运用均值不等式的八类配凑方法_
均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=〞号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=〞号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=〞号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=〞号成立.注:① 注意运用均值不等式求最值时的条件:一“正〞、二“定〞、三“等〞;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。
一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积〞的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 (1) 当时,求(82)y x x =-的最大值。
(2) 01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=〞。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和〞的形式,变为“积〞的形式,然后利用隐含的“定和〞关系,求“积〞的最大值。
例2 求函数)2101y xx x =-<<的最大值。
解:()()2242214122x x y x x x =-=•••-。
因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即6x =时,上式取“=〞。
均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立;②,、)(222+∈⎪⎭⎫⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立;③,、、)(33333333+∈++≤⇔≥++R c b a c b aabc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba112+2a b ab +≤≤≤222ba +。
一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 (1) 当时,求(82)y x x =-的最大值。
(2) 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y x x x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max3227y=。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y ==。
因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭,当且仅当()2212x x=-,即3x =时,上式取“=”。
运用均值不等式的八类配凑方法_

运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。
在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。
均值不等式等号成立条件具有潜在的运用功能。
以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。
笔者把运用均值不等式的拼凑方法概括为八类。
一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y x x x x x x x =-+++=+-=+- ()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=∙∙∙-≤= ⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y == 因()()32222221122122327x x x x x x ⎛⎫++- ⎪∙∙-≤= ⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即x =时,上式取“=”。
故max y =。
评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。
例3 已知02x <<,求函数()264y x x =-的最大值。
解:()()()222222236418244y x x x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。
当且仅当()2224x x =-,即3x ==”。
“配凑法”巧解数学题的八种常见形式

“配凑法”巧解数学题的八种常见形式作者:李涛来源:《教师·理论研究》2008年第11期摘要:训练学生用“配凑法”解数学题,可以启迪思维、拓宽思路,文章总结了“配凑法”解数学题的常见八种表现形式。
关键词:配凑法;解数学题;表现形式“配凑法”解数学问题在初、高等数学中都很常见,初中因式分解中的加、减辅助项以及解一元二次方程的配方法,直至微积分中的凑微分积分法都属配凑法。
实质上,“配凑法”是一种迂回的解题方法,体现了化归的思想,它指的是在解答数学问题的过程中,巧妙地配、凑一些适当的数或式、图形,以获得或化归成利于解答的形式。
由此看来,“配凑法”是一种数学基本技能,适当拓展也可以成为解题技巧。
在数学教学中,有意识地介绍“配凑法”,对启迪学生思维、拓宽学生解题思路、提高学生解题能力是大有裨益的。
下面介绍“配凑法”解初等数学题的八种常见表现形式。
一、原式配凑有些数学问题,可对原式(条件)直接进行配凑,以变成可用公式、定理或达到整体效果。
这是最简单的一种配凑法,多用于代数、三角学中,其具体做法不外乎是恒等变形,如同加(减)、同乘(除)、同乘(开)方等。
例1:解不等式->0分析:按如下常规方法去解,较麻烦。
x-7≥02x-13≥0()≥()而用配凑法,将原不等式化为->0显然当x-7≥0时,上述不等式成立,从而得出答案。
例2:求cos20°·cos40°·cos60°·cos80°的值分析:20°、40°、80°恰好有2倍角关系,而cos60°=可不必考虑变形,故分子、分母首先同乘以2sin20°配凑成二倍角公式,以后反复几次,得答案。
例3:(1987年美国奥赛题)求下式的值I=分析:注意到分子、分母中的重要数分子324=4×34,分子、分母中的4次幂的底数都各自成等差数列,可尝试将每一个因式再分解因式降幂,而分解因式必然要进行加、减辅助项配凑,即a4+4b4=(a4+4a2b2+4b4)-4a2b2=…=[(a+b)2+b2][(a-b)2+b2]。
均值不等式方法及例题

均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。
对于有些题目,可以直接利用公式求解。
但是有些题目必须进行必要的变形才能利用均值不等式求解。
下面是一些常用的变形方法。
一、配凑1. 凑系数例1. 当时,求的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到为定值,故只需将凑上一个系数即可。
当且仅当,即x=2时取等号。
所以当x=2时,的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
2. 凑项例2. 已知,求函数的最大值。
解析:由题意知,首先要调整符号,又不是定值,故需对进行凑项才能得到定值。
∵∴当且仅当,即时等号成立。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
3. 分离例3. 求的值域。
解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。
当,即时(当且仅当x=1时取“=”号)。
当,即时(当且仅当x=-3时取“=”号)。
∴的值域为。
评注:分式函数求最值,通常化成g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
二、整体代换例4. 已知,求的最小值。
解法1:不妨将乘以1,而1用a+2b代换。
当且仅当时取等号,由即时,的最小值为。
解法2:将分子中的1用代换。
评注:本题巧妙运用“1”的代换,得到,而与的积为定值,即可用均值不等式求得的最小值。
三、换元例5. 求函数的最大值。
解析:变量代换,令,则当t=0时,y=0当时,当且仅当,即时取等号故。
评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。
四、取平方例6. 求函数的最大值。
解析:注意到的和为定值。
又,所以当且仅当,即时取等号。
故。
评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
均值不等式的八类拼凑方法

运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。
在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。
均值不等式等号成立条件具有潜在的运用功能。
以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。
笔者把运用均值不等式的拼凑方法概括为八类。
一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y ==因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即3x =时,上式取“=”。
故max 9y =。
评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。
例3 已知02x <<,求函数()264y x x =-的最大值。
解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。
当且仅当()2224x x=-,即x ==”。
第8关: 均值不等式问题—拼凑8法

第8关:均值不等式问题—拼凑8法利用均值不等式求最值或证明不等式是高中数学的一个重点。
在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。
均值不等式等号成立条件具有潜在的运用功能。
以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。
笔者把运用均值不等式的拼凑方法概括为八类。
一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1已知,求函数的最大值。
解:。
当且仅当,即时,上式取“=”。
故。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2 求函数的最大值。
解:。
因,当且仅当,即时,上式取“=”。
故。
评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。
例3已知,求函数的最大值。
解:。
当且仅当,即时,上式取“=”。
故,又。
亲爱的老师们:我有一套非常好的word资料,叫“高考数学常考问题-大闯关(36关)”,但是部分内容是图片的不能编辑,为了更好的使用本资料,本人打算将这套资料翻录一下与愿意翻录的老师共享,所谓翻录就是重新用公式编辑器将资料中的图片录入成可以正常显示便于编辑的公式,每个老师录入1-2关,完全按照已有文档录入,在半天之内就可以完成。
(样品见第8关,红色的部分都不用编辑,只需编辑公式部分即可。
等所有老师录入编辑完成后,我将翻录好的word资料全部免费分享给愿意加入的老师。
有意参加的老师请加我微信:scttrz或加QQ:2780158525,愿意的老师请备注:资料共创共享。
高考数学常考问题-大闯关(36关)目录第1关:极值点偏移问题--对数不等式法第2关:参数范围问题—常见解题6法第3关:数列求和问题—解题策略8法第4关:绝对值不等式解法问题—7大类型第5关:三角函数最值问题—解题9法第6关:求轨迹方程问题—6大常用方法第7关:参数方程与极坐标问题—“考点”面面看第8关:均值不等式问题—拼凑8法第9关:不等式恒成立问题—8种解法探析第10关:圆锥曲线最值问题—5大方面第11关:排列组合应用问题—解题21法第12关:几何概型问题—5类重要题型第13关:直线中的对称问题—4类对称题型第14关:利用导数证明不等式问题—4大解题技巧第15关:函数中易混问题—11对第16关:三项展开式问题—破解“四法”第17关:由递推关系求数列通项问题—“不动点”法第18关:类比推理问题—高考命题新亮点第19关:函数定义域问题—知识大盘点第20关:求函数值域问题—7类题型16种方法第21关:求函数解析式问题—7种求法第22关:解答立体几何问题—5大数学思想方法第23关:数列通项公式—常见9种求法第24关:导数应用问题—9种错解剖析第25关:三角函数与平面向量综合问题—6种类型第26关:概率题错解分类剖析—7大类型第27关:抽象函数问题—分类解析第28关:三次函数专题—全解全析第29关:二次函数在闭区间上的最值问题—大盘点第30关:解析几何与向量综合问题—知识点大扫描第31关:平面向量与三角形四心知识的交汇第32关:数学解题的“灵魂变奏曲”—转化思想第33关:函数零点问题—求解策略第34关:求离心率取值范围—常见6法第35关:高考数学选择题—解题策略第36关:高考数学填空题—解题策略二、拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4设,求函数的最小值。
运用均值不等式的八类配凑方法

运用均值不等式的八类配凑方法均值不等式是数学中常用的一类不等式,具有广泛的应用领域。
在解决问题时,可以通过配凑合适的均值不等式来简化计算,提升效率。
下面介绍八种常见的配凑方法。
1.a/b+b/c≥2√(a/b*b/c):若题目中涉及到两个有理式之和,并且等式右边的两个有理式可以构成一个平方根形式,那么可以应用该不等式。
2. (a+b)² ≥ 4ab:若题目中涉及到平方和的形式,并且等式右边的项是该形式的两倍,那么可以应用该不等式。
3. (a+b+c)² ≥ 3(ab+bc+ac):若题目中涉及到平方和的形式,并且等式右边的项是该形式的三倍,那么可以应用该不等式。
4. a²+b² ≥ 2ab:若题目中涉及到平方和的形式,并且等式右边的项是该形式的两倍,那么可以应用该不等式。
5. (a+b+c+d)² ≥ 4(ab+bc+cd+da):若题目中涉及到平方和的形式,并且等式右边的项是该形式的四倍,那么可以应用该不等式。
6. (a+b+c+d+e)² ≥ 5(ab+bc+cd+de+ea):若题目中涉及到平方和的形式,并且等式右边的项是该形式的五倍,那么可以应用该不等式。
7. (a+b)³ ≥ 4ab(a+b):若题目中涉及到立方和的形式,并且等式右边的项是该形式的四倍,那么可以应用该不等式。
8.(a+b)⁴≥16a²b²:若题目中涉及到四次方和的形式,并且等式右边的项是该形式的十六倍,那么可以应用该不等式。
通过应用以上八类配凑方法,可以在解决问题时简化计算,加快解题速度。
需要注意的是,每个不等式的应用条件和推导过程可能会有所不同,需要根据具体情况进行分析和运用。
同时,配凑方法只是数学问题解决的一种思路,实际问题解决过程可能还需要运用其他方法和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。
在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。
均值不等式等号成立条件具有潜在的运用功能。
以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。
笔者把运用均值不等式的拼凑方法概括为八类。
一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y ==。
因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即3x =时,上式取“=”。
故max y =。
评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。
例3 已知02x <<,求函数()264y x x =-的最大值。
解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。
当且仅当()2224x x =-,即3x ==”。
故max3218827y ⨯=,又max 0,y y >=。
二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设1x >-,求函数()()521x x y x ++=+的最小值。
解:()())14114415159111x x y x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥+=+++。
当且仅当1x =时,上式取“=”。
故min 9y =。
评注:有关分式的最值问题,若分子的次数高于分母的次数,则可考虑裂项,变为和的形式,然后“拼凑定积”,往往是十分方便的。
例5 已知1x >-,求函数()()22413x y x +=+的最大值。
解:1,10x x >-∴+>,()()()()22412424342241414141x y x x x x +∴==≤=⨯+++++++++。
当且仅当1x =时,上式取“=”。
故max 3y =。
评注:有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母“拼凑定积”。
例6 已知0x π<<,求函数2cos sin xy x -=的最小值。
解:因为0x π<<,所以022x π<<,令tan 2xt =,则0t >。
所以211cos 113133sin sin 2222x t t ty t x x t t t -+=+=+=+≥=。
当且仅当1322tt =,即33t x π==时,上式取“=”。
故min y = 评注:通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。
三、 拼凑常数降幂例7 若332,,a b a b R ++=∈,求证:2a b +≤。
分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供信息,开辟捷径。
本题已知与要求证的条件是1a b ==,为解题提供了信息,发现应拼凑项,巧妙降次,迅速促成“等”与“不等”的辩证转化。
证明:33333333333333113113,113113a a a b b b ++≥=++≥=。
()33463, 2.a b a b a b ∴++=≥+∴+≤当且仅当1a b ==时,上述各式取“=”, 故原不等式得证。
评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。
例8 若332,,x y x y R ++=∈,求225x y xy ++的最大值。
解:333333311,311,311,x x x x y y y y x y x y ⨯⨯⨯≤++⨯⨯⨯≤++⨯⨯⨯≤++()()33333333221151775733x x y y x y x y x y xy ++++++++++∴++≤==。
当且仅当1a b ==时,上述各式取“=”,故225x y xy ++的最大值为7。
例9 已知,,0,1a b c abc >=,求证:333a b c ab bc ca ++≥++。
证明:333333131,131,131a b a b b c b c c a c a ++≥⨯••++≥⨯••++≥⨯••,()()333323a b c ab bc ca ∴+++≥++,又3ab bc ca ++≥=,()()3333333223,a b c ab bc ca a b c ab bc ca ∴+++≥+++∴++≥++。
当且仅当1a b c ===时,上述各式取“=”,故原不等式得证。
四、 拼凑常数升幂例10 若,,a b c R +∈,且1a b c ++=≤。
分析:已知与要求证的不等式都是关于,,a b c 的轮换对称式,容易发现等号成立的条件是13a b c ===证明:()()()161616161616255,255,255333333a ab bc c +≤+++≤+++≤++, (()1623132.3a abc ∴+≤+++=≤。
当且仅当13a b c ===时,上述各式取“=”,故原不等式得证。
例11 若2,,,a b a b R ++=∈,求证:332a b +≥。
证明:33333331111,31111,a a b b ⨯⨯≤++⨯⨯≤++()3334a b a b ∴+≤++。
又332,2a b a b +=∴+≥。
当且仅当1a b ==时,上述各式取“=”,故原不等式得证。
五、 约分配凑通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。
例12 已知28,,0,1x y x y>+=,求xy 的最小值。
解:222846446413223264y x y x xy xy xy x y x y x y ⎛⎫==+=++≥+= ⎪⎝⎭。
当且仅当2812x y ==时,即 4.16x y ==,上式取“=”,故()min 64xy =。
例13 已知01x <<,求函数411y x x=+-的最小值。
解:因为01x <<,所以10x ->。
所以()()414141159111x x y x x x x x x x x -⎛⎫=+=+-+=++≥⎡⎤ ⎪⎣⎦---⎝⎭。
当且仅当()411x x x x -=-时,即23x =,上式取“=”,故min 9y =。
例14 若,,a b c R +∈,求证()22212a b c a b c b c c a a b ++≥+++++。
分析:注意结构特征:要求证的不等式是关于,,a b c 的轮换对称式,当a b c ==时,等式成立。
此时22a ab c =+, 设()2a m b c +=,解得14m =,所以2a b c +应拼凑辅助式4b c+为拼凑的需要而添,经此一添,解题可见眉目。
证明:2222222,2,2444444a b c a b c b c a b c a c a b c a ba b c b c b c c a c a a b a b +++++++≥=+≥=+≥=++++++。
()22212a b c a b c b c c a a b ∴++≥+++++。
当且仅当a b c ==时,上述各式取“=”,故原不等式得证。
六、 引入参数拼凑某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。
例15 已知,,x y z R +∈,且1x y z ++=,求149x y z++的最小值。
解:设0λ>,故有()10x y z λ++-=。
()1491491491x y z x x x x y z x y z x y zλλλλλ⎛⎫⎛⎫⎛⎫∴++=+++++-=+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭λλ≥=。
当且仅当149,,x y z x y zλλλ===同时成立时上述不等式取“=”,即x y z ===,代入1x y z ++=,解得36λ=,此时36λ=,故149x y z++的最小值为36。
七、 引入对偶式拼凑根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。
例16 设12,,,n a a a ⋅⋅⋅为互不相等的正整数,求证31222221111123123n a a a a n n+++⋅⋅⋅+≥+++⋅⋅⋅+。
证明:记3122222123n n a a a a b n =+++⋅⋅⋅+,构造对偶式1231111nn d a a a a =+++⋅⋅⋅+, 则3122222123111111112123123n n n n a a a a b d a a a n a n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++++⋅⋅⋅++≥+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 当且仅当(),i a i i N i n +=∈≤时,等号成立。
又因为12,,,n a a a ⋅⋅⋅为互不相等的正整数, 所以1111123n d n ≤+++⋅⋅⋅+,因此1111123n b n≥+++⋅⋅⋅+。
评注:本题通过对式中的某些元素取倒数来构造对偶式。
八、 确立主元拼凑在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,恰当拼凑,可创造性地使用均值不等式。
例17 在ABC ∆中,证明1cos cos cos 8A B C ≤。
分析:cos cos cos A B C 为轮换对称式,即,,A B C 的地位相同,因此可选一个变元为主元,将其它变元看作常量(固定),减少变元个数,化陌生为熟悉。