【华农期末复习卷】高数期末试题

合集下载

高数(下学期)试卷及参考答案

高数(下学期)试卷及参考答案

华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n ∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是 ( )A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分) 1.微分方程''6'90y y y -+=的通解为__________.2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz .7.计算二重积分cos Dydxdy y⎰⎰,其中D是由y =y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线.2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.4.计算曲面积分=++,I xdydz ydzdx zdxdy)∑其中∑为上半球面z=参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y=-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分)2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xyz z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分) 243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z zz z F F z z yx F e y F e∂∂=-==-=∂+∂+.........(5分) 故1(2)1z z z dz dx dy dx ydy x y e∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =y x =围成的区域.解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分)212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.解:'DD σθ=..........(2分)12d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂1.5CM3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑上a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分)而1)xdydz ydzdx zdxdy ∑++100Dzdxd y dxdy ∑===.......(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。

华农高数下期末试卷

华农高数下期末试卷

装订线华南农业大学期末考试试卷(A卷)2009~2010学年第2学期考试科目:高等数学AⅡ考试类型:(闭卷)考试考试时间:120 分钟学号姓名年级专业题号一二三四总分得分评阅人一、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程'220y y x---=是()A.齐次方程B.可分离变量方程C.一阶线性方程D.二阶微分方程2.过点(1,2,--且与直线25421x y z+-==-垂直的平面方程是()A.4250x y z+-+=B.4250x y z++-= C.42110x y z+-+=D.42110x y z++-=3.设(,)ln()2yf x y xx=+,则(1,1)yf=()A.0 B.13C.12D.24.若lim0nnu→∞=,则级数1nnu∞=∑()A.可能收敛,也可能发散B.一定条件收敛C.一定收敛D.一定发散5.下列级数中发散的是()A .112nn∞=∑B.111(1)nn n∞-=-∑C.111n n n∞=+∑D.311(1)n n n∞=+∑得分装订线二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y-+=的通解为____________________。

2.设有向量(4,3,0),(1,2,2)a b==-,则2a b+=____________________。

3.设有向量(1,1,0),a b==-,它们的夹角为θ,则c o sθ=____________________。

4.设xz y=,则dz=____________________。

5.设L是圆周229x y+=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy-+-⎰ 的值为____________________。

三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctanxzy=,求2,z zx x y∂∂∂∂∂。

华南农业大学2013-2014(1)高等代数1期末考试试卷(A卷)

华南农业大学2013-2014(1)高等代数1期末考试试卷(A卷)

2013学年第一学期 高等代数Ⅰ(A 卷)一、选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1. 下列关于多项式理论的说法中正确的是( ).A. 零多项式整除任意多项式B. 零多项式不整除零多项式C. 零多项式只能整除零多项式D. 零多项式的次数为零2. 设有n 维向量组(I ):r ααα,,,21 和(II ):)(,,,21r m m >ααα ,则( ).A. 向量组(I )线性无关时,向量组(II )线性无关B. 向量组(I )线性无关时,向量组(II )线性相关C. 向量组(I )线性相关时,向量组(II )线性相关D. 向量组(I )线性相关时,向量组(II )线性无关3. 设A 为n m ⨯矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是( ).A. A 的列向量线性相关B. A 的列向量线性无关C. A 的行向量线性相关D. A 的行向量线性无关 4. 设,A B 为n 级方阵,0A ≠,且0AB =,则有( ).A. 0A =或0B =B. 0BA =C. 222()A B A B -=-D. 0B = 5. 设A 和B 都是n 级实对称矩阵, 通过非退化线性替换能将实二次型12(,,,)T n f x x x X AX =L 化为实二次型12(,,,)T n g y y y Y BY =的充分必要条件是( ).A. A 与B 具有相同的秩B. A 与B 具有相同的符号差C. A 与B 具有相同的正惯性指数D. A 与B 具有相同的负惯性指数, 并且A 与B 具有相同的符号差二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)1. 设四级行列式D 的第四列元素分别为1,0,2,3,且它们对应的余子式分别为2,3,1,2-,则D =__________.2. 设向量组123(,1,1),(0,2,3),(1,0,1)k ααα===线性相关,则=k __________.3. 设A 为n 级方阵, 且满足2240A A E +-=, 这里E 表示n 级单位矩阵, 那么1A -= .4. 已知矩阵方程100021(1,2,3)011X ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 则X =_________________.5. 若()222,,2332f x y z x y z yz λ=+++是正定二次型,则λ的取值范围 是_________________.三、判别题(本大题共 5 小题,每小题 2 分,共 10 分) (请在你认为正确的小题对应的括号内打“√”,否则打“⨯”) 1.( )有理数域为最小的数域.2.( )设,A B 是两个n 级方阵,则A B B A -=--.3.( )若两个向量组等价,则它们所包含的向量的个数相同.4.( )若矩阵A 的所有1r +级子式全为零,则A 的秩为r .5.( )合同变换不改变实矩阵的对称性和正定性. 四、解答题(本大题共 5 小题,每小题 7 分,共 35 分)1. 设43232()421659,()254,f x x x x x g x x x x =--++=--+ 求()(),()f x g x .2. 计算行列式1111111111111111x x x x ---+---+--.3. 求向量组1234(2,1,3,1),(3,1,2,0),(1,3,4,2),(4,3,1,1)αααα=-=-=-=- 的一个极大无关组,并将其余向量用此极大无关组线性表示.4. 讨论k 取何值时,线性方程组 12312321231,21,x x kx x x x x kx x k⎧++=-⎪-+=-⎨⎪-++=⎩(1) 有唯一解;(2) 无解; (3) 有无穷多个解,并求出此方程组的通解.5. 作非退化线性替换X CY =化实二次型221231223(,,)4f x x x x x x x =-+为规范形.五、证明题(本大题共 4 小题,共 25 分) 1. (本小题7分)证明:n 维向量组12,,,n ααα线性无关的充要条件是任一n维向量β都可由12,,,n ααα线性表出.2. (本小题6分)设A 是n 级方阵且0A =,证明:存在一个非零矩阵B 使得AB O =.3. (本小题6分)设A 是n 级方阵且0A ≠,B 是n m ⨯矩阵,证明: ()()R AB R B =.4. (本小题6分)设1122,AO B O A B O A O B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 证明:如果1A 与1B 合同,2A 与2B 合同,则A 与B 合同.。

高等数学下试卷及答案 2复习课程

高等数学下试卷及答案 2复习课程

2009高等数学下试卷及答案2仅供学习与交流,如有侵权请联系网站删除 谢谢2华南农业大学期末考试试卷(A 卷)2008--2009学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一.填空题(本大题共5小题,每小题3分,共15分。

将答案写在横线上)1.微分方程"2'40y y y ++=的通解为_______________。

(今年不作要求)2.设y z x =,则dz = 。

3.设L 是圆周221x y +=,L 取逆时针方向,则2Lydx xdy +=⎰__________。

4.设0,||3,||1,||2a b c a b c ++====, 则a b b c c a ⋅+⋅+⋅= 。

5. 级数11(1)n n ∞-=-∑是____________级数(填绝对收敛,条件收敛或发散)。

二.单项选择题(本大题共5小题,每小题3分,共15分。

) 1.过点(2,3,1)-且垂直于平面2310x y z +++=的直线方程是( )A .231231x y z -++==B .231231x y z -+-==-- C .231231x y z -+-== D .231231x y z ---==-仅供学习与交流,如有侵权请联系网站删除 谢谢32.设22()z y f x y =+-,其中()f u 是可微函数,则zy∂=∂ ( )A .22'12()yf x y +-B .22'12()yf x y --C .2222'1()()x y f x y +--D .222'1()y f x y -- 3.下列级数中收敛的是( )A.1n ∞= B .11n nn ∞=+∑C .112(1)n n ∞=+∑ D.1n ∞=4. 设D:4122≤+≤y x ,f 在D 上连续,则⎰⎰+Dd y x f σ)(22在极坐标系中等于( )A. dr r rf ⎰21)(2π B. dr r rf ⎰212)(2πC. ⎰⎰-102202])()([2dr r f r dr r f r π D. ⎰⎰-12202])()([2dr r rf dr r rf π5.一曲线过点,且在此曲线上任一点),(y x M 的法线斜率ln xk y x=-,则此曲线方程为( )A. 21ln 22x y e=B. 21ln 21)2x y e =C. 21ln 212x y x e =+ D. 21ln 2x y e =三.计算题(本大题共6小题,每小题5分, 共30分)1.已知2sin()z y xy x =+,求z x ∂∂,2zx y∂∂∂。

高等数学B-下册-历年考试题目及答案

高等数学B-下册-历年考试题目及答案

华南农业大学期末考试试卷(A 卷)2004学年第2学期 考试科目 高等数学(经济类)考试类型:(闭卷) 考试时间: 120分钟学号 姓名 专业年级一、填空题(每空2分)1.设函数()f x 可微,若()()01,11,1lim2x f x f x x →+--=,则11x y fx==∂∂= 。

2.设(){}22,4D x y xy y =+≤,则(),Df x y dxdy ⎰⎰在极坐标系下的二次积分为。

3.()200sin limx y xy x→→= 。

4.级数1025n n +∞=⎛⎫⎪⎝⎭∑= 。

5.设2x xy z y e =+,则()1,2z y∂∂= 。

6.320y y y '''-+=的通解为 。

7.设收益函数()260R x x x =-(元),当产量10x =时,其边际收益是 。

8. 差分方程12n n n y y n +-=⋅的通解为 。

9. 函数()sin 2x z e x y -=+在点04π⎛⎫⎪⎝⎭,处的全微分为 。

10. 若级数211p n n∞+=∑发散,则p ≤ 。

二、选择题(每题3分)1. 若lim 0n n u →∞=,则级数1n n u ∞=∑( )A 条件收敛B 发散C 不能确定D 收敛2. 设22D 14x y ≤+≤:,则二重积分Ddxdy ⎰⎰=( ) A π B 4π C 3π D 15π3. 微分方程3xy y '+=满足条件()10y =的特解是( )()11313111A B x C D x x x ⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭4. 设点()00,是函数(),f x y 的驻点,则函数(),f x y 在()00,处( ) A 必有极大值 B 可能有极值,也可能无极值 C 必有极小值 D 必无极值5. 若级数1n n u ∞=∑及1n n v ∞=∑都发散,则( )A()1nn n uv ∞=+∑必发散 B ()1n n n u v ∞=∑必发散C()1nn n uv ∞=+∑必发散 D ()221n n n u v ∞=+∑必发散三、计算题(每题8分) 1. ()arctan z xy =,求dz2. 设()22,z f x y xy =-,f 可微,求zx∂∂ 3. 求级数13nnn x n ∞=⋅∑的收敛域 4. 将函数()14f x x=-展开成()2x -的幂级数,并确定收敛区间 5. 求由抛物面225z x y =--与平面1z =所围成的立体的体积。

高等数学下试题及参考答案华南农业大学

高等数学下试题及参考答案华南农业大学

华南农业大学期末考试试卷(A 卷)2013~2014学年第2 学期 考试科目:高等数学A Ⅱ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.微分方程'ln xy y y =的通解 。

2. 设有向量(4,3,0)a =,(1,2,2)b =-,则数量积a b ⨯= 。

3.过点(-1,1,0)且与平面3+2-130x y z -=垂直的直线方程是 。

4.设2sin()z xy =,则zy∂=∂ 。

5.交换积分次序2220(,)yydy f x y dx ⎰⎰ 。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.设L 为直线0,0,1x y x ===及1y =所围成的正方形边界,取正向,则322()()Lx xy dx x y dy +++⎰等于 ( )A .1-B .1C .12 D .142.已知a i j k =++,则垂直于a 且垂直于x 轴的单位向量是 ( )A .()i k ±- B.()2j k ±- C.()2j k ±+ D.)i j k -+ 3.设ln z xy =(),则11x y dz === ( )A .dy dx -B .dx dy +C .dx dy -D .04.对于级数1(1)np n n∞=-∑,有 ( )A .当1p >时条件收敛B .当1p >时绝对收敛C .当01p <≤时绝对收敛D .当01p <≤时发散5.设10(1,2,)n u n n≤<=,则下列级数中必定收敛的是 ( ) A .1n n u ∞=∑ B .1(1)nn n u ∞=-∑ C.n ∞=.21(1)n n n u ∞=-∑三、计算题(本大题共7小题,每小题7分,共49分)计算二重积分arctanDy d xσ⎰⎰,其中D 是1.22{(,)10}x y x y y x +≤≤≤,。

2011(1)高数试卷参考答案

2011(1)高数试卷参考答案

华南农业大学期末考试试卷(A 卷)2011~2012学年第1 学期 考试科目:高等数学A Ⅰ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim2x xx→= 。

2.曲线2x xe e y -+=在点(0,1)处的曲率是 。

3.设()0f x >,且可导,[]ln ()y f x =,则dy = 。

4.不定积分⎰=。

5.反常积分60x e dx +∞-⎰= 。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.设2,01(),,12x x f x x x ⎧<≤=⎨<<⎩在点1x =处必定 ( ) A .连续但不可导 B .连续且可导C .不连续但可导D .不连续,故不可导 2.曲线y =在点4x =处的切线方程是 ( )A .114y x =- B .112y x =+C .114y x =+D .124y x =+3.下列函数在区间[1,1]-上满足罗尔定理条件的是 ( )A .21x B .3x C .xD .211x + 4.设()f x 为可导函数,则下列等式中正确的是 ( ) A .()()f x dx f x '=⎰ B .()()df x dx f x C dx =+⎰C .()()d f x dx f x =⎰D .()()d f x dx f x dx =⎰5.已知()0232ax x dx -=⎰,则a = ( )A .1-B .0C .12D .1三、计算题(本大题共7小题,每小题7分,共49分)1. 求极限 ()011lim x x x e x x e →---。

2. 设函数1sin 2 ,0(), ,0x x f x a bx x +≤⎧=⎨+>⎩在点 0x =处可导,求,a b 的值。

3. 设参数方程()1sin cos x t t y t t=-⎧⎪⎨=⎪⎩确定y 是x 的函数,求dy dx 。

高等数学下试题及参考答案

高等数学下试题及参考答案

华南农业大学期末考试试卷(A卷)2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。

2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。

3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。

4.设yz u x =,则du = 。

5.级数11(1)np n n∞=-∑,当p 满足 条件时级数条件收敛。

二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y+=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →= ( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= () A .33()2b a π- B .332()3b a π- C .334()3b a π- D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 微分方程'x y y e +=满足初始条件0x =,2y =的特解。

1. 求2. 计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,):1,1}D x y x y x y =+≤+≥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生填写)
: 姓名: 学号: 命题: 黄寿生 审题: 审批: ------------------------------------------------ 密 ---------------------------- 封 --------------------------- 线 ----------------------------------------------------------- (答题不能超出密封装订线)
班级(学生填写): 姓名: 学号: ------------------------------------------------ 密 ---------------------------- 封
--------------------------- 线 ------------------------------------------------
22. 求函数3
52sin x
y x x =-+的一阶导数和二阶导数
23.
2ln(1)y x =-, 求y ''.
四. 计算题(二)(四题选三题,每小题6分,总分18分)
24.方程()0sin 2
=-y xy π确定y 是x 的函数,求1
0-=='
y x y .
班级(学生填写): 姓名: 学号: ------------------------------------------------ 密 ---------------------------- 封
--------------------------- 线 ------------------------------------------------ (答题不能超出密封线)
24*求由方程0sin 21
=+-y y x 所确定的隐函数的二阶导数22dx
y d .
25求曲线⎪⎩⎪⎨⎧==-t
t
e
y e
x 2,在0=t 相应的点处的切线与法线方程. .
26. 由方程2ln(1)
arctan x t y t t
⎧=+⎨=-⎩确定y 是x 的隐函数,求)(x y '.
.
27. 设函数()y y x =由方程()()sin cos y x
x y =所确定,求()y x '.
五.证明题(每小题5分, 共10分)
28. 设()()()f x x a x =-ϕ,其中()x ϕ为连续函数。

证明:()f x 在点x a =处的导数
存在且等于()a ϕ。

29.若函数)(x f 对任意实数21,x x 有)()()(2121x f x f x x f =+,且1)0(='f ,证明
)()(x f x f ='。

两边对x 求导: ()
02cos 2
='⋅-'+y y y y x y ππ
π
21
1
0-
='⇒-==y x y 24*.求由方程0sin 21
=+-y y x 所确定的隐函数的二阶导数22dx
y d .
解: 将原方程的两边对x 求导: 0cos 211=⋅+-dx dy
y dx dy
于是
y
dx dy cos 22-= 上式两端再对x 求导,得3
222
)cos 2(sin 4)cos 2(sin 2y y y dx dy
y
dx y d --=--= 25求曲线⎪⎩⎪⎨⎧==-t
t
e
y e
x 2,在0=t 相应的点处的切线与法线方程. 解:因为
2
1
20
-=-==-=t t
t t e e dx
dy
所以切线方程: 042=-+x y 法线方程: 032=+-x y
26. 由方程2ln(1)
arctan x t y t t ⎧=+⎨=-⎩确定y 是x 的隐函数,求)(x y '.
解: ⎩⎨
⎧-=+=t t y t x arctan )
1ln(2Θ 2
1211
12
2t t t t dt dx dt d dx dy =++-==∴ϕ
27. 设函数()y y x =由方程()
()sin cos y
x
x
y =所确定,求()y x ¢
将原方程的两边取对数:
ln sin ln cos y x x y = 对上式两边求导 ()()ln sin cot ln cos tan +=-dy dy
x y x y x y dx dx
整理得:
ln cos cot ln sin tan -=+dy y y x dx x x y
五.证明题
28.设()()()f x x a x =-ϕ,其中()x ϕ为连续函数。

证明:()f x 在点x a =处的导数存在且等于()a ϕ. 证明: 由于()()()()
()lim
lim lim ()x a
x a x a f x f a x a x f a x x a x a
→→→--'===--ϕϕ, 又()x ϕ为连续函数则有lim ()()x a
x a →=ϕϕ.故()()f a a '=ϕ.
29. 若函数)(x f 对任意实数21,x x 有)()()(2121x f x f x x f =+,且1)0(='f ,证明
)()(x f x f ='。

证明:
00()()()lim
()()(0)lim )h h f x h f x f x h
f x f h f x h →→+-'=⋅-+=
00()()()(0)lim
()(0)
lim ()h h f x f h f x f h
f h f f x h →→⋅-⋅=-= )()0()(x f f x f ='⋅=。

相关文档
最新文档