卖0
台,第四季度卖10台。这样安排生产使得全年生产费用最小,最小费用为:
884万元。
三、实验小结
1.通过这次实验学会建立和运输相关的某些数学模型的建立以及运用LINGO
model:
sets:
row/1,2,3,4/:a;
arrange/1,2,3,4/:b;
link(row,arrange):c,x;
endsets
data:
a=25,35,30,10;
b=10,15,25,20;
c=10.80,10.95,11.10,11.25,0,11.10,11.25,11.40,0,0,11.00,
模型解决现实生活中的问题,使原本复杂的问题变得清晰明了。
2.利用LINGO求解运输问题的产销平衡,使得总运费最小,且有m+n个约束
条件,m+n-1个独立的约束方程,系数矩阵的秩不超过m+n-1.
3.知道了LINGO计算运输规划问题的模型为:
model:
sets:
row/.../:a;
arrange/.../:b;
x(2,2)+x(2,3)+x(2,4)<=35;
x(3,3)+x(3,4)<=30;
x(4,4)<=10;
@for(link(i,j):x(i,j)>=0;);
end
运行程序后的出:第一季度生产拖拉机在第一季度卖10台,第二季度卖15
台,第三季度卖0台,第四季度卖0台;第二季度生产拖拉机在第一季度卖0
相关文档
最新文档