高等数学下试题及参考答案华南农业大学精选

合集下载

高数(下学期)试卷及参考答案

高数(下学期)试卷及参考答案

华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n ∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是 ( )A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分) 1.微分方程''6'90y y y -+=的通解为__________.2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz .7.计算二重积分cos Dydxdy y⎰⎰,其中D是由y =y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线.2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.4.计算曲面积分=++,I xdydz ydzdx zdxdy)∑其中∑为上半球面z=参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y=-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分)2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xyz z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分) 243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z zz z F F z z yx F e y F e∂∂=-==-=∂+∂+.........(5分) 故1(2)1z z z dz dx dy dx ydy x y e∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =y x =围成的区域.解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分)212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.解:'DD σθ=..........(2分)12d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂1.5CM3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑上a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分)而1)xdydz ydzdx zdxdy ∑++100Dzdxd y dxdy ∑===.......(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。

2011高等数学下试卷及答案

2011高等数学下试卷及答案

华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是( )(今年不作要求)A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程''6'90y y y -+=的通解为_____.(今年不作要求) 2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域. 6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz. 7.计算二重积分cos Dydxdy y⎰⎰,其中D 是由y y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.(今年不作要求)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z =(今年不作要求)参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y =-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分) 2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2zx y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xy z z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分)243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010n n ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z z z z F F z z y x F e y F e ∂∂=-==-=∂+∂+.........(5分) 故1(2)1zz z dz dx dy dx ydy x y e ∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =及y x =围成的区域. 解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分) 212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定. 解:'DD σθ=..........(2分)120d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分) 而111()00a xdydz ydzdx zdxdy azdxdy dxdy ∑∑∑++===⎰⎰⎰⎰⎰⎰.....(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。

2017-2018学年高等数学期末试卷A及参考答案

2017-2018学年高等数学期末试卷A及参考答案

华南农业大学期末考试试卷(A 卷)2017~2018学年第2学期 考试科目:高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分) 1.设{3,1,1}=a,{2,0,1}=b ,则23-=a b .2.函数zy u x ⎛⎫= ⎪⎝⎭在点(1,1,2)处的全微分为 .3.设{(,)1}D x y x y =+≤,则二重积分(||)Dx y dxdy +=⎰⎰ .4.幂级数21(1)2nn n n x +∞=-∑的收敛区间为 .5.微分方程2(1)2x y xy '''+=满足初始条件(0)1,(0)3y y '==的特解为 .二、单项选择题(本大题共5小题,每小题3分,共15分) 1.平面3380x y --=与z 轴的位置关系是( )A .平行于z 轴;B .垂直于z 轴;C .斜交于z 轴;D .包含z 轴.2.函数(3)zxy x y =--的极值点是()(A )(0,0); (B )(1,1); (C )(3,0); (D )(0,3) 3.2111(,)xdx f x y dy =⎰⎰ ( )A .12112(,)xdy f x y dx ⎰⎰; B .2111(,)xd y f x y dx ⎰⎰;C .12112(,)ydy f x y dx ⎰⎰; D .2211(,)ydy f x y dx ⎰⎰.4.下列级数收敛的是 ( )A .11(2)n n n n +∞=++∑; B .132nn n n +∞=⋅∑; C .11ln n n n +∞=+∑; D.1n +∞=. 5.差分方程120t ty y +-=的通解为 ( )A .2t t y C =;B .2t t y Ct =⋅;C .12()2t t y C t C =+⋅;D .12()2t t y t C t C =+⋅.三、计算题(本大题共6小题,每小题8分,共48分) 1. 求过点(2,0,2)-且与212:123x y z L --==垂直的平面方程.2. 设函数ln()z y xy =,求2z x y ∂∂∂及22zy ∂∂.3. 设2ln z u v =,32,yu x y v x=+=,求dz .4.试将函数()lg f x x =展开成1x -的幂级数,并求展开式成立的区间.5.计算二重积分sin DyI dxdy y=⎰⎰,其中D 是由直线y x =及2y x =所围成的闭区域.6.设方程组dD Y dt αβ=+;dYY dtγ=,其中,()D D t =表示国民债务,()Y t 表示国民收入, 0,0,0αβγ>>>均为已知常数,若0(0)D D =,0(0)Y Y =,求()D t 和()Y t四、解答题(本大题共3小题,第1题 10分,第2、3题各6分,共 22 分) 1.某工厂生产甲、乙两种产品的日产量分别为x 件和y 件,总成本函数为22(,)1000812C x y x xy y =+-+ (元)。

华农高数下期末试卷

华农高数下期末试卷

装订线华南农业大学期末考试试卷(A卷)2009~2010学年第2学期考试科目:高等数学AⅡ考试类型:(闭卷)考试考试时间:120 分钟学号姓名年级专业题号一二三四总分得分评阅人一、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程'220y y x---=是()A.齐次方程B.可分离变量方程C.一阶线性方程D.二阶微分方程2.过点(1,2,--且与直线25421x y z+-==-垂直的平面方程是()A.4250x y z+-+=B.4250x y z++-= C.42110x y z+-+=D.42110x y z++-=3.设(,)ln()2yf x y xx=+,则(1,1)yf=()A.0 B.13C.12D.24.若lim0nnu→∞=,则级数1nnu∞=∑()A.可能收敛,也可能发散B.一定条件收敛C.一定收敛D.一定发散5.下列级数中发散的是()A .112nn∞=∑B.111(1)nn n∞-=-∑C.111n n n∞=+∑D.311(1)n n n∞=+∑得分装订线二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y-+=的通解为____________________。

2.设有向量(4,3,0),(1,2,2)a b==-,则2a b+=____________________。

3.设有向量(1,1,0),a b==-,它们的夹角为θ,则c o sθ=____________________。

4.设xz y=,则dz=____________________。

5.设L是圆周229x y+=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy-+-⎰ 的值为____________________。

三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctanxzy=,求2,z zx x y∂∂∂∂∂。

高等数学下试卷及答案 2复习课程

高等数学下试卷及答案 2复习课程

2009高等数学下试卷及答案2仅供学习与交流,如有侵权请联系网站删除 谢谢2华南农业大学期末考试试卷(A 卷)2008--2009学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一.填空题(本大题共5小题,每小题3分,共15分。

将答案写在横线上)1.微分方程"2'40y y y ++=的通解为_______________。

(今年不作要求)2.设y z x =,则dz = 。

3.设L 是圆周221x y +=,L 取逆时针方向,则2Lydx xdy +=⎰__________。

4.设0,||3,||1,||2a b c a b c ++====, 则a b b c c a ⋅+⋅+⋅= 。

5. 级数11(1)n n ∞-=-∑是____________级数(填绝对收敛,条件收敛或发散)。

二.单项选择题(本大题共5小题,每小题3分,共15分。

) 1.过点(2,3,1)-且垂直于平面2310x y z +++=的直线方程是( )A .231231x y z -++==B .231231x y z -+-==-- C .231231x y z -+-== D .231231x y z ---==-仅供学习与交流,如有侵权请联系网站删除 谢谢32.设22()z y f x y =+-,其中()f u 是可微函数,则zy∂=∂ ( )A .22'12()yf x y +-B .22'12()yf x y --C .2222'1()()x y f x y +--D .222'1()y f x y -- 3.下列级数中收敛的是( )A.1n ∞= B .11n nn ∞=+∑C .112(1)n n ∞=+∑ D.1n ∞=4. 设D:4122≤+≤y x ,f 在D 上连续,则⎰⎰+Dd y x f σ)(22在极坐标系中等于( )A. dr r rf ⎰21)(2π B. dr r rf ⎰212)(2πC. ⎰⎰-102202])()([2dr r f r dr r f r π D. ⎰⎰-12202])()([2dr r rf dr r rf π5.一曲线过点,且在此曲线上任一点),(y x M 的法线斜率ln xk y x=-,则此曲线方程为( )A. 21ln 22x y e=B. 21ln 21)2x y e =C. 21ln 212x y x e =+ D. 21ln 2x y e =三.计算题(本大题共6小题,每小题5分, 共30分)1.已知2sin()z y xy x =+,求z x ∂∂,2zx y∂∂∂。

11学年第二学期大学数学2试卷(A卷)-参考答案

11学年第二学期大学数学2试卷(A卷)-参考答案

2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3. 518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分) 则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分)(2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分) 2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为 (5分) (3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分)3. 解(1)111011{1}{11}12x x P X P X e dx e dx e ---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20x x F y P X y P X dx dx --=<=<== (8分)所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他(3分)(2){}(,)y x P Y X f x y dxdy <<=⎰⎰3300[]x y edy dx -=⎰⎰ (6分) 330(1)x e dx -=-⎰3390181()333xx e e --=+=+()9183e -=+ (8分)(3)解:由密度函数可知~(0,3),~(3)X U Y E (10分) 所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+= (14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分) 依题意,取统计量:222(1)~(1)n S n χχσ-=-,15n =. (3分) 查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分) 计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86y x =-+ (8分)。

高等数学B-下册-历年考试题目及答案

华南农业大学期末考试试卷(A 卷)2004学年第2学期 考试科目 高等数学(经济类)考试类型:(闭卷) 考试时间: 120分钟学号 姓名 专业年级一、填空题(每空2分)1.设函数()f x 可微,若()()01,11,1lim2x f x f x x →+--=,则11x y fx==∂∂= 。

2.设(){}22,4D x y xy y =+≤,则(),Df x y dxdy ⎰⎰在极坐标系下的二次积分为。

3.()200sin limx y xy x→→= 。

4.级数1025n n +∞=⎛⎫⎪⎝⎭∑= 。

5.设2x xy z y e =+,则()1,2z y∂∂= 。

6.320y y y '''-+=的通解为 。

7.设收益函数()260R x x x =-(元),当产量10x =时,其边际收益是 。

8. 差分方程12n n n y y n +-=⋅的通解为 。

9. 函数()sin 2x z e x y -=+在点04π⎛⎫⎪⎝⎭,处的全微分为 。

10. 若级数211p n n∞+=∑发散,则p ≤ 。

二、选择题(每题3分)1. 若lim 0n n u →∞=,则级数1n n u ∞=∑( )A 条件收敛B 发散C 不能确定D 收敛2. 设22D 14x y ≤+≤:,则二重积分Ddxdy ⎰⎰=( ) A π B 4π C 3π D 15π3. 微分方程3xy y '+=满足条件()10y =的特解是( )()11313111A B x C D x x x ⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭4. 设点()00,是函数(),f x y 的驻点,则函数(),f x y 在()00,处( ) A 必有极大值 B 可能有极值,也可能无极值 C 必有极小值 D 必无极值5. 若级数1n n u ∞=∑及1n n v ∞=∑都发散,则( )A()1nn n uv ∞=+∑必发散 B ()1n n n u v ∞=∑必发散C()1nn n uv ∞=+∑必发散 D ()221n n n u v ∞=+∑必发散三、计算题(每题8分) 1. ()arctan z xy =,求dz2. 设()22,z f x y xy =-,f 可微,求zx∂∂ 3. 求级数13nnn x n ∞=⋅∑的收敛域 4. 将函数()14f x x=-展开成()2x -的幂级数,并确定收敛区间 5. 求由抛物面225z x y =--与平面1z =所围成的立体的体积。

2010高等数学下试卷及答案

华南农业大学期末考试试卷(A 卷)2009~2010学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程'220y y x ---=是( )A .齐次方程B .可分离变量方程C .一阶线性方程D .二阶微分方程2.过点(1,2,--且与直线25421x y z +-==-垂直的平面方程是( )A .4250x y z +-+=B .4250x y z ++-=C .42110x y z +-+=D .42110x y z ++-= 3.设(,)ln()2yf x y x x=+,则(1,1)y f =( ) A .0 B .13 C .12D .24.若lim 0n n u →∞=,则级数1n n u ∞=∑( )A .可能收敛,也可能发散B .一定条件收敛C .一定收敛D .一定发散5.下列级数中发散的是( )A .112n n ∞=∑ B .11(1)n n ∞-=-∑ C .n ∞= D .n ∞= 二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y -+=的通解为______。

(今年不作要求)2.设有向量(4,3,0),(1,2,2)a b ==-,则2a b +=____________________。

3.设有向量(1,1,0),a b ==-,它们的夹角为θ,则c o s θ=____________________。

4.设x z y =,则dz =____________________。

5.设L 是圆周229x y +=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰的值为____________________。

三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctan x z y =,求2,z z x x y∂∂∂∂∂。

2009高等数学下试卷及答案

华南农业大学期末考试试卷(A 卷)2008--2009学年第2学期 考试科目:高等数学A Ⅱ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一.填空题(本大题共5小题,每小题3分,共15分。

将答案写在横线上) 1.微分方程"2'40y y y ++=的通解为_______________。

(今年不作要求) 2.设y z x =,则dz = 。

3.设L 是圆周221x y +=,L 取逆时针方向,则 2Lydx xdy +=⎰Ñ__________。

4.设0,||3,||1,||2a b c a b c ++====u r, 则a b b c c a ⋅+⋅+⋅= 。

5. 级数1(1)n n ∞-=-∑是____________级数(填绝对收敛,条件收敛或发散)。

二.单项选择题(本大题共5小题,每小题3分,共15分。

)1.过点(2,3,1)-且垂直于平面2310x y z +++=的直线方程是( )A .231231x y z -++==B .231231x y z -+-==-- C.231231x y z -+-== D .231231x y z ---==- 2.设22()z y f xy =+-,其中()f u 是可微函数,则zy ∂=∂ ( )A .22'12()yf x y +-B .22'12()yf x y --C .2222'1()()x y f x y +--D .222'1()y f x y -- 3.下列级数中收敛的是( )A .1n ∞=B .11n nn ∞=+∑C .112(1)n n ∞=+∑D .n ∞=4. 设D:4122≤+≤y x ,f 在D 上连续,则⎰⎰+Dd y x f σ)(22在极坐标系中等于( )A. dr r rf ⎰21)(2π B. dr r rf ⎰212)(2πC. ⎰⎰-1222])()([2dr r f r dr r f r π D. ⎰⎰-1222])()([2dr r rf dr r rf π5. 一曲线过点,且在此曲线上任一点),(y x M 的法线斜率ln xk y x=-,则此曲线方程为( )A. 21ln 22x y e=B. 21ln 21)2x y e =C. 21ln 2122x y x e =+ D. 21ln 2x y e =三.计算题(本大题共6小题,每小题5分, 共30分)1.已知2sin()z y xy x =+,求z x∂∂,2z x y ∂∂∂。

高等数学下试题及参考答案

华南农业大学期末考试试卷〔A 卷〕2021~2021 学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:〔闭卷〕考试 考试时间: 120 分钟 学号 姓名 年级专业〔估计不考或考的可能性比拟小的题目已删除〕一、填空题〔本大题共5小题,每题3分,共15分〕 1.二元函数2ln(21)z y x =-+的定义域为 。

2. 向量(,1,5)a λ=与向量(2,7,1)b =-垂直,则λ= 。

3.直线223314x y z -+-==-与平面3x y z ++=的夹角为 。

4.设2y z x =,则zy∂=∂ 。

5.当参数p 满足条件 时,级数111p n n∞+=∑收敛。

二、单项选择题〔本大题共5小题,每题3分,共15分〕1.微分方程2'cos y y x =的通解是 〔 〕A .1sin y x C =-+ B .1sin y x C =+C .1sin y C x =-+D .1sin y C x=+2.求极限(,)(0,2)sin()limx y xy x→= 〔 〕A .1B .2C .不存在D .y3.通过y 轴和点(3,2,1)--的平面方程为 〔 〕A .30x y +=B .30x z +=C .30x z +=D .30x y +=4.D 是由曲线221x y += 围成的闭区域,则3Ddxdy =⎰⎰ 〔 〕A .πB .3πC .0D .2π 5.级数2010(sin10)n n ∞=∑ 〔 〕A .发散B .条件收敛C .绝对收敛D .不能判定三、计算题〔本大题共7小题,每题7分,共49分〕'yy x y=+的通解。

1(1)nn n n x∞=+∑的和函数。

3.设由方程ln y zz x=确定隐函数(,)z z x y =,求全微分dz 。

4.求曲线积分3()Lx y ds +⎰,其中L 为连接点(1,0)及(0,1)的直线段。

5.计算22xy De dxdy --⎰⎰,其中222{(,)|}D x y x y a =+≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A 卷)2013~2014学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.微分方程'ln xy y y =的通解 。

2. 设有向量(4,3,0)a =r ,(1,2,2)b =-r ,则数量积a b ⨯=r r。

3.过点(-1,1,0)且与平面3+2-130x y z -=垂直的直线方程是 。

4.设2sin()z xy =,则zy∂=∂ 。

5.交换积分次序2220(,)y ydy f x y dx ⎰⎰ 。

二、单项选择题(本大题共5小题,每小题3分,共15分) 1.设L 为直线0,0,1x y x ===及1y =所围成的正方形边界,取正向,则322()()Lx xy dx x y dy +++⎰Ñ等于 ( )A .1-B .1C .12 D .142.已知a i j k =++r r r r,则垂直于a r 且垂直于x 轴的单位向量是( )A .()i k ±-r rB .()2j k ±-r rC .)2j k ±+r rD .()2i j k ±-+r r r3.设ln z xy =(),则11x y dz===( )A .dy dx -B .dx dy +C .dx dy -D .04.对于级数1(1)np n n∞=-∑,有 ( )A .当1p >时条件收敛B .当1p >时绝对收敛C .当01p <≤时绝对收敛D .当01p <≤时发散 5.设10(1,2,)n u n n≤<=L ,则下列级数中必定收敛的是 ( )A .1n n u ∞=∑ B .1(1)nn n u ∞=-∑ C.1n ∞=D .21(1)n n n u ∞=-∑三、计算题(本大题共7小题,每小题7分,共49分) 1.计算二重积分arctanDyd xσ⎰⎰,其中D 是22{(,)10}x y x y y x +≤≤≤,。

2.设,f g 均为连续可微函数,(,)()u f x xy g x xy =+,求,u ux y∂∂∂∂。

3.设由方程z xyz e =确定隐函数(,)z z x y =,求全微分dz 。

4.判定级数12!nn n n n ∞=∑的敛散性。

5.使用间接法将函数24()4f x x=-展开成x 的幂级数,并确定展开式成立的区间。

6.求微分方程'cos yy x x x-=满足初始条件22x y ππ==-的特解。

7.计算二重积分Dσ⎰⎰,其中D是由曲线y =2y x =所围成的闭区域。

四、解答题(本大题共 3 小题,每小题 7 分,共 21 分) 1.L 是连接以(1,0)-为起点和(1,2)为终点的一条曲线,问当a 为何值时,曲线积分2322(6)(2)Lxy y dx a xy x y dy -+-⎰与积分路径无关,并计算此时的积分值。

2.要造一个容积等于定数k 的长方体无盖水池,应如何选择水池的尺寸,才能使它的表面积最小。

3.设()f x 在||1x <上有定义,在0x =某邻域有一阶连续的导数且0()lim 0x f x a x →=>,求证:(1)11()n f n ∞=∑发散;(2)-111()n n f n ∞=∑(-1)收敛。

华南农业大学期末考试试卷(A 卷)2013~2014学年第2 学期 考试科目:高等数学A Ⅱ参考答案 一、填空题(本大题共5小题,每小题3分,共15分) 1.Cx y e = 2.(6,-8,-11) 3.11321x y z+-==- 4.22cos()xy xy 5.12(,)x dx f x y dy ⎰⎰二、单项选择题(本大题共5小题,每小题3分,共15分)1.C 2.B 3.B 4.B 5.D三、计算题(本大题共7小题,每小题7分,共49分) 1.计算二重积分arctanDyd xσ⎰⎰,其中D 是22{(,)10}x y x y y x +≤≤≤,。

解:在极坐标中D 为{(,)001}4r r πθθ≤≤≤≤,………………3分arctanDDyd rd dr x σθθ=⎰⎰⎰⎰………………5分 140d rdr πθθ=⎰⎰………………6分264π=………………7分2.设,f g 均为连续可微函数,(,)()u f x xy g x xy =+,求,u u x y∂∂∂∂。

解:'''12((,)(,))()(1)(,)()zf x xy yf x xyg x xy y f x xy g x xy x∂=+++++∂…4分''2(,)()(,)()uxf x xy g x xy xf x xy g x xy y∂=+++∂………………7分 3.设由方程z xyz e =确定隐函数(,)z z x y =,求全微分dz 。

解:设(,,)z F x y z xyz e =-………………1分,,z x y z F yz F xz F xy e ===-………………4分,y x z zz z F F z yz z xzx F e xy y F e xy∂∂=-==-=∂-∂-………………6分 ()zzdz ydx xdy e xy=+-………………7分 4.判定级数12!nn n n n ∞=∑的敛散性。

解:11112!lim lim 2(1)!n n n n n n n nu n n u n n ρ+++→∞→∞+==+()………………4分 11lim (1)122n n en →∞=+=<………………………………6分 所以级数14!nn n n n ∞=∑发散………………………………7分5.使用间接法将函数24()4f x x =-展开成x 的幂级数,并确定展开式成立的区间。

解:211(11)1x x x x =+++-<<-QL 211(11)1x x x x=-++-<<+L ………………1分24111()()421122f x x xx ==+--+………………3分242214162nn x x x =+++++L L ………………5分展开式成立的区间为(2,2)-………………7分 6.求微分方程'cos yy x x x-=满足初始条件22x y ππ==-的特解。

解:原方程化为'cos yy x x x-= 11()()(())(cos )dx dxp x dxp x dxx x y e Q x e dx C e x x e C --⎰⎰⎰⎰=+=⋅+⎰⎰………………2分(sin )x x C =+………………5分 由22x yππ==-,得2C =-,特解为(sin 2)y x x =-………………7分7.计算二重积分Dσ⎰⎰,其中D 是由曲线y 2y x =所围成的闭区域。

解:2{(,)|01,D x y x x y =≤≤≤≤………………2分210xDdx σ=⎰⎰⎰………………4分714402()3x x dx =-⎰………………5分 655=………………7分四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)4.1.L 是连接以(1,0)-为起点和(1,2)为终点的一条曲线,问当a 为何值时,曲线积分2322(6)(2)Lxy y dx a xy x y dy -+-⎰与积分路径无关,并计算此时的积分值。

解:令23226,(2)P xy y Q a xy x y =-=-,则22(4),123Q Pa y xy xy y x y∂∂=-=-∂∂………………2分 令Q Px y∂∂=∂∂,得3a =-,曲线积分与路径无关………………3分 选择路径1212:0(11),:1(02)L L L L y x L x y =+=-≤≤=≤≤,,………………5分 2232220(6)(2)3(2)4Lxyy dx a xy x y dy y y dy -+-=--=⎰⎰………………7分2.要造一个容积等于定数k 的长方体无盖水池,应如何选择水池的尺寸,才能使它的表面积最小。

解:设水池的长、宽、高分别为,,x y z ,水池的表面积为A ,则22,A xy xz yz xyz k =++=………………2分令22()F xy xz yz xyz k λ=+++-………………4分2020220x yz F y z yz F x z xz F x y xy xyz k λλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪=⎩………………5分解得2x y z ===………………7分 3.设()f x 在||1x <上有定义,在0x =某领域有一阶连续的导数且0()lim 0x f x a x →=>,求证:(1)11()n f n ∞=∑发散;(2)-111()n n f n ∞=∑(-1)收敛。

解:因为0()lim0x f x a x →=>,所以当n 充分大后1()0f n>………………1分 又因为改变级数前面有限项不影响级数敛散性,所以可认为11()n f n ∞=∑是正项级数………………2分(1)因为01()()lim lim 01x n f f x n a xn→→+∞==>………………3分 11n n ∞=∑发散,所以11()n f n ∞=∑发散………………4分 (2)因为0()lim0x f x a x→=>,所以0lim ()0x f x →=又0lim ()(0)x f x f →=(连续),所以(0)0f =………………5分所以00()(0)()'(0)limlim 0x x f x f f x f a x x→→-===> 又'()f x 在0x =连续,得0lim ()(0)0x f x f a →''==>由极限性质得,当n 充分大时,1()f n单调递减………………5分又由0lim ()(0)x f x f →=得1lim ()0n f n→+∞=由莱布尼兹判别法得-111()n n f n ∞=∑(-1)收敛。

………………7分。

相关文档
最新文档