导数与函数零点、不等式证明、恒成立问题

合集下载

导数与不等式的证明及函数零点、方程根的问题

导数与不等式的证明及函数零点、方程根的问题

05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。

导数与函数的零点

导数与函数的零点

导数与函数的零点考点一判断零点的个数【例1】已知函数f(x)=ln x-x2+ax,a∈R.(1)证明ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.【训练1】已知函数f(x)=13x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.考点二根据零点个数求参数的值(范围)【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.【训练2】已知函数f(x)=1x2+a ln x(a∈R).(1)求f(x)的单调递减区间;(2)已知函数f(x)有两个不同的零点,求实数a的取值范围.考点三函数零点的综合问题【例3】设函数f(x)=e2x-a ln x. (1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.【训练3】已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.强化训练一、选择题1.函数f(x)=ln x-x的零点个数是( )A.3B.2C.1D.02.已知函数f(x)的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( ) A.1 B.2C.3D.43.若方程8x =x 2+6ln x +m 仅有一个解,则实数m 的取值范围为( ) A.(-∞,7) B.(12-6ln 3,+∞)C.(15-6ln 3,+∞)D.(-∞,7)∪(15-6ln 3,+∞)二、填空题 4.若函数f (x )=ax -ae x+1(a <0)没有零点,则实数a 的取值范围为________.5.已知函数f (x )=x 3-x 2+ax -a 存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,则x 1+2x 0=________.三、解答题6.已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围.7.已知函数f (x )=2ln x -x 2+ax (a ∈R),若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围.8.已知函数f (x )=e x +(a -e)x -ax 2. (1)当a =0时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.9.设函数f (x )=ln x -a (x -1)e x ,其中a ∈R. (1)若a ≤0,讨论f (x )的单调性; (2)若0<a <1e ,10.(多填题)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________;若函数f (x )恰有2个零点,则λ的取值范围是________.答 案 导数与函数的零点考点一判断零点的个数【例1】已知函数f (x )=ln x -x 2+ax ,a ∈R. (1)证明ln x ≤x -1;(2)若a ≥1,讨论函数f (x )的零点个数.(1)证明 令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1x -1=1-x x,可得x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1.(2)解 f ′(x )=1x -2x +a =-2x 2+ax +1x,x >0.令-2x 20+ax 0+1=0,解得x 0=a +a 2+84(负值舍去),在(0,x 0)上,f ′(x )>0,函数f (x )单调递增; 在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0).当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1. 当a >1时,f (1)=a -1>0,f ⎝⎛⎭⎫12a =ln 12a -14a 2+12<12a -1-14a 2+12 =-⎝⎛⎭⎫12a -122-14<0,f (2a )=ln 2a -2a 2<2a -1-2a 2=-2⎝⎛⎭⎫a -122-12<0. ∴函数f (x )在区间⎝⎛⎭⎫12a ,1和区间(1,2a )上各有一个零点. 综上可得:当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点.规律方法1.利用导数求函数的零点常用方法:(1)构造函数g (x )(其中g ′(x )易求,且g ′(x )=0可解),利用导数研究g (x )的性质,结合g (x )的图象,判断函数零点的个数.(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有多少个零点. 2.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”. 【训练1】已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减. (2)证明 由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-13=-6⎝⎛⎭⎫a-162-16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.考点二根据零点个数求参数的值(范围)【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,-1<m+1<0,即-2<m<-1.所以m的取值范围是(-2,-1).规律方法 1.函数零点个数可转化为图象的交点个数,根据图象的几何直观求解.2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点判断函数的大致图象,进而求出参数的取值范围.【训练2】已知函数f(x)=1x2+a ln x(a∈R).(1)求f(x)的单调递减区间;(2)已知函数f(x)有两个不同的零点,求实数a的取值范围.解(1)由题意可得,f′(x)=-2x3+ax=ax2-2x3(x>0),当a≤0时,f′(x)<0,函数f(x)在(0,+∞)上单调递减,当a >0时,f ′(x )=a ⎝⎛⎭⎫x +2a ⎝⎛⎭⎫x -2a x 3,由f ′(x )≤0,解得0<x ≤2a, ∴此时函数f (x )的单调递减区间为⎝⎛⎭⎫0,2a a . 综上可得:a ≤0时,函数f (x )的单调递减区间为(0,+∞), a >0时,函数f (x )的单调递减区间为⎝⎛⎭⎫0,2a a . (2)由(1)可得若函数f (x )有两个不同的零点,则必须满足a >0, 且f ⎝⎛⎭⎫2a =a 2+a 2ln 2a<0, 化为ln 2a <-1,解得a >2e.所以实数a 的取值范围是(2e ,+∞). 考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4,且b <12ln 2时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a. 故当a >0时,f (x )≥2a +a ln 2a.规律方法 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f ′(x )存在唯一零点x 0,则f (x 0)为函数的最小值,从而把问题转化为证明f (x 0)≥2a +a ln 2a.【训练3】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.(1)证明 设g (x )=f ′(x ),则g (x )=cos x +x sin x -1,g ′(x )=x cos x . 当x ∈⎝⎛⎭⎫0,π2时,g ′(x )>0; 当x ∈⎝⎛⎭⎫π2,π时,g ′(x )<0,所以g (x )在⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫π2,π上单调递减. 又g (0)=0,g ⎝⎛⎭⎫π2>0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)解 由题设知f (π)≥a π,f (π)=0,可得a ≤0. 由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0, 当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,π)时,f ′(x )<0, 所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0].强化训练一、选择题1.(2020·重庆一中训练)函数f (x )=ln x -x 的零点个数是( ) A.3B.2C.1D.0解析 f ′(x )=1x -12x =2-x 2x ,定义域(0,+∞).当0<x <4时,f ′(x )>0;当x >4时,f ′(x )<0. ∴f (x )在(0,4)上递增,在(4,+∞)上递减, 则f (x )max =f (4)=ln 4-2=ln4e 2<0. ∴f (x )<0恒成立,故f (x )没有零点. 答案 D2.已知函数f (x )的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020f(x)的导函数y=f′(x)( )A.1B.2C.3D.4解析根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.答案 D3.若方程8x=x2+6ln x+m仅有一个解,则实数m的取值范围为()A.(-∞,7)B.(12-6ln 3,+∞)C.(15-6ln 3,+∞)D.(-∞,7)∪(15-6ln 3,+∞)解析方程8x=x2+6ln x+m仅有一个解等价于函数m(x)=x2-8x+6ln x+m(x>0)的图象与x 轴有且只有一个交点.又m′(x)=2x-8+6x=2(x-1)(x-3)x.当x∈(0,1)时,m′(x)>0,m(x)是增函数;当x∈(1,3)时,m′(x)<0,m(x)是减函数;当x∈(3,+∞)时,m′(x)>0,m(x)是增函数,∴m(x)极大值=m(1)=m-7,m(x)极小值=m(3)=m+6ln 3-15.∵当x趋近于0时,m(x)趋近于负无穷,当x趋近于正无穷时,m(x)趋近于正无穷,∴要使m(x)的图象与x轴有一个交点,必须有m(x)极大值=m-7<0或m(x)极小值=m+6ln 3-15>0,故m<7或m>15-6ln 3.答案 D二、填空题4.若函数f(x)=ax-ae x+1(a<0)没有零点,则实数a的取值范围为________.解析f′(x)=a e x-(ax-a)e xe2x=-a(x-2)e x(a<0).当x<2时,f′(x)<0;当x>2时,f′(x)>0,∴当x=2时,f(x)有极小值f(2)=ae2+1.若使函数f(x)没有零点,当且仅当f(2)=ae2+1>0,解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)5.(2020·湖南长郡中学检测)已知函数f (x )=x 3-x 2+ax -a 存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,则x 1+2x 0=________.解析 由f (x )=x 3-x 2+ax -a ,得f ′(x )=3x 2-2x +a . ∵x 0为f (x )的极值点,知3x 20-2x 0+a =0.① 因为f (x 1)=f (x 0),其中x 1≠x 0,所以x 31-x 21+ax 1-a =x 30-x 20+ax 0-a , 化为x 21+x 1x 0+x 20-(x 1+x 0)+a =0,把a =-3x 20+2x 0代入上述方程可得x 21+x 1x 0+x 20-(x 1+x 0)-3x 20+2x 0=0, 化为x 21+x 1x 0-2x 20+x 0-x 1=0,即(x 1-x 0)(x 1+2x 0-1)=0, ∵x 1-x 0≠0,∴x 1+2x 0=1. 答案 1 三、解答题6.已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解 (1)f ′(x )=ax 2-3x +a +1,由f ′(1)=0,得a =1, ∴f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点,则g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m 有三个零点.由g ′(x )=x 2-3x =0,得x =0或x =3.由g ′(x )>0,得x <0或x >3;由g ′(x )<0,得0<x <3.∴函数g (x )在(-∞,0)和(3,+∞)上为增函数,在(0,3)上为减函数. 要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g (0)>0,g (3)<0,解得12<m <5.故实数m 的取值范围为⎝⎛⎭⎫12,5. 7.已知函数f (x )=2ln x -x 2+ax (a ∈R),若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1.当1e≤x <1时,g ′(x )>0;当1<x ≤e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 8.已知函数f (x )=e x +(a -e)x -ax 2.(1)当a =0时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.解 (1)当a =0时,f (x )=e x -e x ,则f ′(x )=e x -e ,f ′(1)=0,当x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1处取得极小值,且极小值为f (1)=0,无极大值.(2)由题意得f ′(x )=e x -2ax +a -e ,设g (x )=e x -2ax +a -e ,则g ′(x )=e x -2a .若a =0,则f (x )的最大值f (1)=0,故由(1)得f (x )在区间(0,1)内没有零点.若a <0,则g ′(x )=e x -2a >0,故函数g (x )在区间(0,1)内单调递增.又g (0)=1+a -e<0,g (1)=-a >0,所以存在x 0∈(0,1),使g (x 0)=0.故当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减;当x ∈(x 0,1)时,f ′(x )>0,f (x )单调递增.因为f (0)=1,f (1)=0,所以当a <0时,f (x )在区间(0,1)内存在零点.若a >0,由(1)得当x ∈(0,1)时,e x >e x .则f (x )=e x +(a -e)x -ax 2>e x +(a -e)x -ax 2=a (x -x 2)>0,此时函数f (x )在区间(0,1)内没有零点.综上,实数a 的取值范围为(-∞,0).9.(2019·天津卷)设函数f (x )=ln x -a (x -1)e x ,其中a ∈R.(1)若a ≤0,讨论f (x )的单调性;(2)若0<a <1e, ①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.(1)解由已知,f (x )的定义域为(0,+∞),且f ′(x )=1x -[a e x +a (x -1)e x ]=1-ax 2e x x. 因此当a ≤0时,1-ax 2e x >0,从而f ′(x )>0,所以f (x )在(0,+∞)内单调递增.(2)证明①由(1)知,f ′(x )=1-ax 2e x x. 令g (x )=1-ax 2e x ,由0<a <1e,知g (x )在(0,+∞)内单调递减. 又g (1)=1-a e>0,且g ⎝⎛⎭⎫ln 1a =1-a ⎝⎛⎭⎫ln 1a 2·1a=1-⎝⎛⎭⎫ln 1a 2<0, 故g (x )=0在(0,+∞)内有唯一解,从而f ′(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a. 当x ∈(0,x 0)时,f ′(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增;当x ∈(x 0,+∞)时,f ′(x )=g (x )x <g (x 0)x=0, 所以f (x )在(x 0,+∞)内单调递减,因此x 0是f (x )的唯一极值点.令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x-1<0, 故h (x )在(1,+∞)内单调递减,从而当x >1时,h (x )<h (1)=0,所以ln x <x -1,从而f ⎝⎛⎭⎫ln 1a =ln ⎝⎛⎭⎫ln 1a -a ⎝⎛⎭⎫ln 1a -1eln 1a=ln ⎝⎛⎭⎫ln 1a -ln 1a+1=h ⎝⎛⎭⎫ln 1a <0.又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,⎩⎪⎨⎪⎧f ′(x 0)=0,f (x 1)=0,即⎩⎪⎨⎪⎧ax 20e x 0=1,ln x 1=a (x 1-1)e x 1, 从而ln x 1=x 1-1x 20e x 1-x 0,即e x 1-x 0=x 20ln x 1x 1-1. 因为当x >1时,ln x <x -1,又x 1>x 0>1,故e x 1-x 0<x 20(x 1-1)x 1-1=x 20,两边取对数, 得ln e x 1-x 0<ln x 20,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.10.(多填题)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________;若函数f (x )恰有2个零点,则λ的取值范围是________.解析 当λ=2时,f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2, 其图象如图(1).由图知f (x )<0的解集为(1,4).若f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况: ①二次函数有两个零点,一次函数无零点;②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y =x -4与y =x 2-4x +3的图象,如图(2),平移直线x =λ,可得λ∈(1,3]∪(4,+∞).答案 (1,4) (1,3]∪(4,+∞)。

专题3 导数解决不等式的恒成立和证明

专题3  导数解决不等式的恒成立和证明

第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳

导函数零点问题一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题.二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【2020·福建南平期末】已知函数()()21e x f x x ax =++. (1)讨论()f x 的单调性;(2)若函数()()21e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e xf x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()21e xg x m x =+'-,当0m 函数在定义域上单调递增,不满足条件;当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m ,01m <<三种情况讨论可得.【解析】(1)因为()()21x f x x ax e =++,所以()()221e xf x x a x a ⎡⎤=+++⎣⎦'+, 即()()()11e xf x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-.①当0a =时,()()21e 0x f x x =+',当且仅当1x =-时,等号成立.故()f x 在(),-∞+∞为增函数.②当0a >时,()11a -+<-,由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-;所以()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数.③当0a <时,()11a -+>-,由()0f x >′得()1x a >-+或1x <-,由()0f x <′得()11x a -<<-+;所以()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.综上,当0a =时,()f x 在为(),-∞+∞增函数;当0a >时,()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数;当0a <时,()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.(2)因为()()21e 1x g x x mx =+--,所以()()21e x g x m x =+'-, ①当0m 时,()0g x ',()g x 在[)1,-+∞为增函数,所以()g x 在[)1,-+∞至多一个零点.②当0m >时,由(1)得()g x '在[)1,-+∞为增函数.因为()01g m '=-,()00g =.(ⅰ)当1m =时,()00g '=,0x >时,()0g x '>,10x -<<时,()0g x '<;所以()g x 在[)1,0-为减函数,在[)0,+∞为增函数,()()min 00g x g ==.故()g x 在[)1,-+∞有且只有一个零点.(ⅱ)当1m 时,()00g '<,()()210m g m e m m '=+->,()00,x m ∃∈,使得()00g x '=, 且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.所以()()000g x g <=,又()()()22221e 1110m g m m m m m =+-->+--=, 根据零点存在性定理,()g x 在()0,x m 有且只有一个零点.又()g x 在[)01,x -上有且只有一个零点0.故当1m 时,()g x 在[)1,-+∞有两个零点.(ⅲ)当01m <<时,()01g m -'=-<,()00g '>,()01,0x ∃∈-,使得()00g x '=,且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.因为()g x 在()0,x +∞有且只有一个零点0,若()g x 在[)1,-+∞有两个零点,则()g x 在[)01,x -有且只有一个零点.又()()000g x g <=,所以()10g -即()2110e g m -=+-,所以21e m -, 即当211em -<时()g x 在[)1,-+∞有两个零点. 综上,m 的取值范围为211em -< 【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x时,常猜x =0或x =ln x .2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】 【2020·山西吕梁期末】已知函数221()ln ()x f x a x a R x-=-∈. (1)讨论()f x 的单调性;(2)设()sin x g x e x =-,若()()()()2h x g x f x x =-且()y h x =有两个零点,求a 的取值范围. 【解析】(1)()f x 的定义域为(0,)+∞,1()2ln f x x a x x =--, 21()2f x x '=+2221a x ax x x-+-=, 对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<,得44a a x <<,所以()f x 在,)+∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在(44a a 上是减函数. (2)由已知可得()cos x g x e x '=-, 因为0x >,所以e 1x >,而c o s 1x ≤,所以cos 0x e x ->,所以()0g x '>,所以()sin xg x e x =-在()0+∞,上单调递增. 所以()()00g x g >=.故()h x 有两个零点,等价于()2y f x x =-=1aInx x--在()0+∞,内有两个零点. 等价于1ln 0a x x--=有两根, 显然1x =不是方程的根, 因此原方程可化为()1ln 01x x x x a-=>≠且, 设()ln x x x φ=,()ln 1x x φ='+,由()0x φ'>解得11x e<<,或1x > 由()0x φ'<解得10x e <<, 故()ln x x x φ=在10e ⎛⎫ ⎪⎝⎭,上单调递减,在()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.其图像如下所示:所以()min 11x e eφφ⎛⎫==- ⎪⎝⎭, 所以110e a-<-<, 所以a e >. 类型二 设而不求,巧“借”零点 【例2】【2015高考新课标1,文21】设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 【解析】(I )()f x 的定义域为0+,,2()=20x a f x e x x . 当0a时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,a x 单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. (II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00x x ,时,()0f x ;当0+x x ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0x x 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x ,所以00022()=2ln 2ln 2a f x ax a a a x a a . 故当0a 时,2()2ln f x a a a. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最值.因此需要求()0f x '=的根.但是2()=20x af x e x 的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”.【举一反三】 【2020·江西赣州期末】已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+.(1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值. 【解析】(1)令2()x f x e ax x =--,则()21x f x e ax '=--,得:(1)e 1f a =--,(1)e 21f a '=--,由题得:(1)e 21e 31(1)e 1e 31f a a f a b b ⎧=--=-=⎧⇒⎨⎨=--=-+=⎩'⎩(2)根据题意,要证不等式4()5f x m >+对于任意恒成立,即证(0,)x ∈+∞时,4()5f x -的最小值大于m , 令244()()()2155x x g x f x e x x g x e x '=-=---⇒=--, 记()()21()2x xh x g x e x h x e ''==--⇒=-,当(0,ln 2)x ∈时,()0h x '<;当x (ln 2,)∈+∞时,()0h x '>,故()h x 即()g x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 又(0)0g '=,(ln 2)12ln 20g '=-<,且(1)30g e '=-<,323402g e ⎛⎫'=-> ⎪⎝⎭, 故存在唯一031,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=, 故当()00,x x ∈时,0g x ;当()0,x x ∈+∞时,()0g x '>;故()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()02min 0004()5x g x g x e x x ==--- 一方面:()014(1)5g x g e <=- 另一方面:由()00g x '=,即00210x e x --=,得()022*********x g x e x x x x =---=-++ 由031,2x ⎛⎫∈ ⎪⎝⎭得:()0111205g x -<<,进而()011140205g x e -<<-<, 所以1120m <- ,又因为m 是整数,所以1m -,即max 1m =-. 类型三 二次构造(求导),避免求根 【例3】【2020重庆巴蜀中学月考】已知函数()()21ln 12f x x a x =+-.(1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210e x e --<<.【分析】(1)求出()'f x ,令()'0f x ≥,解不等式可得单调递增区间;(2)通过求()f x 的导函数,可得()f x 在()0,1上有两个极值点,设为1x ,2x ,又由()f x 在()0,1上有唯一的零点0x 可得0110,2x x ⎛⎫=∈ ⎪⎝⎭,所以有()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,消去a ,可得0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭,研究其单调性,利用零点存在性定理可得结果.【解析】(1)由已知()f x 的定义域为0x >,当1a =-时,()()21ln 12f x x x =--, 则()()2111'x x x xf x x -++=--=, 令()'0f x ≥且0x >,则102x +<≤, 故()f x在10,2⎛ ⎝⎦上单调递增;(2)由()()21ln 12f x x a x =+-, 有()()2111'ax f x ax a x x x-+=+-=,记()21g x ax ax =-+,由4a >,有()()001011110242110a g g a a g >⎧⎪=>⎪⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎪⎪⎩, 即()f x 在()0,1上有两个极值点,设为1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根, 则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞,当1x =时,()10f =, 所以得0110,2x x ⎛⎫=∈ ⎪⎝⎭, 所以()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()00'2ln 1t x x =+,其在10,2⎛⎫ ⎪⎝⎭上单调递增,所以()001'2ln 12ln 11ln 402t x x =+<+=-< 则()00'2ln 10t x x =+<在10,2⎛⎫⎪⎝⎭上恒成立, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212*********e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩, 由零点存在定理,210ex e --<<. 【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【2020·云南昆明一中期末】已知函数2()(1)x x f x eax e =-+⋅,且()0f x . (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【解析】(1)因为()()ee 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥, 构造函数()e 1x u x ax =--,则()'e xu x a =-,又()00u =, 若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >,则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e x xf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()0022200000011e 1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭.三.强化训练1.【2020·安徽合肥二中月考】已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】0x ≤时,()xf x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()xx f x x e x e x x'=+--=+-,显然10x +>, 由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=, 0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点.故选B . 2.【2020江苏盐城期中】已知函数,若函数存在三个单调区间,则实数的取值范围是__________. 【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。

高中数学导数及应用-不等式恒成立问题课件

高中数学导数及应用-不等式恒成立问题课件

利用数形结合来解决。
方法1:分离变量法(优先)
方法2:构造函数
,转化为 零点问题
方法3:构造两个函数的图象判断交点个数
方法4:转化为二次函数零点问题
方法5:转化为一次函数零点问题
类型五:利用导数研究函数与不等式问题
1、利用导数证明不等式的方法:证明
构造函数
。如果
,则F(x) 在
函数,同时若
,则由减函数的定义可知,
的值,要注意验证 左右的导数值的符号是否符 合取极值的条件。
(3)已知含参函数的极值点讨论 ①分类讨论根据 解(判断为极值点)
的存在性和解与区间的位置关系分为:“无、左、 中、右”,对四种分类标准进行取舍(或合并);
②注意数形结合。
注意:(1)在函数的整个定义域内,函数的极 值不一定唯一,在整个定义域内可能有多个极大
(2)切点的三个作用:①求切线斜率; ②切点在切线上; ③切点在曲线上。
类型二:利用导数研究函数的单调性 (1)求函数的单调区间
方法:判断导函数的符号 步骤:①求函数定义域;
②求函数的导函数; ③解不等式f '(x) 0 (或 f '(x) 0),求出 递增区间(或递减区间)。
注意:求单调区间前先求定义域(定义域优 先原则);单调区间是局部概念,故不能用“∪” 连接,只能用“,”或“和”。
'( x) mi n
0;
函数f (x)在区间D单调递减 在f ' (x) 0在x D
恒成立 对x D, f ' (x) 0; max
试题研究:
例1、已知函数f (x) x ln x.
(1)若函数g(x) f (x) ax在区间e2, 上的增函数,
求a的取值范围;

压轴题04 函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2x x>,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.17.(2023·山东德州·统考一模)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121nk n k=-<<+∑,其中*N n ∈且2n ≥.18.(2023·江西吉安·统考一模)已知函数()()ln ,e e x xf x xg x -=-=-.(1)若[]()()0,1,x g x f a ∃∈>成立,求实数a 的取值范围;(2)证明:()()πcos 2e x h x f x =+有且只有一个零点0x,且20π1e cos e 2e x g -⎛⎫<< ⎝⎭19.(2023·河南·郑州一中校联考模拟预测)已知函数()1ln m f x m x x x+=++.(1)求函数()f x 的单调区间;(2)当1m =时,证明:()23e x xf x x <+.20.(2023·陕西渭南·统考二模)已知函数()()1ln e ,xxf xg x m x+==-.()m ∈R (1)证明:()1f x x ≥+;(2)若()()f x g x ≥,求实数m 的取值范围;(3)证明:11e e 1knk k =⎛⎫< ⎪-⎝⎭∑.()N n +∈21.(2023·全国·东北师大附中校联考模拟预测)已知函数()()ln 10f x x ax a =-->.(1)当1a =时,求过原点且与()f x 相切的直线方程;(2)若()()()e 0ax g x x f x a =+⋅>有两个不同的零点()1212,0x x x x <<,不等式212e mx x ⋅>恒成立,求实数m 的取值范围.22.(2023·青海·校联考模拟预测)已知函数()()21e xf x ax x =+-.(1)当12a =-时,讨论函数()f x 在()0,∞+上的单调性;(2)当0x >时,()1f x <,求实数a 的取值范围.23.(2023·天津·校联考一模)设函数()()()21e 2,R x f x x m x m =+++∈.(1)讨论()f x 的单调性;(2)若当[2,)x ∈-+∞时,不等式()()213e f x m x x -≥+-恒成立,求m 的取值范围.。

导数综合不等式恒成立问题主参换位法

导数综合不等式恒成立问题主参换位法

导数综合不等式恒成立问题主参换位法
当我们在解题时,经常会遇到需要证明一些不等式的问题。

而对于仅包含导数的不等式,我们可以使用主参换位法来进行求解。

主参换位法是一种基于函数的单调性来推导不等式的方法。

它的基本思想是通过构造一个合适的函数作为主参,在这个函数上进行主参换位,然后通过对比这个函数与原函数的大小关系,来得到原不等式的结论。

具体的步骤如下:
1. 将原不等式表示成导数的形式,即将不等式两边求导。

2. 构造一个主参函数,使其在有关区间上的导数始终大于等于原函数的导数。

3. 对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。

4. 比较主参函数与原函数的大小关系,得到原不等式的结论。

下面以一个例子来说明主参换位法的应用:
例:证明对于任意实数x,有x^2 + 3 >= 4x。

解:首先将原不等式表示成导数的形式,即求导。

导数的形式为:2x >= 4。

然后我们构造主参函数,使其在有关区间上的导数始终大于等于原函数的导数。

主参函数的形式为:2x。

接下来我们对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。

主参换位得到:2x - 4 >= 0。

最后我们比较主参函数与原函数的大小关系,得到原不等式的结论。

原不等式的结论为:2x - 4 >= 0,即 x^2 + 3 >= 4x。

高考数学复习知识点讲解教案第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题

高考数学复习知识点讲解教案第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题
4 ≥ 6ln 2 − 3ln 3,
3 ≥ 3 ,
3
4
解得 ln
4
3
≤<
2ln 2

3
3
4 2ln 2
故实数的取值范围为[ ln ,
).
4
3
3
探究点二 分类讨论法求参数范围
例2
(1)
[2023·厦门一中模拟] 已知函数 = ln + 1.
若 = 2, > 0,讨论函数 =
使得 0 < 0,则的取值范围是(
3 1
A.[− , )
4e 2
3 1
B.[ , )
4e 2
B
)
3 3
C.[− , )
2e 4

3
D.[ , 1)
2e
[思路点拨] 构造函数 = e 2 − 1 ,ℎ = 2 − 2,原问题转化为存在
唯一的整数0 ,使得 0 < ℎ 0 ,结合导数及图象求解即可.
设 = 2ln 2 − ln ,则′ = 2ln 2 − ln − 1 =
令′ > 0,即
令′ <
4
ln
e
4
0,即ln
e
− ln > 0,得0 < <
− ln < 0,得 >
4
,
e
4
ln
e
即当 ∈
4
,即当
e

当 → 0时, → 0,当 → +∞ 时, → −∞ .
若存在0 ≥ 1,使得ℎ 0 <
2 +2−1

2 −1

,则只需ℎ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 导数与函数零点、不等式证明、恒成立问题高考定位 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.真 题 感 悟1.(2016·全国Ⅲ卷)设函数f (x )=ln x -x +1. (1)讨论函数f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x ; (3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x . (1)解 由f (x )=ln x -x +1(x >0),得f ′(x )=1x -1. 令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.因此f (x )在(0,1)上是增函数,在(1,+∞)上为减函数.(2)证明 由(1)知,函数f (x )在x =1处取得最大值f (1)=0.∴当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1, 即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c .令g ′(x )=0,解得x0=lnc-1 ln c ln c.当x<x0时,g′(x)>0,g(x)单调递增;当x>x0时,g′(x)<0,g(x)单调递减.由(2)知1<c-1ln c<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.∴当x∈(0,1)时,1+(c-1)x>c x.2.(2017·全国Ⅱ卷)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.解(1)f′(x)=-2x e x+(1-x2)e x=(1-2x-x2)e x.令f′(x)=0,得x2+2x-1=0,解得x1=-2-1,x2=2-1,令f′(x)>0,则x∈(-2-1,2-1),令f′(x)<0,则x∈(-∞,-2-1)∪(2-1,+∞).∴f(x)在区间(-∞,-2-1),(2-1,+∞)上单调递减,在区间(-2-1,2-1)上单调递增.(2)f(x)=(1+x)(1-x)e x.当a≥1时,设函数h(x)=(1-x)e x,h′(x)=-x e x<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.当0<a<1时,设函数g(x)=e x-x-1,g′(x)=e x-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1.当0<x<1时,f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=5-4a-12,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=5-1 2,则x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).考点整合1.利用导数研究函数的零点函数的零点、方程的实根、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解.2.三次函数的零点分布三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f(x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下:3.利用导数解决不等式问题(1)利用导数证明不等式.若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果能证明F(x)在(a,b)上的最大值小于0,即可证明f(x)<g(x),x∈(a,b).(2)利用导数解决不等式的“恒成立”与“存在性”问题.①f(x)>g(x)对一切x∈I恒成立⇔I是f(x)>g(x)的解集的子集⇔[f(x)-g(x)]min>0(x∈I).②∃x∈I,使f(x)>g(x)成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).③对∀x1,x2∈I使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.④对∀x1∈I,∃x2∈I使得f(x1)≥g(x2)⇔f(x)min≥g(x)min.温馨提醒 解决方程、不等式相关问题,要认真分析题目的结构特点和已知条件,恰当构造函数并借助导数研究性质,这是解题的关键.热点一 利用导数研究函数的零点(方程的根)【例1】 (2017·淄博诊断)已知a ∈R ,函数f (x )=e x -ax (e =2.718 28…是自然对数的底数).(1)若函数f (x )在区间(-e ,-1)上是减函数,求实数a 的取值范围;(2)若函数F (x )=f (x )-(e x-2ax +2ln x +a )在区间⎝ ⎛⎭⎪⎫0,12内无零点,求实数a 的最大值.解 (1)由f (x )=e x -ax ,得f ′(x )=e x -a 且f ′(x )在R 上递增. 若f (x )在区间(-e ,-1)上是减函数,只需f ′(x )≤0恒成立. 因此只需f ′(-1)=e -1-a ≤0, 解之得a ≥1e .又当a =1e 时,f ′(x )=e x -1e ≤0当且仅当x =-1时取等号. 所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫1e ,+∞.(2)法一 由已知得F (x )=a (x -1)-2ln x ,且F (1)=0, 则F ′(x )=a -2x =ax -2x =a ⎝ ⎛⎭⎪⎫x -2a x ,x >0.①当a ≤0时,F ′(x )<0,F (x )在区间(0,+∞)上单调递减, 结合F (1)=0知,当x ∈⎝ ⎛⎭⎪⎫0,12时,F (x )>0.所以F (x )在⎝ ⎛⎭⎪⎫0,12内无零点.②当a >0时,令F ′(x )=0,得x =2a . 若2a ≥12时,即a ∈(0,4]时,F (x )在⎝ ⎛⎭⎪⎫0,12上是减函数. 又x →0时,F (x )→+∞.要使F (x )在⎝ ⎛⎭⎪⎫0,12内无零点,只需F ⎝ ⎛⎭⎪⎫12=-a 2-2ln 12≥0,则0<a ≤4ln 2.若2a <12时,即a >4时,则F (x )在⎝ ⎛⎭⎪⎫0,2a 上是减函数,在⎝ ⎛⎭⎪⎫2a ,12上是增函数.∴F (x )min =F ⎝ ⎛⎭⎪⎫2a =2-a -2ln 2a ,令φ(a )=2-a -2ln 2a ,则φ′(a )=-1+2a =2-aa <0. ∴φ(a )在(4,+∞)上是减函数, 则φ(a )<φ(4)=2ln 2-2<0.因此F ⎝ ⎛⎭⎪⎫2a <0,所以F (x )在x ∈⎝ ⎛⎭⎪⎫0,12内一定有零点,不合题意,舍去.综上,函数F (x )在⎝ ⎛⎭⎪⎫0,12内无零点,应有a ≤4ln 2,所以实数a 的最大值为4ln 2.(2)法二 当a ≤0时,同法一.当a >0时,x ∈⎝ ⎛⎭⎪⎫0,2a ,F ′(x )<0;x ∈⎝ ⎛⎭⎪⎫2a ,+∞,F ′(x )>0.所以F (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减,在⎝ ⎛⎭⎪⎫2a ,+∞上单调递增.因此F (x )min =F ⎝ ⎛⎭⎪⎫2a .①若2a ≥1,即0<a ≤2时,F (x )在⎝ ⎛⎭⎪⎫0,12内是减函数.因此,当x ∈⎝ ⎛⎭⎪⎫0,12时,F (x )>F (1)=0,所以F (x )在⎝ ⎛⎭⎪⎫0,12内无零点. ②若2a <1,即a >2时,F (x )min =F ⎝ ⎛⎭⎪⎫2a ≤F (1)=0.要使函数F (x )在⎝ ⎛⎭⎪⎫0,12内无零点,只需F ⎝ ⎛⎭⎪⎫12=-a 2-2ln 12≥0, 则2<a ≤4ln 2.综上,函数F (x )在⎝ ⎛⎭⎪⎫0,12内无零点,应有a ≤4ln 2,所以实数a 的最大值是4ln 2.探究提高 1.三步求解函数零点(方程根)的个数问题.第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x 轴(或直线y =k )在该区间上的交点问题;第二步:利用导数研究该函数在该区间上单调性、极值(最值)、端点值等性质,进而画出其图象; 第三步:结合图象求解.2.根据函数零点情况求参数范围:(1)要注意端点的取舍;(2)选择恰当的分类标准进行讨论.【训练1】 (2016·北京卷节选)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围. 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . ∵f (0)=c ,f ′(0)=b ,∴曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , ∴f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.当x 变化时,f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:∴当c >0且c -3227<0时,f (-4)=c -16<0,f (0)=c >0,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.热点二 利用导数求解不等式问题 命题角度1 证明不等式【例2-1】 (2015·全国Ⅰ卷)设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点. 当a >0时,设u (x )=e 2x ,v (x )=-ax ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-ax 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e 2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a . 命题角度2 不等式恒成立问题【例2-2】 (2016·全国Ⅱ卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞), 当a =4时,f (x )=(x +1)ln x -4(x -1), f (1)=0,f ′(x )=ln x +1x -3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,设g(x)=ln x-a(x-1)x+1,则g′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>g(1)=0.②当a>2时,令g′(x)=0,得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1.故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<g(1)=0,综上可知,实数a的取值范围是(-∞,2].命题角度3存在性不等式成立问题【例2-3】已知函数f(x)=x-(a+1)ln x-ax(a∈R且a<e),g(x)=12x2+e x-x e x.(1)当x∈[1,e]时,求f(x)的最小值;(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=(x-1)(x-a)x2.①若a≤1,当x∈[1,e]时,f′(x)≥0,则f(x)在[1,e]上为增函数,f(x)min=f(1)=1-a.②若1<a<e,当x∈[1,a]时,f′(x)≤0,f(x)为减函数;当x∈[a,e]时,f′(x)≥0,f(x)为增函数.所以f(x)min=f(a)=a-(a+1)ln a-1.综上,当a≤1时,f(x)min=1-a;当1<a<e时,f(x)min=a-(a+1)ln a-1;(2)由题意知:f(x)(x∈[e,e2])的最小值小于g(x)(x∈[-2,0])的最小值. 由(1)知f(x)在[e,e2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x . 当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, 则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1 . 探究提高 1.(1)涉及不等式证明或恒成立问题,常依据题目特征,恰当构建函数,利用导数研究函数性质,转化为求函数的最值、极值问题,在转化过程中,一定要注意等价性.(2)对于含参数的不等式,如果易分离参数,可先分离参数、构造函数,直接转化为求函数的最值;否则应进行分类讨论,在解题过程中,必要时,可作出函数图象草图,借助几何图形直观分析转化.2.“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.应特别关注等号是否取到,注意端点的取舍.【训练2】 (2017·全国Ⅲ卷)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(2ax +1)(x +1)x .若a ≥0时,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增,若a <0时,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.(2)证明 由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a , 所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;x ∈(1,+∞)时,g ′(x )<0. 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0,从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,即f (x )≤-34a -2.热点三 利用导数求解最优化问题【例3】 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,a =2. (2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润为 f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)·(x -6),于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4时,函数f (x )取得极大值,也是最大值, 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 探究提高 利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ). (2)求导:求函数的导数f ′(x ),解方程f ′(x )=0.(3)求最值:比较函数在区间端点和使f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值.(4)结论:回归实际问题作答.【训练3】 统计表明,某种型号的汽车在匀速行驶中每小时耗油量y (升),关于行驶速度x (千米/时)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解 (1)当x =40时,汽车从甲地到乙地行驶了10040=2.5(小时), 要耗油⎝ ⎛⎭⎪⎫1128 000×403-380×40+8×2.5=17.5(升).所以,当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油17.5升. (2)当速度为x 千米/时,汽车从甲地到乙地行驶了100x 小时,设耗油量为h (x )升,依题意得h (x )=⎝ ⎛⎭⎪⎫1128 000x 3-380x +8100x=11 280x 2+800x -154(0<x ≤120),h ′(x )=x 640-800x 2=x 3-800×640640x 2(0<x ≤120),令h ′(x )=0得x =80,当x ∈(0,80)时,h ′(x )<0,h (x )是减函数; 当x ∈(80,120]时,h ′(x )>0,h (x )是增函数, 当x =80时,h (x )取到极小值h (80)=11.25,因为h(x)在(0,120]上只有一个极值,所以它是最小值.故当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.1.重视转化思想在研究函数零点中的应用,如方程的解、两函数图象的交点均可转化为函数零点,充分利用函数的图象与性质,借助导数求解.2.对于存在一个极大值和一个极小值的函数,其图象与x轴交点的个数,除了受两个极值大小的制约外,还受函数在两个极值点外部函数值的变化的制约,在解题时要注意通过数形结合找到正确的条件.3.利用导数方法证明不等式f(x)>g(x)在区间D上恒成立的基本方法是构造函数h(x)=f(x)-g(x),然后根据函数的单调性或者函数的最值证明函数h(x)>0.其中找到函数h(x)=f(x)-g(x)的零点是解题的突破口.4.不等式恒成立、能成立问题常用解法(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如a>f(x)max或a<f(x)min.(2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论.(3)数形结合,构造函数,借助函数图象的几何直观性求解,一定要重视函数性质的灵活应用.一、选择题1.函数f(x)的定义域为R,f(-1)=3,对任意x∈R,f′(x)<3,则f(x)>3x+6的解集为()A.{x|-1<x<1}B.{x|x>-1}C.{x|x<-1}D.R解析设g(x)=f(x)-(3x+6),则g′(x)=f′(x)-3<0,所以g(x)为减函数,又g(-1)=f(-1)-3=0,所以根据单调性可知g(x)>0的解集是{x|x<-1}.答案 C2.若关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立,则m的取值范围是( ) A.(-∞,7] B.(-∞,-20] C.(-∞,0]D.[-12,7]解析 令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9,令f ′(x )=0得x =-1或x =3(舍去).∵f (-1)=7,f (-2)=0,f (2)=-20, ∴f (x )的最小值为f (2)=-20,故m ≤-20. 答案 B3.(2017·贵阳联考)已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4.答案 D4.(2017·安徽十校联考)已知函数f (x )=ln x x ,则( ) A.f (2)>f (e)>f (3)B.f (3)>f (e)>f (2)C.f (3)>f (2)>f (e)D.f (e)>f (3)>f (2) 解析 f (x )的定义域(0,+∞),且f ′(x )=1-ln x x 2,令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )>0; 当x ∈(e ,+∞)时,f ′(x )<0. ∴f (x )max =f (e)=1e .又f (2)=ln 22=ln 86,f (3)=ln 33=ln 96 所以f (e)>f (3)>f (2). 答案 D5.(2014·全国Ⅰ卷)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A.(2,+∞) B.(1,+∞) C.(-∞,-2)D.(-∞,-1)解析 由题意知a ≠0,f ′(x )=3ax 2-6x =3ax ⎝ ⎛⎭⎪⎫x -2a ,令f ′(x )=0,解得x =0或x=2a .当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫0,2a ,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫2a ,+∞,f ′(x )>0,且f (0)=1>0,故f (x )有小于0的零点,不满足.当a <0时,需使x 0>0且唯一,只需f ⎝ ⎛⎭⎪⎫2a >0,则a 2>4,所以a <-2.答案 C 二、填空题6.做一个无盖的圆柱形水桶,若要使其体积是27π dm 3,且用料最省,则圆柱的底面半径为________ dm.解析 设圆柱的底面半径为R dm ,母线长为l dm ,则V =πR 2l =27π,所以l =27R 2,要使用料最省,只需使圆柱形水桶的表面积最小. S 表=πR 2+2πRl =πR 2+2π·27R , 所以S ′表=2πR -54πR 2.令S ′表=0,得R =3,则当R =3时,S 表最小. 答案 37.(2017·长沙调研)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )e x <1的解集为________.解析 令g (x )=f (x )e x ,则g ′(x )=e x ·f ′(x )-(e x )′·f (x )(e x )2=f ′(x )-f (x )e x .由题意得g ′(x )<0恒成立,所以函数g (x )=f (x )e x 在R 上单调递减.又g (0)=f (0)e 0=1,所以f (x )e x <1,即g (x )<g (0), 所以x >0,所以不等式的解集为{x |x >0}. 答案 {x |x >0}8.(2017·南宁调研)已知f (x )=-x 2-6x -3,g (x )=2x 3+3x 2-12x +9,设m <-2,若∀x 1∈[m ,-2),∃x 2∈(0,+∞),使得f (x 1)=g (x 2)成立,则实数m 的最小值为________.解析 ∵g (x )=2x 3+3x 2-12x +9,∴g ′(x )=6x 2+6x -12=6(x +2)(x -1). 则当0<x <1时,g ′(x )<0,函数g (x )递减;当x >1时,g ′(x )>0,函数g (x )递增, ∴g (x )min =g (1)=2.∵f (x )=-x 2-6x -3=-(x +3)2+6≤6,结合函数图象知,当f (x )=2时,方程两根分别为-5和-1,则m 的最小值为-5. 答案 -5 三、解答题9.(2017·贵阳质检)已知函数f (x )=x -1x -ln x . (1)求f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数);(3)求证:ln e 2x ≤1+xx .(1)解 f (x )=x -1x -ln x =1-1x -ln x ,f (x )的定义域为(0,+∞). ∵f ′(x )=1x 2-1x =1-xx 2,∴f ′(x )>0⇒0<x <1,f ′(x )<0⇒x >1,∴f (x )=1-1x -ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)解 由(1)得f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在(1,e]上单调递减,∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=1-11-ln 1=0.又f ⎝ ⎛⎭⎪⎫1e =1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e ,且f ⎝ ⎛⎭⎪⎫1e <f (e).∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为f ⎝ ⎛⎭⎪⎫1e =2-e.综上,f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为0,最小值为2-e.(3)证明 要证ln e 2x ≤1+x x ,即证2-ln x ≤1+1x ,即证1-1x -ln x ≤0.由(1)可知,f (x )=1-1x -ln x 在(0,1)上单调递增,在(1,+∞)上单调递减,∴f (x )在(0,+∞)上的最大值为f (1)=1-1-ln 1=0,即f (x )≤0, ∴1-1x -ln x ≤0恒成立.原不等式得证. 10.已知函数f (x )=a ln x +1(a >0).(1)设φ(x )=f (x )-1-a ⎝ ⎛⎭⎪⎫1-1x ,求φ(x )的最小值;(2)在区间(1,e)上f (x )>x 恒成立,求实数a 的取值范围. 解 (1)φ(x )=f (x )-1-a ⎝ ⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0).则φ′(x )=a x -a x 2=a (x -1)x 2,令φ′(x )=0,得x =1.当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0.∴φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数. 故φ(x )在x =1处取得极小值,也是最小值.∴φ(x)min=φ(1)=0.(2)由f(x)>x得a ln x+1>x,即a>x-1 ln x.令g(x)=x-1ln x(1<x<e),则g′(x)=ln x-x-1x(ln x)2.令h(x)=ln x-x-1x(1<x<e),则h′(x)=1x-1x2>0.故h(x)在区间(1,e)上单调递增,所以h(x)>h(1)=0.因为h(x)>0,所以g′(x)>0,即g(x)在区间(1,e)上单调递增,则g(x)<g(e)=e-1,即x-1ln x<e-1,所以实数a的取值范围为[e-1,+∞).11.(2015·北京卷)设函数f(x)=x22-k ln x,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,e]上仅有一个零点.(1)解由f(x)=x22-k ln x(k>0),得x>0且f′(x)=x-kx=x2-kx.由f′(x)=0,解得x=k(负值舍去).f(x)与f′(x)在区间(0,+∞)上的变化情况如下表:所以,f(x)的单调递减区间是(0,k),单调递增区间是(k,+∞).f(x)在x=k处取得极小值f(k)=k(1-ln k)2.(2)证明由(1)知,f(x)在区间(0,+∞)上的最小值为f(k)=k(1-ln k)2.因为f(x)存在零点,所以k(1-ln k)2≤0,从而k≥e,当k=e时,f(x)在区间(1,e)上单调递减,且f(e)=0,所以x=e是f(x)在区间(1,e]上的唯一零点.当k>e时,f(x)在区间(1,e)上单调递减,且f(1)=12>0,f(e)=e-k2<0,所以f(x)在区间(1,e]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1,e]上仅有一个零点.。

相关文档
最新文档