2016-2017年湖南省娄底市新化一中高一(下)期中数学试卷(理科)和答案

合集下载

2016-2017下学期期中考试高一级数学科试题参考答案 精品

2016-2017下学期期中考试高一级数学科试题参考答案 精品

2016-2017学年下学期学期期中考试高一级数学科参考答案一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一选项是符合题目要求的. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBABCDCDB二、填空题 本大题共4小题, 每小题5分,满分20分.13.错误!未找到引用源。

. 14. 2315.3- 16.100-三、解答题 本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.(本题满分10分)解:(1)∵A 为BC 的中点, ∴=(), ∴=2-=2-,∵D 为OB 的三等分点,∴==,∴==2--=2-. ……(5分)(2)∵DE :DC=2:5, ∴==-,∴==+-=.∴λ=. ……(10分) 18. (本题满分12分)解:(1)由32sin .a b A =根据正弦定理得3sin 2sin sin ,A B A =⋅ ……(2分)又sin 0A >所以3sin ,2B =……(4分) 由ABC ∆为锐角三角形得,3B π=………(6分) (2)由ABC ∆的面积为3,得1sin 32ac B = ………(7分) 又3sin 2B =4ac ∴= ………(8分) 由余弦定理得2222cos a c ac B b +-= ………(10分) 又1cos 2B =,23b ∴= ………(11分)3b ∴= ………(12分)19. (本题满分12分)解:不等式ax 2-(a +1)x +1>0可化为a (x -)(x -1)>0;(1)a <0时,不等式化为(x -)(x -1)<0,且<1; 所以不等式的解集为; ……(4分)(2)a >0时,不等式化为(x -)(x -1)>0;……(6分) 若0<a <1,则,不等式的解集为;……(8分)若a =1,则=1,不等式的解集为(-∞,1)∪(1,+∞);……(10分) 若a >1,则,不等式的解集为.……(12分)20. (本题满分12分)解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x=1+sin 2x +cos 2x ………(2分)=2sin ⎝ ⎛⎭⎪⎫2x +π4+1, ………(4分)所以函数f (x )的最小正周期为T =2π2=π ………(6分). (2)由(1)的计算结果知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4, ………(8分)由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知当2x +π4=π2,即x =π8时,f (x )取最大值2+1; ………(10分)当2x +π4=5π4,即x =π2时,f (x )取最小值0. ………(11分)综上,f (x )在[0,π2]上的最大值为2+1,最小值为0.. ………(12分) 21. (本题满分12分)解:(1)因为213122n n a S n n +=--+,所以 ① 当1=n 时,121-=a ,则112a =-, ………………………………(1分)② 当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………(2分)所以121n n a a n --=--,即12()1n n a n a n -+=+-,所以11(2)2n n b b n -=≥,而11112b a =+=, ……………………(5分)所以数列{}n b 是首项为12,公比为12的等比数列,所以12nn b ⎛⎫= ⎪⎝⎭.…………(6分)(2)由(1)得2n nn nb =. 所以 ①n n n n n T 221..........242322211432+-+++++=-, ②1232221..........24232212--+-+++++=n n n nn T , ……………(8分)②-①得:n n n nT 221......2121112-++++=-, ……………(10分)n n nn n n T 2222211211+-=--⎪⎭⎫ ⎝⎛-=.……………(12分)22. (本题满分12分)解:(1)∵数列{a n }为单调递增的等差数列,a 1=1,且a 3,a 6,a 12依次成等比数列, ∴错误!未找到引用源。

2016-2017学年高一下学期期中考试数学试题Word版含答案

2016-2017学年高一下学期期中考试数学试题Word版含答案

2016-2017学年高一下学期期中考试数学试题考试时间:120分钟 分值:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、函数)23sin(2x y -=π的最小正周期为 ( )A .π6B .6C .πD .π-2、已知向量:a=(2,3),b =(4,y),若⊥,则y= ( ) A .一38 B .6 C.38D .一6 3、函数)32sin()(π+=x x f 图象的对称轴方程可以为 ( )A.125π=x B.3π=x C.6π=x D. 12π=x4、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=( )A.14B.21C.28D.355,()-⊥a b a ,则a 、b 的夹角是( )6、已知()αβαα,13cos ,53cos -=+=、β都是锐角,则βcos = ( )A.6563-B.6533-C.6533D. 65637、已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则=++87109a a aaA.1B. 1C. 3-D.3+8、要得到函数y x =sin 2的图象,只要把函数)4π2sin(-=x y 的图象 ( )A..向左平移π4个单位B.向右平移π4个单位C.向左平移π个单位D.向右平移π8个单位9、在数列{a n }中,a n +1=a n +a (n ∈N *,a 为常数),若平面上的三个不共线的非零向量,,满足a a 20151+=,且A 、B 、C 三点共线且该直线不过O 点,则2015s = ( )A .2015B .2016C .22015 D.2201610、o 是平面内的一定点,A,B,C 是平面上不共线的三个点.动点P 满足)(ACAB ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的 ( ) A.外心 B.垂心 C.内心 D.重心11、在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的是( ) A.S 1a 1 B.S 8a 8 C.S 9a 9 D.S 15a 1512、已知函数()cos f x x =,,若方程()f x m =有三个不同的实数根,且三个根从小到大依次成等比数列,则实数m 的值可能是(A二、填空题(本大题共4个小题,每个小题5分,共20分.将正确答案填在题中横线上)13、已知钝角α的终边经过点P (θ2sin ,θ4sin ),且21cos =θ,则α的值为_______;14、已知向量1e ,2e 是两个不共线的向量,若122a e e =-与12b e e λ=+ 共线,则15、若函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,则a = ;16、已知8个非零实数a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,向量112(,)OA a a = ,234(,)OA a a = ,356(,)OA a a =,478(,)OA a a =,给出下列命题:①若a 1,a 2,…,a 8为等差数列,则存在*,(1,8,,,)i j i j i j i j ≤≤≠∈N ,使1OA +2OA +3OA +4OA 与向量(,)i j a a =n 共线;②若a 1,a 2,…,a 8为公差不为0的等差数列,向量(,)i j a a =n *(1,8,,,)i j i j i j ≤≤≠∈N ,(1,1)=q ,{|}M y y ==⋅n q ,则集合M 的元素有12个;③若a 1,a 2,…,a 8为等比数列,则对任意*,(1,4,,)i j i j i j ≤≤∈N ,都有i OA ∥j OA;④若a 1,a 2,…,a 8为等比数列,则存在*,(1,4,,)i j i j i j ≤≤∈N ,使i OA ·j OA<0;⑤若m =i OA ·j OA*(1,4,,,)i j i j i j ≤≤≠∈N ,则m 的值中至少有一个不小于0.其中所有真命题的序号是________________.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17、(本题满分10分)(1)化简()f α;(2,且α是第二象限角,求18、(本题满分12分)已知向量a=),sin ,(cos θθb=)sin ,cos (θθ-,]2,0[πθ∈.(1)若a ⊥b ,求θ的值; (2)求a ·b +a - b的取值范围;19、(本题满分12分)在数列{}n a 中,11a =,当2n ≥时,1120n n n n a a a a --+-= (1)证明:数列⎭⎬⎫⎩⎨⎧n a 1是等差数列并求数列{}n a 的通项公式; (2)设21nn a b n =+,求数列{}n b 的前n 项和n S .20、(本题满分12分)已知函数5)cos 3(sin sin 4)(--=x x x x f(1)求函数)(x f 的最小正周期以及最大值和最小值; (2)求函数)(x f 的增区间。

2016-2017学年湖南省高一下学期期中考试数学试卷(解析版)8

2016-2017学年湖南省高一下学期期中考试数学试卷(解析版)8

高一年级期中考试数学试题卷时量:120分钟总分:120分一、选择题(本大题共12小题,每小题4分,共48分)1. 的值为()A. B. C. D.【答案】A【解析】 ,故选A.2. 已知,那么角是()A. 第一或第二象限角B. 第二或第三象限角C. 第三或第四象限角D. 第一或第四象限角【答案】C【解析】由题意知,,则或,所以角在第二或第四象限,故选C.3. 函数在时取得最大值,则等于()A. B. C. D.【答案】D【解析】当 ,即是有最大值,,故选D.4. 下列赋值语句正确的是( )A. s=a+1B. a+1=sC. s-1=aD. s-a=1【答案】A【解析】试题分析:赋值语句在赋值符号左侧为一个变量,右侧可以是一个式子或一个变量,因此只有A项成立考点:赋值语句5. 欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿. 可见“行行出状元”,卖油翁的技艺让人叹为观止. 若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴正好落入孔中的概率是()A. B. C. D.【答案】C【解析】所求的概率为 ,故选C.6. 某公司2008~2013年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:根据统计资料,则()A. 利润中位数是16,x与y有正线性相关关系B. 利润中位数是17,x与y有正线性相关关系C. 利润中位数是17,x与y有负线性相关关系D. 利润中位数是18,x与y有负线性相关关系【答案】B7. 高一某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( ) A. 13 B. 17 C. 19 D. 21【答案】C【解析】高三某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本,所以样本组距为,则,即样本中还有一个学生的编号为19,所以C选项是正确的.8. 把化为二进制数为()A. B. C. D.【答案】A【解析】解:38=219+0,19=29+1,9=24+1,4=22+0,2=21+0,1=20+1,这样我们可以利用取余法就可以得到结论为9. 在内,使成立的取值范围为()A.B.C.D.【答案】C【解析】画出函数图像如下图所示,由图可知,的的范围是.点睛:本题主要考查求解三角不等式的方法,考查数形结合的数学思想方法.首先在同一个坐标轴下画出在内的图像,观察图像可以知道,余弦值比正弦值大的有两段,再结合特殊角的三角函数值,即可求得的解集.也可以考虑用三角函数线来解决. 10. 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:由表中数据,求得线性回归方程为=0.65x+,根据回归方程,预测加工70个零件所花费的时间为________分钟.A. 101B. 102C. 103D. 104【答案】B【解析】由已知可得,故选B.11. 函数的定义域是()A. B.C. D.【答案】D【解析】试题分析:要使函数有意义,需满足,结合图像解不等式得考点:解三角不等式点评:利用三角函数图象求解12. 将函数的图像向左平移个单位,再向上平移1个单位,得到的图像.若,且,则的最大值为()A. B. C. D.【答案】B【解析】由已知可得,故选B.填空题(本大题共4小题,每小题4分,共16分)13. 用辗转相除法或更相减损术求得459与357的最大公约数是__________.【答案】51【解析】试题分析:辗转相除法:∵459=357×1+102,357=102×3+51,102=51×2故459和357的最大公约数是51考点:用辗转相除计算最大公约数14. 根据下列程序,当的输入值为2,的输入值为-2时,输出值为,则__________.【答案】【解析】15. 数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343、12521等,两位数的回文数有11、22、33、、99共9个,则三位数的回文数中,奇数的概率是___________.【答案】【解析】试题分析:三位数的回文数为ABA,A共有1到9共9种可能,即1B1、2B2、3B3…B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…共有9×10=90个,其中偶数为A是偶数,共4种可能,即2B2,4B4,6B6,8B8,B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…其有4×10=40个,∴三位数的回文数中,偶数的概率考点:列举法计算基本事件数及事件发生的概率16. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于___________.【答案】【解析】大正方形的边长为小正方形的边长为为小正方形的面积为.三、解答题(本大题共6个小题,17题8分,18题8分,19题10分,20题10分,21题10分,22题10分,共56分)17. 已知一个扇形的半径为,圆心角为,求这个扇形的面积。

2016-2017年湖南省娄底市双峰一中高一(下)期中数学试卷(理科)和答案

2016-2017年湖南省娄底市双峰一中高一(下)期中数学试卷(理科)和答案

2016-2017学年湖南省娄底市双峰一中高一(下)期中数学试卷(理科)一、选择题(60分)1.(5分)把二进制数1101(2)化为十进制数是()A.5B.13C.25D.262.(5分)为了规定学校办学,省电教育厅督察组对某所高中进行了抽样调查,抽查到班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号,33号,46号同学在样本中,那么样本中还有一位同学的编号应是()A.13B.19C.20D.523.(5分)设f(cosx)=cos3x,则f(sin30°)的值为()A.0B.1C.﹣1D.4.(5分)下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为y=0.7x+0.35,则表中m的值为()A.1B.0.85C.0.95D.0.95.(5分)执行如图所示的程序框图,若输出的n=7,则输入的整数K的最大值是()A.18B.50C.78D.3066.(5分)若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,] 7.(5分)用秦九韶算法求多项式f(x)=7x6+6x4+3x2+2当x=4时的值时,先算的是()A.4×4=16B.4×4×4×4×4×4=4096C.7×4+6=34D.7×4+0=288.(5分)将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数y=g(x)的图象,则下列说法正确的是()A.函数g(x)的一条对称轴是B.函数g(x)的一个对称中心是C.函数g(x)的一条对称轴是D.函数g(x)的一个对称中心是9.(5分)设曲线y=x+1与纵轴及直线y=2所围成的封闭图形为区域D,不等式组所确定的区域为E,在区域E内随机取一点,该点恰好在区域D 的概率为()A.B.C.D.以上答案均不正确10.(5分)函数y=lg(sin2x)+的定义域是()A.[﹣3,3]B.(0,)C.[﹣3,﹣)∪(0,)D.(﹣3,﹣)∪(0,)11.(5分)若y=sinxsin(x++φ)是一个奇函数,则φ可能的取值是()A.B.C.D.12.(5分)已知函数f(x)=x+sinπx﹣3,则的值为()A.4029B.﹣4029C.8058D.﹣8058二、填空题(20分)13.(5分)如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.14.(5分)已知角A是△ABC的一个内角,若sin A+cos A=,则sinA﹣cosA等于.15.(5分)下列说法:①正切函数y=tanx在定义域内是增函数;②函数是奇函数;③是函数的一条对称轴方程;其中正确的是.(写出所有正确答案的序号)16.(5分)已知函数的图象上关于y轴对称的点恰有9对,则实数a的取值范围是.三、解答题(70分)17.(10分)已知,且tanα>0.(1)由tanα的值;(2)求的值.18.(12分)我国是世界上严重缺水的国家,城市缺水尤为突出,某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.(1)求图中a的值并估计样本的众数;(2)该市计划对居民生活用水试行阶梯水价,即每位居民月用水量不超过ω吨的按2元/吨收费,超过ω吨不超过2ω吨的部分按4元/吨收费,超过2ω吨的部分按照10元/吨收费.①用样本估计总体,为使75%以上居民在该月的用水价格不超过4元/吨,ω至少定为多少?②假设同组中的每个数据用该组区间的右端点值代替,当ω=2时,估计该市居民该月的人均水费.19.(12分)某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆.目前我国主流纯电动汽车按续航里程数R(单位:公里)分为3类,即A类:80≤R<150,B类:150≤R<250,C类:R≥250.该公司对这140辆车的行驶总里程进行统计,结果如表:(Ⅰ)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C类车中抽取了n辆车.(ⅰ)求n的值;(ⅱ)如果从这n辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.20.(12分)(1)求函数f (x)=cos2x﹣sinx的最大值;(2)求函数f(x)=cos2x﹣asinx的最小值.(用含a的代数式表示)21.(12分)已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,﹣≤φ≤)的图象关于直线x=对称,最大值为3,且图象上相邻两个最高点的距离为π.(1)求f(x)的最小正周期;(2)求函数f(x)的解析式;(3)若f(+)=,求sinθ.22.(12分)某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x的函数关系式;(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.2016-2017学年湖南省娄底市双峰一中高一(下)期中数学试卷(理科)参考答案与试题解析一、选择题(60分)1.(5分)把二进制数1101(2)化为十进制数是()A.5B.13C.25D.26=1×23+1×22+1=13【解答】解:1101(2)故选:B.2.(5分)为了规定学校办学,省电教育厅督察组对某所高中进行了抽样调查,抽查到班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号,33号,46号同学在样本中,那么样本中还有一位同学的编号应是()A.13B.19C.20D.52【解答】解:用系统抽样抽出的四个学生的号码从小到大:7,?,33,46成等差数列,因此,另一学生编号为7+46﹣33=20.故选:C.3.(5分)设f(cosx)=cos3x,则f(sin30°)的值为()A.0B.1C.﹣1D.【解答】解:∵f(cosx)=cos3x,则f(sin30°)=f(cos60°)=cos180°=﹣1,故选:C.4.(5分)下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为y=0.7x+0.35,则表中m的值为()A.1B.0.85C.0.95D.0.9【解答】解:由题意得:=(3.5+4.5+5.5+6.5)=5,=(3+4m+4+5)=3+m,将(5,3+m)代入y=0.7x+0.35,得:3+m=3.5+0.35,解得:m=0.85,故选:B.5.(5分)执行如图所示的程序框图,若输出的n=7,则输入的整数K的最大值是()A.18B.50C.78D.306【解答】解:模拟执行程序,可得n=1,S=0S=2,n=2不满足条件S≥K,S=6,n=3不满足条件S≥K,S=2,n=4不满足条件S≥K,S=18,n=5不满足条件S≥K,S=14,n=6不满足条件S≥K,S=78,n=7由题意,此时满足条件78≥K,退出循环,输出n的值为7.则输入的整数K的最大值是78.故选:C.6.(5分)若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]【解答】解:方程2sin(2x+)=m可化为sin(2x+)=,当x∈[0,]时,2x+∈[,],画出函数y=f(x)=sin(2x+)在x∈[0,]上的图象如图所示;根据方程2sin(2x+)=m在[0,]上有两个不等实根,得≤<11≤m<2∴m的取值范围是[1,2).故选:C.7.(5分)用秦九韶算法求多项式f(x)=7x6+6x4+3x2+2当x=4时的值时,先算的是()A.4×4=16B.4×4×4×4×4×4=4096C.7×4+6=34D.7×4+0=28【解答】解:用秦九韶算法求多项式f(x)=7x6+6x4+3x2+2=(((((7x+0)x+6)x+0)x+3)x+0)x+2,当x=4时的值时,先算的是7×4+0=28.故选:D.8.(5分)将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数y=g(x)的图象,则下列说法正确的是()A.函数g(x)的一条对称轴是B.函数g(x)的一个对称中心是C.函数g(x)的一条对称轴是D.函数g(x)的一个对称中心是【解答】解:将函数图象上所有点的横坐标缩短为原来的,可得y=2sin(2x+)的图象,然后纵坐标不变,再向右平移个单位长度,得到函数y=g(x)=2sin(2x﹣+)=2cos2x的图象,令x=,求得g(x)=0,可得(,0)是g(x)的一个对称中心,故排除A;令x=,求得g(x)=﹣1,可得x=是g(x)的图象的一条对称轴,故排除B,故C正确;令x=,求得g(x)=,可得x=不是g(x)的图象的对称中心,故排除D,故选:C.9.(5分)设曲线y=x+1与纵轴及直线y=2所围成的封闭图形为区域D,不等式组所确定的区域为E,在区域E内随机取一点,该点恰好在区域D 的概率为()A.B.C.D.以上答案均不正确【解答】解:画出由曲线y=x+1与纵轴及直线y=2所围成的封闭图形区域D(阴影部分),以及不等式组所确定的区域E,如图所示,则在区域E内随机取一点,该点恰好在区域D的概率为:P==.故选:C.10.(5分)函数y=lg(sin2x)+的定义域是()A.[﹣3,3]B.(0,)C.[﹣3,﹣)∪(0,)D.(﹣3,﹣)∪(0,)【解答】解:函数y=lg(sin2x)+,∴,解得,即﹣3≤x<﹣或0<x<;∴函数y的定义域是[﹣3,﹣)∪(0,).故选:C.11.(5分)若y=sinxsin(x++φ)是一个奇函数,则φ可能的取值是()A.B.C.D.【解答】解:∵y=sinxsin(x++φ)是一个奇函数,把x=、、、代入,只有x=满足条件,故选:B.12.(5分)已知函数f(x)=x+sinπx﹣3,则的值为()A.4029B.﹣4029C.8058D.﹣8058【解答】解:若x1+x2=2时,即x2=2﹣x1时,有f(x1)+f(x2)=x1+sinπx1﹣3+2﹣x1+sin(2π﹣πx1)﹣3=2﹣6=﹣4,即恒有f(x1)+f(x2)=﹣4,且f(1)=﹣2,则=2014[f()+f()]=2014×(﹣4)﹣2=﹣8058,故选:D.二、填空题(20分)13.(5分)如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.【解答】解:由已知中的茎叶图可得甲的5次综合测评中的成绩分别为88,89,90,91,92,则甲的平均成绩:(88+89+90+91+92)=90设污损数字为x则乙的5次综合测评中的成绩分别为83,83,87,99,90+X则乙的平均成绩:(83+83+87+99+90+x)=88.4+,当x=9,甲的平均数<乙的平均数,即乙的平均成绩超过甲的平均成绩的概率为,当x=8,甲的平均数=乙的平均数,即乙的平均成绩不小于均甲的平均成绩的概率为,甲的平均成绩超过乙的平均成绩的概率为1﹣=故答案为:.14.(5分)已知角A是△ABC的一个内角,若sin A+cos A=,则sinA﹣cosA等于.【解答】解:∵角A是△ABC的一个内角,若sin A+cos A=,∴1+2sinAcosA=,∴sinAcosA=﹣,∴A为钝角,则sinA﹣cosA====,故答案为:.15.(5分)下列说法:①正切函数y=tanx在定义域内是增函数;②函数是奇函数;③是函数的一条对称轴方程;其中正确的是 ②③.(写出所有正确答案的序号)【解答】解:对于①,正切函数y=tanx在(kπ﹣,kπ+)k∈Z内是增函数,故错;对于②,函数f(x)=cos(x+)=﹣sin x是奇函数,故正确;对于③,∵当x=时函数f(x)=sin(2x+)取得最小值,故正确;故答案为:②③.16.(5分)已知函数的图象上关于y轴对称的点恰有9对,则实数a的取值范围是.【解答】解:若x>0,则﹣x<0,∵x<0时,f(x)=sin(x)﹣1,∴f(﹣x)=sin(﹣x)﹣1=﹣sin(x)﹣1,则若f(x)=sin(x)﹣1,(x<0)关于y轴对称,则f(﹣x)=﹣sin(x)﹣1=f(x),即y=﹣sin(x)﹣1,x>0,设g(x)=﹣sin(x)﹣1,x>0作出函数g(x)的图象,要使y=﹣sin(x)﹣1,x>0与f(x)=log a x,x>0的图象恰有9个交点,则0<a<1且满足f(17)>g(17)=﹣2,f(21)<g(21)=﹣2,即﹣2<log a17,log a21<﹣2,即log a17>log a a﹣2,log a21<log a a﹣2,则17<,21>,解得<a<,故答案为:三、解答题(70分)17.(10分)已知,且tanα>0.(1)由tanα的值;(2)求的值.【解答】解:(1)由,得,又tanα>0,则α为第三象限角,所以,∴.(2).18.(12分)我国是世界上严重缺水的国家,城市缺水尤为突出,某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.(1)求图中a的值并估计样本的众数;(2)该市计划对居民生活用水试行阶梯水价,即每位居民月用水量不超过ω吨的按2元/吨收费,超过ω吨不超过2ω吨的部分按4元/吨收费,超过2ω吨的部分按照10元/吨收费.①用样本估计总体,为使75%以上居民在该月的用水价格不超过4元/吨,ω至少定为多少?②假设同组中的每个数据用该组区间的右端点值代替,当ω=2时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图可知每段内的频率是:[0,0.5]:0.04;(0.5,1]:0.08;(1,1.5]:0.15;(1.5,2]:0.22;(2,2.5]:0.26;(2.5,3]:0.5a;(3,3.5]:0.06;(3.5,4]:0.04;(4.4.5]:0.02;则由0.04+0.08+0.15+0.22+0.26+0.5a+0.06+0.04+0.02=1,解得a=0.26,…(2分)众数为[2,2.5]的中点值2.25;…(4分)(2)①由(1)可知月用水量在[0,2.5]内的频率为0.04+0.08+0.15+0.22+0.26=0.75,∴ω的值至少为1.25;…(6分)②若ω=2,当居民月用水量在[0,2]时,居民该月的人均水费为:(0.04×0.5+0.08×1+0.15×1.5+0.22×2)×2=1.53;…(7分)(2×2+0.5×4)×0.26=1.56,当居民月用水量在(2,2.5]时,居民该月的人均水费为:当居民月用水量在(2.5,3]时,居民该月的人均水费为:(2×2+1×4)×0.13=1.04,当居民月用水量在(3,3.5]时,居民该月的人均水费为:(2×2+1.5×4)×0.06=0.6,当居民月用水量在(3.5,4]时,居民该月的人均水费为:(2×2+2×4)×0.04=0.48;…(9分)当居民月用水量在(4,4.5]时,居民该月的人均水费为:(2×2+2×4+0.5×10)×0.02=0.34;…(10分)∴居民月人均水费为1.53+1.56+1.04+0.6+0.48+0.34=5.55元.…(12分)19.(12分)某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆.目前我国主流纯电动汽车按续航里程数R(单位:公里)分为3类,即A类:80≤R<150,B类:150≤R<250,C类:R≥250.该公司对这140辆车的行驶总里程进行统计,结果如表:(Ⅰ)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C类车中抽取了n辆车.(ⅰ)求n的值;(ⅱ)如果从这n辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.【解答】解:(Ⅰ)从这140辆汽车中任取一辆,则该车行驶总里程超过10 万公里的概率为.(Ⅱ)(ⅰ)依题意.(ⅱ)5 辆车中已行驶总里程不超过10 万公里的车有3 辆,记为a,b,c;5 辆车中已行驶总里程超过10 万公里的车有2 辆,记为m,n.“从5 辆车中随机选取两辆车”的所有选法共10 种:ab,ac,am,an,bc,bm,bn,cm,cn,mn.从5 辆车中随机选取两辆车,恰有一辆车行驶里程超过10 万公里”的选法共6 种:am,an,bm,bn,cm,cn.则选取两辆车中恰有一辆车行驶里程超过10 万公里的概率.20.(12分)(1)求函数f(x)=cos2x﹣sinx的最大值;(2)求函数f(x)=cos2x﹣asinx的最小值.(用含a的代数式表示)【解答】解:(1)f(x)=1﹣sin2x﹣sinx=,∵sinx∈[﹣1,1],∴f(x)的最大值为.(2)f(x)=1﹣sin2x﹣asinx=,∵sinx∈[﹣1,1],当a≤0时,f(x)的最小值为a,当a>0时,f(x)的最小值为﹣a.21.(12分)已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,﹣≤φ≤)的图象关于直线x=对称,最大值为3,且图象上相邻两个最高点的距离为π.(1)求f(x)的最小正周期;(2)求函数f(x)的解析式;(3)若f(+)=,求sinθ.【解答】(本题满分为12分)解:(1)∵图象上相邻两个最高点的距离为π.∴ƒ(x)的最小正周期T=π.…(4分)(2)∵最大值为3,∴A+1=3,∴A=2.由(1)知ƒ(x)的最小正周期T=π,∴ω=2.又∵f(x)的图象关于直线x=对称,∴2×+φ=kπ+,k=0,k∈Z,则φ=kπ﹣.又∵,∴φ=﹣.∴函数f(x)的解析式为.…(8分)(3)∵,∴,∴.…(12分)22.(12分)某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x的函数关系式;(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.【解答】解:(1)由题可知30=θ(10+x)+2(10﹣x),所以θ=,x∈(0,10) (5)(2)花坛的面积为θ(102﹣x2)=(5+x)(10﹣x)=﹣x2+5x+50(0<x<10),装饰总费用为9θ(10+x)+8(10﹣x)=170+10x,所以花坛的面积与装饰总费用之比为y==﹣. (7)令t=17+x,t∈(17,27)则y=﹣(t+)≤﹣=,…(10分)当且仅当t=18时取等号,此时x=1,θ=.(若利用双勾函数单调性求最值的,则同等标准给分,但须说明单调性.)故当x=1时,花坛的面积与装饰总费用之比最大. (12)。

2016-2017学年高一下学期期中考试数学试题Word版含答案

2016-2017学年高一下学期期中考试数学试题Word版含答案

2016-2017学年高一下学期期中考试数学试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正六边形ABCDEF 中,CD BA EF ++=( )A .0B .BEC .ADD .CF2.已知数列{n a }满足:11a =,2210,1n n n a a a +>-= ()*n N ∈,那么使n a <3成立的n 的最大值为( )A .2B .3C .8D .93.在数列1,1,2,3,5,8,,21,34,55,...x 中,x =( )A.11B.12C. 13D.144.已知正方形ABCD 的边长为2,点E 是AB 边上的中点,则DE DC ⋅的值为( )A. 1B. 2C.4D.65.在△ABC 中,2cos 22B a cc+=,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A.正三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形6.在等差数列{}n a 中,11a =,n S 为其前n 项和.若191761917S S -=,则10S 的值等于( ) A .246B. 258C. 280D. 2707.数列{}n a 的通项公式为*,2cos N n n a n ∈=π,其前n 项和为n S ,则=2017S ( ) A.B.C.D.8.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22()6c a b =-+,△ABC C 的大小为( ) A.3π B.23π C.6π D.56π9.数列{}n a 满足122,1,a a ==且1111(2)n n n n n n n n a a a a n a a a a -+-+⋅⋅=≥--,则数列{}n a 的第100项为( ) A .10012 B .5012 C .1100 D .15010.在ABC ∆中,若111,,tan tan tan A B C依次成等差数列,则( ) A .,,a b c 依次成等差数列 BC .222,,a b c 依次成等差数列D .222,,a b c 依次成等比数列 11.已知等差数列{a n }的前n 项和为,满足,,则当取得最小值时的值为( )A.7B.8C.9D.1012.已知数列{}n a 的通项公式5n a n =-,其前n 项和为n S ,将数列{}n a 的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{}n b 的前3项,记{}n b 的前n 项和为n T ,若存在*m N ∈,使对任意*n N ∈,总有λ+<m n T S 恒成立,则实数λ的取值范围是( ) A .2λ≥ B .3λ> C .3λ≥D .2λ>二、填空题(本大题共4小题,每小题5分,共20分.)13.已知2=a,1=b , 1=⋅b a ,则向量a 在b 方向上的投影是_____14.已知数列{}n a 的前n 项和2n S n =,某三角形三边之比为234::a a a ,则该三角形最大角的大小是 15.已知命题:“在等差数列{}n a 中,若210()4+24,a a a +=则11S 为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为 . 16.已知数列{}n a 中,11511,2n n a a a +==- .设12n n b a =-则数列{}n b 的通项公式为__.三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知不等式220ax x c ++>的解集为11{|}32x x -<<.(1)求a 、c 的值;(2)解不等式220cx x a -+<.18.(本小题满分12分)设{}n a 是公比不为1的等比数列,且534,,a a a 成等差数列.(1)求数列{}n a 的公比;(2)若453423a a a a a a +<<+,求1a 的取值范围.19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(b ,a -2c ),n =(cosA -2cos C ,cosB ),且向量m ⊥n .(1)求sin C sin A的值;(2)若a =2,|m |=35,求△ABC 的面积S .20.(本小题满分12分)如图,△ABC 中,3B π=,2BC =,点D 在边AB 上,AD DC =, DE AC ⊥,E 为垂足.(1)若△BCD,求CD 的长; (2)若DE =,求角A 的大小.21.(本小题满分12分)在数1与100之间插入n 个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n ,再令a n =lgT n ,n≥1.(1)求数列{a n }的通项公式; (2)记,求数列{b n }的前n 项和S n .EDCA22.(本小题满分12分)已知数列{}n a 中,11a =,214a =,且1(1)nn n n a a n a +-=-(2,3,4,n = ).(1)求3a 、4a 的值; (2)设111n n b a +=-(*N n ∈),试用n b 表示1n b +并求{}n b 的通项公式;(3)设1sin 3cos cos n n n c b b +=(*N n ∈),求数列{}n c 的前n 项和n S ;2016-2017学年高一下学期期中考试数学试题答案DCCBB CDADC CD 13._1 14.π3215.18 16. 112433n n b -=-⨯-17. 解:(Ⅰ)由220ax x c ++>的解集为11{|}32x x -<<知0a <且方程220ax x c ++=的两根为1211,32x x =-=.由根与系数的关系得112321132ac a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,由此得12,2a c =-=.(Ⅱ)不等式220cx x a -+<可化为260x x --<,解得23x -<<. 所以不等式的解集为{|23}x x -<<.18.解:(1)设数列{}n a 的公比为q (0,1q q ≠≠), 由534,,a a a 成等差数列,得3542a a a =+,即2431112a q a q a q =+.由10,0a q ≠≠得220q q +-=,解得122,1q q =-=(舍去). ∴2q =-. (2)211114534232118322416q a a a a a a a a a a =-⎧⇒<-<⇒-<<-⎨+<<+⎩19.解 (1)法一 由m ⊥n 得,b (cos A -2cos C )+(a -2c )cos B =0.根据正弦定理得,sin B cos A -2sin B cos C +sin A cos B -2sin C cos B =0. 因此(sin B cos A +sin A cos B )-2(sin B cos C +sin C cos B )=0, 即sin(A +B )-2sin(B +C )=0.因为A +B +C =π,所以sin C -2sin A =0. 即sin Csin A=2. 法二 由m ⊥n 得,b (cos A -2cos C )+(a -2c )cos B =0. 根据余弦定理得,b ×b 2+c 2-a 22bc +a ×a 2+c 2-b 22ac -2b ×a 2+b 2-c 22ab -2c ×a 2+c 2-b 22ac=0.即c -2a =0. 所以sin C sin A =c a=2.(2)因为a =2,由(1)知,c =2a =4.因为|m |=35,即b 2+ a -2c 2=35,解得b =3. 所以cos A =32+42-222×3×4=78.因为A ∈(0,π),所以sin A =158. 因此△ABC 的面积S =12bc sin A =12×3×4×158=3415.20.解(Ⅰ)连接CD ,由题意得BCD S ∆=1sin 2BC BD B ⋅⋅=,又2BC=,sin 2B =得23BD =.由余弦定理得CD ===,所以,边CD 的长为3.(Ⅱ)方法1:因为sin DE CD AD A ===. 由正弦定理知:sin sin BC CDBDC B=∠,且2BDC A ∠=,得2sin 2A =,解得cos A =,4A π=.所以角A 的大小为4π.方法2:由正弦定理得22sin sin AEA B=,得sin sin AE A B ⋅==.又sin tan cos DE AA AE A==,则sin cos AE A DE A ⋅=⋅A ==,得cos A =,4A π=.所以角A 的大小为4π.21.解:(I )∵在数1和100之间插入n 个实数,使得这n+2个数构成递增的等比数列, ∴设这个等比数列为{c n },则c 1=1,,又∵这n+2个数的乘积计作T n , ∴T n =q•q 2•q 3×…×q n+1=q 1+2+3+…+n•q n+1=×100=100×100=10n+2,又∵a n =lgT n ,∴a n =lg10n+2=n+2,n ∈N *. (II )∵a n =n+2, ∴=,∴S n =+++…++,①=,②①﹣②,得:==1+﹣=2﹣﹣,∴S n =4﹣22.已知数列{}n a 中,11a =,214a =,且1(1)n n nn a a n a +-=-(2,3,4,n = ).(1)求3a 、4a 的值; (2)设111n n b a +=-(*N n ∈),试用n b 表示1n b +并求{}n b 的通项公式;(3)设1sin3cos cos n n n c b b +=(*N n ∈),求数列{}n c 的前n 项和n S ;(1)317a =,4110a =.(2)当2n ≥时,1(1)1111(1)(1)(1)1n n n n n n n a n a n a n a n a n a +---=-==----, ∴当2n ≥时,11n n nb b n -=-故11,n n n b b n N n*++=∈ 累乘得1n b nb =又13b = ∴3n b n = n N ∈. (3)∵1sin 3cos cos n n n c b b +=∙sin(333)tan(33)tan 3cos(33)cos3n n n n n n+-==+-+∙,∴12n n S c c c =+++L (tan 6tan3)(tan9tan 6)(tan(33)tan3)n n =-+-+++-Ltan(33)tan3n =+-。

2016-2017高一下学期期中考试参考答案 精品

2016-2017高一下学期期中考试参考答案 精品

2016—2017学年高一(下)期中考试(数学)参考答案一、选择题(5*12=60分)1.D2.D3.D4.A5.C6.A7.B8.B9.A 10.C 11.D 12.D二、填空题(4*5=20分) 13.⎥⎦⎤ ⎝⎛3320, 14.y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4 15.π;]87,83[ππππk k ++,k ∈Z 16.51三、解答题(70分)17.(10分)(1)因为0<α<2π,sin α=54, 故cos α=53,所以tan α=34. -------5分 (2)cos 2α+sin (2π+α)=1-2sin 2α +cos α=1-2532+53=258.-----------5分18.(12分)解:(1)∵a ,b 的夹角为6π, ∴ ⋅=|a |•|b |•cos 6π=23, ……1分 ∴|a -b |2=(a -b )2 ……2分=a 2+b 2 -2⋅=1+3-3=1, ……3分1= ……4分 (2+≤≤]13,13[+-∈+ ……6分≤]3,0[∈⋅ ……7分(3)21)2()3(=+⋅-b a b a ,2135222=-⋅-∴b b a a .……8分 又|a |=1,|b |=3,23-=⋅∴.……9分 1cos 2a b a b θ∴==-·23-. ……10分 ],0[πθ∈ ……没有此说明扣1分 65πθ=∴. ……12分19.(12分)解:(1)因为f (x )=sin (π-ωx )cos ωx +cos 2ωx ,所以f (x )=sin ωx cos ωx +1+cos 2ωx 2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎪⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.-------------------4 (2)由(1)知f (x )=22sin ⎝⎛⎭⎪⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎪⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2, 所以22≤sin ⎝⎛⎭⎪⎫4x +π4≤1.因此1≤g (x )≤1+22. 故g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值为1.-----------------------620.(12分)解:过点B 作BH ⊥OA ,垂足为H.设∠OAD=θ错误!未找到引用源。

湖南省娄底市2016届高三下学期期中数学试卷(理科) 含解析

2015-2016学年湖南省娄底市高三(下)期中数学试卷(理科)一.选择题:(每题5分)1.若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i2.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]3.(5分)(2015四川)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3"的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)(2015山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位5.(5分)(2015浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n06.(5分)(2015湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数7.(5分)(2015新课标II)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1) B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)8.(5分)(2015安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)9.(5分)(2015福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.2110.(5分)(2015福建)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于()A.6 B.7 C.8 D.911.(5分)(2015山东)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞) 12.(5分)(2015福建)若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.二.填空题:(每题5分)13.(5分)(2015江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.14.在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.15.(5分)(2015春巫山县校级期末)若非零向量f(x)满足||=||,且,则与的夹角为.16.(5分)(2015天津)曲线y=x2与y=x所围成的封闭图形的面积为.三.解答题:(第17题10分,其余的每题12分)17.(10分)(2015资阳模拟)已知向量=(1,3cosα),=(1,4tanα),,且=5.(Ⅰ)求|+|;(Ⅱ) 设向量与的夹角为β,求tan(α+β)的值.18.(12分)(2015山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.19.(12分)(2016春娄底期中)设a为实数,给出命题p:函数f(x)=(a﹣)x是R上的减函数,命题q:关于x的不等式()|x﹣1|≥a的解集为∅.(1)若p为真命题,求a的取值范围;(2)若q为真命题,求a的取值范围;(3)若“p且q"为假命题,“p或q"为真命题,求a的取值范围.20.(12分)(2015湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.21.(12分)(2015重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.22.(12分)(2015新余校级模拟)已知函数f(x)=alnx﹣ax﹣3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)(n!=1×2×3×…×n).2015—2016学年湖南省娄底市高三(下)期中数学试卷(理科)参考答案与试题解析一.选择题:(每题5分)1.若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i【分析】直接利用复数的乘法运算法则化简求解即可.【解答】解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.2.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]【分析】求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.【解答】解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.【点评】本题考查了并集及其运算,考查了对数不等式的解法,是基础题.3.(5分)(2015四川)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】求解3a>3b>3,得出a>b>1,log a3<log b3,或根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可.【解答】解:a、b都是不等于1的正数,∵3a>3b>3,∴a>b>1,∵log a3<log b3,∴,即<0,或求解得出:a>b>1或1>a>b>0或b>1,0<a<1根据充分必要条件定义得出:“3a>3b>3”是“log a3<log b3”的充分条不必要件,故选:B.【点评】本题综合考查了指数,对数函数的单调性,充分必要条件的定义,属于综合题目,关键是分类讨论.4.(5分)(2015山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.5.(5分)(2015浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n"的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.6.(5分)(2015湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.【点评】本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.7.(5分)(2015新课标II)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于xg(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔xg(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.8.(5分)(2015安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.9.(5分)(2015福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21【分析】建系,由向量式的几何意义易得P的坐标,可化=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得.【解答】解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.【点评】本题考查平面向量数量积的运算,涉及基本不等式求最值,属中档题.10.(5分)(2015福建)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6 B.7 C.8 D.9【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【解答】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故选:D.【点评】本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.11.(5分)(2015山东)设函数f(x)=,则满足f(f(a))=2f(a)的a 的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.12.(5分)(2015福建)若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.【分析】根据导数的概念得出>k>1,用x=代入可判断出f()>,即可判断答案.【解答】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题.二.填空题:(每题5分)13.(5分)(2015江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.【分析】直接利用两角和的正切函数,求解即可.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.14.在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.【点评】本题主要考查了等差数列性质的简单应用,属于基础试题15.(5分)(2015春巫山县校级期末)若非零向量f(x)满足||=||,且,则与的夹角为.【分析】由,便得到,进行数量积的运算,并带入即可得到,从而得出.【解答】解:根据条件,=;∴;∴;∴与的夹角为.故答案为:.【点评】考查数量积的运算及其计算公式,向量夹角的概念及范围,以及已知三角函数值求角.16.(5分)(2015天津)曲线y=x2与y=x所围成的封闭图形的面积为.【分析】先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx而∫01(x﹣x2)dx=()|01=﹣=∴曲边梯形的面积是.故答案为:.【点评】本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.三.解答题:(第17题10分,其余的每题12分)17.(10分)(2015资阳模拟)已知向量=(1,3cosα),=(1,4tanα),,且=5.(Ⅰ)求|+|;(Ⅱ)设向量与的夹角为β,求tan(α+β)的值.【分析】(Ⅰ)由向量的数量积的坐标公式化简即得sinα,由同角公式,求得cosα,tanα,得到向量m,n,再由模的公式即可得到所求的值;(Ⅱ)运用向量的夹角公式,求得cosβ,进而得到sinβ,tanβ,再由两角和的正切公式,即可得到所求的值.【解答】解:(Ⅰ)由=(1,3cosα),=(1,4tanα),则=1+12cosαtanα=5,解得,因为,所以,.则=(1,2),=(1,)则=,即有||==;(Ⅱ)由(Ⅰ)知=(1,2),=(1,),则cosβ=cos<>==,即有,所以,所以.【点评】本题考查平面向量的运用和两角和的正切公式及运用,考查向量的数量积的坐标公式和性质及运用,考查运算能力,属于中档题.18.(12分)(2015山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c 时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.19.(12分)(2016春娄底期中)设a为实数,给出命题p:函数f(x)=(a﹣)x是R上的减函数,命题q:关于x的不等式()|x﹣1|≥a的解集为∅.(1)若p为真命题,求a的取值范围;(2)若q为真命题,求a的取值范围;(3)若“p且q"为假命题,“p或q”为真命题,求a的取值范围.【分析】(1),(2)根据指数函数的性质求出a的范围即可;(3)通过讨论p,q的真假,求出a的范围即可.【解答】解:(1)命题p:“函数f(x)=(a﹣)x是R上的减函数”为真命题,得0<a﹣<1,∴<a<;(2)由q为真命题,则由0<|x﹣1|≤1,得a>1;(3)∵p且q为假,p或q为真,∴p、q中一真一假,若p真q假,则a不存在;若p假q真,则1<a≤或a≥;综上,a的取值范围为:1<a≤或a≥.【点评】本题考查了指数函数的性质,考查复合命题的判断,是一道基础题.20.(12分)(2015湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知c n=,写出T n、T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3+5+7+9+…+(2n﹣1),∴T n=1+3+5+7+…+(2n﹣3)+(2n﹣1),∴T n=2+++++…+﹣(2n﹣1)=3﹣,∴T n=6﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.21.(12分)(2015重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.【分析】(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.对x分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.【解答】解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.因此a的取值范围为:.解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,u′(x)=<0,∴u(x)在[3,+∞)上单调递减,∴a≥u(3)=﹣.因此a的取值范围为:.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.22.(12分)(2015新余校级模拟)已知函数f(x)=alnx﹣ax﹣3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)(n!=1×2×3×…×n).【分析】(Ⅰ)求导f′(x)=(x>0),从而判断函数的单调性;(Ⅱ)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,从而求导F′(x)=,再由导数的正负讨论确定函数的单调性,从而求函数的最大值,从而化恒成立问题为最值问题即可;(Ⅲ)令a=﹣1,此时f(x)=﹣lnx+x﹣3,从而可得f(1)=﹣2,且f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,从而可得﹣lnx+x﹣1>0,即lnx<x﹣1对一切x∈(1,+∞)成立,从而可得若n≥2,n∈N*,则有ln(+1)<<=﹣,从而化ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)为ln(+1)+ln(+1)+…+ln(+1)<1(n≥2,n∈N*);从而证明.【解答】解:(Ⅰ)f′(x)=(x>0),当a>0时,f(x)的单调增区间为(0,1],单调减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),单调减区间为(0,1];(Ⅱ)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,则F′(x)=,若﹣a≤e,即a≥﹣e,F(x)在[e,e2]上是增函数,F(x)max=F(e2)=2a+e2﹣e+1≤0,a≤,无解.若e<﹣a≤e2,即﹣e2≤a<﹣e,F(x)在[e,﹣a]上是减函数;在[﹣a,e2]上是增函数,F(e)=a+1≤0,即a≤﹣1.F(e2)=2a+e2﹣e+1≤0,即a≤,∴﹣e2≤a≤.若﹣a>e2,即a<﹣e2,F(x)在[e,e2]上是减函数,F(x)max=F(e)=a+1≤0,即a≤﹣1,∴a<﹣e2,综上所述,a≤.(Ⅲ)证明:令a=﹣1,此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时,f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,∵n≥2,n∈N*,则有ln(+1)<<=﹣,要证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*),只需证ln(+1)+ln(+1)+…+ln(+1)<1(n≥2,n∈N*);ln(+1)+ln(+1)+…+ln(+1)<(1﹣)+(﹣)+…+(﹣)=1﹣<1;所以原不等式成立.【点评】本题考查了导数的综合应用,放缩法证明不等式,裂项求和法等的应用,同时考查了恒成立问题及分类讨论的数学思想应用,属于难题.。

湖南省新化县第一中学高一数学下学期期中试题 理

湖南省新化县第一中学2015-2016学年高一数学下学期期中试题 理时量:120分钟 满分:150分一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、0sin 600=( )A .23-B .21-C .21D .232、下列式子不能化简为AD u u u r的是( )A .()AB CD BC ++u u u r u u u r u u u rB .()()AD MB BC CM +++u u u r u u u r u u u r u u u u rC .MB AD MB ++u u u r u u u r u u u rD .OC AO CD ++u u u r u u u r u u u r3、函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x 的最小正周期与最大值分别为( )A .2,π 2B .,π 3C .2,π2+ 3D .,π2- 34、平面向量a r =(1,2),b r =(-2,m ),且a r ∥b r ,则2a r +3b r等于( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)5、已知α∈,2ππ⎛⎫⎪⎝⎭,sin αtan 2α=( ) A .34-B .34C .43或43-D .43- 6、已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量CD →在AB →方向上的投影为( )A .B .C .D .7、为得到函数()cos 22f x x x =的图象,只需将函数()24cos 2g x x =-( )A .向左平移3π B .向右平移3π C .向左平移6π D .向右平移6π 8、已知|p u r |=22,|q r |=3,p u r 、q r 夹角为π4,设a r =5p u r +2q r ,b r =p u r -3q r ,则a b +r r 的值为( )A .15 B.15C .14D .169、设02παβ<<<,sinα=35,cos(α-β)=1213,则sin β的值为( ) A .6516 B .6533 C .6556 D .656310ABC 中,设AB c =u u u r r , BC a =u u u r r , CA b =u u u r r ,则a b b c c a ⋅+⋅+⋅r r r r r r的值为( )A .-3B .0C .1D .311、在△ABC A ·tan B =tan A +tan B cos C 的值是( )A .-22 B.22 C.12 D .-1212、已知,a b r r 是单位向量,0a b ⋅=r r,若向量c r 满足1c a b --=r r r ,则c r 的取值范围是( )A .21,21⎡⎤-+⎣⎦B .21,22⎡⎤-+⎣⎦C .1,21⎡⎤+⎣⎦D .1,22⎡⎤+⎣⎦二、填空题(本大题共4小题,每小题5分,共20分) 13、求值:_____167sin 73sin 13cos 17sin 0=+ ;14、已知()1tan 2αβ-=,1tan 7β=-,则()tan 2αβ-= ; 15、如图所示,平面内有三个向量,,OA OB OC u u u r u u u r u u u r,其中OA uu u r 与OB uuu r 的夹角为120°,OA uu u r 与OC u u u r 的夹角为30°,OB uuu r 与OC u u u r 的夹角为90°,且1OA OB ==u u u r u u u r ,22OC =u u u r 。

湖南省娄底市2016-2017学年高一下学期期中数学试卷

2016-2017学年湖南省娄底市高一(下)期中数学试卷一、选择题(每小题5分,每小题只有一个正确选项)1.下列四个数中,数值最小的是()A.25(10)B.54(4)C.10111(2)D.26(8)2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为8,23,27,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1212 D.20123.对赋值语句的描述正确的是()①可以给变量提供初值②将表达式的值赋给变量③不能给同一变量重复赋值④可以给一个变量重复赋值.A.①②③B.①②C.②③④D.①②④4.一个容量为20的数据样本,分组后的频数如表:则样本数据落在区间[10,40)的频率为()A.0.70 B.0.60 C.0.45 D.0.355.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为()A.=1.5x+2 B.=﹣1.5x+2 C.=1.5x﹣2 D.=﹣1.5x﹣26.娄底市2016年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.20 B.21 C.22 D.237.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.8.执行如图所示的程序框图,则输出的a值为()A.﹣3 B.C.﹣ D.29.同时掷3枚硬币,那么互为对立事件的是()A.最少有1枚正面和最多有1枚正面B.最少有2枚正面和恰有1枚正面C.最多有1枚正面和最少有2枚正面D.最多有1枚正面和恰有2枚正面10.集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A.B.C.D.11.函数y=sin(ωx+φ)的部分图象如图,则φ、ω可以取的一组值是()A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ= 12.已知一只蚂蚁在边长为4的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过1的概率为()A.B.C.1﹣D.1﹣二、填空题(每小题5分)13.用秦九韶算法求多项式f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64在x=2时,v2的值为.14.结合下面的算法:第一步,输入x.第二步,若x<0,则y=x+3;否则,y=x﹣1.第三步,输出y.当输入的x的值为3时,输出的结果为.15.甲船在点A处测得乙船在北偏东60°的B处,并以每小时10海里的速度向正北方向行使,若甲船沿北偏东30°角方向直线航行,并1小时后与乙船在C处相遇,则甲船的航速为海里/小时.16.若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为.三、解答题17.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)18.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.19.已知A(﹣2,t)是角α终边上的一点,且sinα=﹣.(I)求t、cosα、tanα的值;(Ⅱ)求的值.20.2014年11月12日,科幻巨片《星际穿越》上映,上映至今,全球累计票房高达6亿美金.为了解绵阳观众的满意度,某影院随机调查了本市观看此影片的观众,并用“10分制”对满意度进行评分,分数越高满意度越高,若分数不低于9分,则称该观众为“满意观众”.现从调查人群中随机抽取12名.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(1)求从这12人中随机选取1人,该人不是“满意观众”的概率;(2)从本次所记录的满意度评分大于9.1的“满意观众”中随机抽取2人,求这2人得分不同的概率.21.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:(1)算出线性回归方程=bx+a;(a,b精确到十分位)(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.(参考公式:b=)22.已知关于x的一次函数y=mx+n.(1)设集合P={﹣2,﹣1,1,2,3}和Q={﹣2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;(2)实数m,n满足条件求函数y=mx+n的图象经过一、二、三象限的概率.2016-2017学年湖南省娄底市高一(下)期中数学试卷参考答案与试题解析一、选择题(每小题5分,每小题只有一个正确选项)1.下列四个数中,数值最小的是()A.25(10)B.54(4)C.10111(2)D.26(8)【考点】EM:进位制.【分析】将四个答案中的数均转化为十进制的数,比较可得答案.=20+4=24(10);【解答】解:∵对于B,54(4)=1+2+4+16=23(10);对于C,10111(2)=16+6=22(10);对于D,26(8)最小,故四个数中26(8)故选:D2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为8,23,27,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1212 D.2012【考点】B3:分层抽样方法.【分析】根据甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为8求出每个个体被抽到的概率,然后求出样本容量,从而求出总人数.【解答】解:∵甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为8∴每个个体被抽到的概率为=样本容量为8+23+27+43=101∴这四个社区驾驶员的总人数N为101÷=1212.故选C.3.对赋值语句的描述正确的是()①可以给变量提供初值②将表达式的值赋给变量③不能给同一变量重复赋值④可以给一个变量重复赋值.A.①②③B.①②C.②③④D.①②④【考点】2K:命题的真假判断与应用;EB:赋值语句.【分析】根据赋值语句的功能,逐一分析给定四个描述的真假,可得答案.【解答】解:赋值语句可以给变量提供初值,故①正确;赋值语句是将将表达式的值赋给变量.故②正确;赋值语句可以给同一变量重复赋值,故③错误;④正确;故选:D4.一个容量为20的数据样本,分组后的频数如表:则样本数据落在区间[10,40)的频率为()A.0.70 B.0.60 C.0.45 D.0.35【考点】B7:频率分布表.【分析】根据频率分布表,计算对应的频数、频率值.【解答】解:根据频率分布表,样本数据落在区间[10,40)的频数为5+4+3=12,所求的频率为=0.6.故选:B.5.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为()A.=1.5x+2 B.=﹣1.5x+2 C.=1.5x﹣2 D.=﹣1.5x﹣2【考点】BK:线性回归方程.【分析】根据散点图的带状分布特点判断回归方程的斜率和截距.【解答】解:因为散点图由左上方向右下方成带状分布,故线性回归方程斜率为负数,排除A,C.由于散点图的带状区域经过y轴的正半轴,故线性回归方程的截距为正数,排除D.故选:B.6.娄底市2016年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.20 B.21 C.22 D.23【考点】BA:茎叶图.【分析】根据茎叶图结合中位数的定义读出即可.【解答】解:由题意得,这组数据是:08,09,12,15,18,21,23,24,25,28,31,32,故中位数是:22,故选:C.7.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【考点】CF:几何概型.【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【解答】解:∵AB=2,BC=1,∴长方体的ABCD的面积S=1×2=2,圆的半径r=1,半圆的面积S=,则由几何槪型的概率公式可得质点落在以AB为直径的半圆内的概率是,故选:B.8.执行如图所示的程序框图,则输出的a值为()A.﹣3 B.C.﹣ D.2【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当i=1时,不满足退出循环的条件,执行循环体后,a=﹣3,i=2;当i=2时,不满足退出循环的条件,执行循环体后,a=﹣,i=3;当i=3时,不满足退出循环的条件,执行循环体后,a=,i=4;当i=4时,不满足退出循环的条件,执行循环体后,a=2,i=5;当i=5时,不满足退出循环的条件,执行循环体后,a=﹣3,i=6;a的值是以4为周期的循环,由2016÷4=504,故当i=2017时,满足退出循环的条件,故输出的a值为2,故选:D.9.同时掷3枚硬币,那么互为对立事件的是()A.最少有1枚正面和最多有1枚正面B.最少有2枚正面和恰有1枚正面C.最多有1枚正面和最少有2枚正面D.最多有1枚正面和恰有2枚正面【考点】C4:互斥事件与对立事件.【分析】列举出选项中包含的事件情况,分析出事件之间的关系.【解答】解:由题意知至少有一枚正面包括有一正两反,两正一反,三正三种情况,最多有一枚正面包括一正两反,三反,两种情况,故A不正确,最少有2枚正面包括两正一反,三正与恰有1枚正面是互斥事件,不是对立事件,故B不正确,最多一枚正面包括一正两反,三反,最少有2枚正面包括2正和三正,故C正确,最多一枚正面包括一正两反,三反与恰有2枚正面是互斥的但不是对立事件,故D不正确,故选C.10.集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】由分步计数原理可得总的方法种数为2×3=6,由列举法可得符合条件的有2种,由古典概型的概率公式可得答案.【解答】解:从A,B中各取任意一个数共有2×3=6种分法,而两数之和为4的有:(2,2),(3,1)两种方法,故所求的概率为:=.故选C.11.函数y=sin(ωx+φ)的部分图象如图,则φ、ω可以取的一组值是()A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ=【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图象观察可知周期的值,由周期公式即可求ω的值.又因为图象过点(1,1),即可解得φ的值,从而得解.【解答】解:由图象观察可知:3﹣1=,可解得:T=8=,从而有ω=.又因为图象过点(1,1),所以有:sin(φ)=1,故可得:φ=2k,k∈Z,可解得:φ=2kπ,k∈Z当k=0时,有φ=.故选:B.12.已知一只蚂蚁在边长为4的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过1的概率为()A.B.C.1﹣D.1﹣【考点】CF:几何概型.【分析】根据题意,记“蚂蚁距三角形三个顶点的距离均超过1”为事件A,则其对立事件B为“蚂蚁与三角形的三个顶点的距离不超过1”,先求得边长为4的等边三角形的面积,再计算事件B构成的区域面积,由几何概型可得P(B),进而由对立事件的概率性质,可得答案.【解答】解:记“蚂蚁距三角形三个顶点的距离均超过1”为事件A,则其对立事件B为“蚂蚁与三角形的三个顶点的距离不超过1”,边长为4的等边三角形的面积为S=×42=4,则事件B构成的区域面积为S(B)=3××π×12=,由几何概型的概率公式得P(B)=,P(A)=1﹣P(,B)=1﹣,故选:D.二、填空题(每小题5分)13.用秦九韶算法求多项式f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64在x=2时,v2的值为48.【考点】EL:秦九韶算法.【分析】由于函数f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64=(((((x﹣8)x+60)x+16)x+96)x+240)x+64,当x=2时,分别算出v0=1,v1=﹣6,v2=48,即可得出.【解答】解:∵f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64=(((((x﹣8)x+60)x+16)x+96)x+240)x+64,当x=2时,分别算出v0=1,v1=1×2﹣8=﹣6,v2=﹣6×2+60=48,∴v2的值为48.故答案为4814.结合下面的算法:第一步,输入x.第二步,若x<0,则y=x+3;否则,y=x﹣1.第三步,输出y.当输入的x的值为3时,输出的结果为2.【考点】ED:条件语句.【分析】执行算法,x=3,y=x﹣1=2,即可得到结论.【解答】解:执行算法,有x=3,y=x﹣1=2输出y的值为2故答案为:2.15.甲船在点A处测得乙船在北偏东60°的B处,并以每小时10海里的速度向正北方向行使,若甲船沿北偏东30°角方向直线航行,并1小时后与乙船在C处相遇,则甲船的航速为10海里/小时.【考点】HU:解三角形的实际应用.【分析】设甲船的航速为v海里/小时,则AC=v,BC=10,∠CAB=30°,∠ABC=120°,由正弦定理可得甲船的航速.【解答】解:设甲船的航速为v海里/小时,则AC=v,BC=10,∠CAB=30°,∠ABC=120°,由正弦定理可得,∴v=10海里/小时.故答案为10.16.若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为16.【考点】BC:极差、方差与标准差.【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为=16,故答案为16.三、解答题17.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)【考点】WE:用辗转相除计算最大公约数.【分析】辗转相除法:用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.更相减损术:用较大的数字减去较小的数字,得到差,仍用差和减数中较大的数字减去较小的数字,这样依次做下去,等做到减数和差相等时,得到结果.【解答】解:辗转相除法:1734=816×2+102 816=102×8所以1734与816的最大公约数为102.更相减损术:因为1734与816都是偶数,所以分别除以2得867和408.867﹣408=459,459﹣408=51,408﹣51=357,357﹣51=306,306﹣51=255,255﹣51=204,204﹣51=153,153﹣51=102,102﹣51=51,所以867和408的最大公约数是51,故1734与816的最大公约数为51×2=102.18.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.【考点】E8:设计程序框图解决实际问题.【分析】这是一个累加求和问题,共50项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.【解答】解:程序如下:程序:i═ls=0DOs=s+i2i=i+2LOOP UNTIL i>99PRINT SEND程序框图如下:19.已知A(﹣2,t)是角α终边上的一点,且sinα=﹣.(I)求t、cosα、tanα的值;(Ⅱ)求的值.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】(Ⅰ)根据三角函数的定义先求出t的值即可得到结论.(Ⅱ)利用三角函数的诱导公式进行化简进行求解即可.【解答】解:(Ⅰ)∵A(﹣2,t)是角α终边上的一点,且sinα=﹣.∴sinα===﹣,且t<0,平方得==,即5t2=4+t2,即t2=1,则t=﹣1.∴A(﹣2,﹣1),则cosα===﹣、tanα==;(Ⅱ)====tanα=.20.2014年11月12日,科幻巨片《星际穿越》上映,上映至今,全球累计票房高达6亿美金.为了解绵阳观众的满意度,某影院随机调查了本市观看此影片的观众,并用“10分制”对满意度进行评分,分数越高满意度越高,若分数不低于9分,则称该观众为“满意观众”.现从调查人群中随机抽取12名.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(1)求从这12人中随机选取1人,该人不是“满意观众”的概率;(2)从本次所记录的满意度评分大于9.1的“满意观众”中随机抽取2人,求这2人得分不同的概率.【考点】BA:茎叶图;CC:列举法计算基本事件数及事件发生的概率.【分析】(1)由茎叶图可知从12人中任抽一人,其中低于9的有4人,由古典概型概率公式可求;(2)利用列举法分别列出从中任意选取两人的可能有以及分数不同的人数,由古典概型的公式可求.【解答】解:(1)由茎叶图可知,所抽取12人中有4人低于9分,即有4人不是“满意观众”,∴P=,即从这12人中随机选取1人,该人不是“满意观众”的概率为.(2)设本次符合条件的满意观众分别为A1(9.2),A2(9.2),A3(9.2),A4(9.2),B1(9.3),B2(9.3),其中括号内为该人的分数.则从中任意选取两人的可能有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种,其中,分数不同的有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,∴所求的概率为.21.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:(1)算出线性回归方程=bx+a;(a,b精确到十分位)(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.(参考公式:b=)【考点】BL:独立性检验.【分析】(1)分别求出样本的中心点,求出方程的系数,的值,求出回归方程即可;(2)将x=3代入方程求出函数的预报值即可.【解答】解:(1),,,,=,,∴线性回归方程为=﹣2.0x+68,1;(2)气象部门预测下个月的平均气温约为3℃,据此估计,该商场下个月毛衣的销售量为:=﹣2.0x+68.1=﹣2.0×3+68.1≈62(件)22.已知关于x的一次函数y=mx+n.(1)设集合P={﹣2,﹣1,1,2,3}和Q={﹣2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;(2)实数m,n满足条件求函数y=mx+n的图象经过一、二、三象限的概率.【考点】CF:几何概型;CB:古典概型及其概率计算公式.【分析】(1)本小题是古典概型问题,欲求函数y=mx+n是增函数的概率,只须求出满足:使函数为增函数的事件空间中元素有多少个,再将求得的值与抽取的全部结果的个数求比值即得.(2)本小题是几何概型问题,欲求函数y=mx+n的图象经过一、二、三象限的概率,只须求出满足使函数图象过一、二、三象限的区域的面积,再将求得的面积值与整个区域的面积求比值即得.【解答】解:(1)抽取的全部结果所构成的基本事件空间为:Ω={(﹣2,﹣2),(﹣2,3),(﹣1,﹣2),(﹣1,3),(1,﹣2),(1,3),(2,﹣2),(2,3),(3,﹣2),(3,3)}共10个基本事件设使函数为增函数的事件空间为A:则A={(1,﹣2),(1,3),(2,﹣2),(2,3),(3,﹣2),(3,3)}有6个基本事件所以,(2)m、n满足条件m+n﹣1≤0,﹣1≤m≤1,﹣1≤n≤1的区域如图所示:使函数图象过一、二、三象限的(m,n)为区域为第一象限的阴影部分∴所求事件的概率为.2017年5月29日。

湖南省娄底地区高一下学期期中数学试卷(理科)

湖南省娄底地区高一下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一下·定西期中) 已知,且0≤α<π,那么tanα等于()A .B .C .D .2. (2分)某人先向正东方向走了x km,然后他向右转90°,向新的方向走了3 km,结果他离出发点恰好为 km,那么x的值为()A .B .C . 3D . 或3. (2分) (2016高二下·市北期中) 在△ABC中,若•(﹣2 )=0,则△ABC的形状为()A . 直角三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形4. (2分)若 = + +3 , = + ﹣2 , = ﹣3 +2 , =4 +6 +8,=α +β +γ ,则α,β,γ的值分别为()A .B .C .D .5. (2分)已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=2x上,则的值为()A . -B .C . -D .6. (2分) (2017高二下·双鸭山期末) 函数的大致图象为()A .B .C .D .7. (2分)(2018·宣城模拟) 函数的部分图像如图所示,为了得到的图像,只需将函数的图象()A . 向左平移个单位长度B . 向右平移个的单位C . 向右平移个单位长度D . 向左平移个单位长度8. (2分) (2018高一下·毕节期末) 若,,,则下列结论正确的是()A .B .C .D .9. (2分) (2016高三上·定州期中) 已知向量与的夹角为60°,| |=2,| |=5,则2 ﹣在方向上的投影为()A .B . 2C .D . 310. (2分)(2018·临川模拟) 已知,且,则()A .B .C .D .11. (2分) (2017高一下·株洲期中) 设向量满足,则与的夹角为()A .B .C .D .12. (2分)如图,平行四边形ABCD中,,点M在AB边上,且,则等于()A .B .C . -1D . 1二、填空题 (共4题;共4分)13. (1分) (2016高一下·新疆开学考) 在△ABC中,已知tanA,tanB是方程3x2﹣7x+2=0的两个实根,则tanC=________.14. (1分)已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是________15. (1分)已知,且,那么tanα=________16. (1分) (2016高一下·赣榆期中) 在平面直角坐标系xOy中,直线y=1与函数y=3sin x(0≤x≤10)的图象所有交点的横坐标之和为________.三、解答题 (共6题;共45分)17. (5分)(2017·浙江) 已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.18. (5分)已知向量=(3,-4),=(6,-3),=(5-x,-3-y).(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.19. (10分) (2017高一下·新乡期中) 已知f(α)= +cos(2π﹣α).(1)化简f(α);(2)若f(α)= ,求 + 的值.20. (5分)若函数f(x)=a﹣bcosx的最大值为,最小值为﹣,求函数g(x)=﹣4asinbx的最值和最小正周期.21. (10分) (2017高一上·淮安期末) 在平面直角坐标系中,已知A(1,0),B(0,1),C(2,5),求:(1) 2 + 的模;(2)cos∠BAC.22. (10分)定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=2+asinx﹣cos2x.(1)当a=﹣2时,求函数f(x)的值域,并判断对任意x∈R函数f(x)是否为有界函数,请说明理由;(2)若对任意x∈R函数f(x)是以4为上界的有界函数,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖南省娄底市新化一中高一(下)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分).1.(5分)设全集U=R,M={x|x<﹣2,或x>2},N={x|1<x<3},则图中阴影部分所表示的集合是()A.{x|﹣2≤x<1}B.{x|﹣2≤x≤2}C.{x|1<x≤2}D.{x|x<2} 2.(5分)已知角α是第二象限角,且,则cosα=()A.﹣B.﹣C.D.3.(5分)已知平面向量与的夹角等于,若||=2,||=3,则|2﹣3|=()A.B.C.57D.614.(5分)已知α是锐角,=(,sinα),=(cosα,),且∥,则α为()A.15°B.45°C.75°D.15°或75°5.(5分)若10a=5,10b=2,则a+b=()A.﹣1B.0C.1D.26.(5分)已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为()A.4 cm2B.6 cm2C.8 cm2D.16 cm2 7.(5分)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B.C.D.8.(5分)如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30°B.45°C.60°D.90°9.(5分)已知直线x﹣y﹣2=0,则该直线的倾斜角为()A.30°B.60°C.120°D.150°10.(5分)要得到y=3sin(2x+)的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位11.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.12.(5分)若f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣1)f(x)<0的解是()A.(﹣3,0)∪(1,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,0)∪(1,3)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.14.(5分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为.15.(5分)已知函数f(x)=,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是.16.(5分)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(﹣ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤).17.(10分)已知||=1,||=,与的夹角为θ.(1)若∥,求•;(2)若﹣与垂直,求θ.18.(12分)已知sinα=,cosβ=﹣,α∈(,π),β∈(π,),求cos (α﹣β)的值.19.(12分)已知圆C:x2+y2﹣8y+12=0,直线l经过点D(﹣2,0),且斜率为k.(1)求以线段CD为直径的圆E的方程;(2)若直线l与圆C相离,求k的取值范围.20.(12分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.21.(12分)已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|<)的最大值为2,最小值为﹣,周期为π,且图象过(0,﹣).(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间.22.(12分)已知函数f(x)=log a(2x+1),g(x)=log a(1﹣2x)(a>0且a≠1)(1)求函数F(x)=f(x)﹣g(x)的定义域;(2)判断F(x)=f(x)﹣g(x)的奇偶性,并说明理由;(3)确定x为何值时,有f(x)﹣g(x)>0.2016-2017学年湖南省娄底市新化一中高一(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分).1.(5分)设全集U=R,M={x|x<﹣2,或x>2},N={x|1<x<3},则图中阴影部分所表示的集合是()A.{x|﹣2≤x<1}B.{x|﹣2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【解答】解:由图可知,图中阴影部分所表示的集合是N∩C U M,又C U M={x|﹣2≤x≤2},∴N∩C U M={x|1<x≤2}.故选:C.2.(5分)已知角α是第二象限角,且,则cosα=()A.﹣B.﹣C.D.【解答】解:∵角α是第二象限角,且,∴cosα=﹣=﹣,故选:A.3.(5分)已知平面向量与的夹角等于,若||=2,||=3,则|2﹣3|=()A.B.C.57D.61【解答】解:平面向量与的夹角等于,若||=2,||=3,则=2•3•cos =3,则|2﹣3|====.故选:B.4.(5分)已知α是锐角,=(,sinα),=(cosα,),且∥,则α为()A.15°B.45°C.75°D.15°或75°【解答】解:∵∥,∴sinαcosα﹣=0,化为.∵α是锐角,∴2α∈(0°,180°).∴2α=30°或150°,解得α=15°或75°.故选:D.5.(5分)若10a=5,10b=2,则a+b=()A.﹣1B.0C.1D.2【解答】解:因为10a=5,10b=2,所以a=lg5,b=lg2,所以a+b=lg2+lg5=1,故选:C.6.(5分)已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为()A.4 cm2B.6 cm2C.8 cm2D.16 cm2【解答】解:设扇形的半径为r,弧长为l,则扇形的周长为l+2r=8,∴弧长为:αr=2r,∴r=2cm,根据扇形的面积公式,得S=αr2=4cm2,故选:A.7.(5分)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B.C.D.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.8.(5分)如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30°B.45°C.60°D.90°【解答】解:如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0)∴=(1,0,﹣1),=(﹣1,﹣1,0)∴cosθ==故两向量夹角的余弦值为,即两直线PA与BD所成角的度数为60°.故选:C.9.(5分)已知直线x﹣y﹣2=0,则该直线的倾斜角为()A.30°B.60°C.120°D.150°【解答】解:设该直线的倾斜角为α,由直线x﹣y﹣2=0,变形为.∴,∵α∈[0°,180°),∴α=30°.故选:A.10.(5分)要得到y=3sin(2x+)的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:∵,∴只需将y=3sin2x的图象向左平移个单位故选:C.11.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.12.(5分)若f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣1)f(x)<0的解是()A.(﹣3,0)∪(1,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,0)∪(1,3)【解答】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∵(x﹣1)•f(x)<0∴或解可得﹣3<x<0或1<x<3∴不等式的解集是(﹣3,0)∪(1,3)故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.【解答】解:∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.故答案为:14.(5分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.【解答】解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t )=0.解得t=5. 故答案为:5.15.(5分)已知函数f (x )=,若关于x 的方程f (x )=k有两个不同的实根,则实数k 的取值范围是 (1,2) . 【解答】解:关于x 的方程f (x )=k 有两个不同的实根, 等价于函数f (x )与函数y=k 的图象有两个不同的交点, 作出函数的图象如下:由图可知实数k 的取值范围是(1,2) 故答案为:(1,2)16.(5分)已知函数f (x )=sinωx +cosωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y=f (x )的图象关于直线x=ω对称,则ω的值为.【解答】解:∵f (x )=sinωx +cosωx=sin (ωx +),∵函数f (x )在区间(﹣ω,ω)内单调递增,ω>0∴2kπ﹣≤ωx +≤2kπ+,k ∈Z 可解得函数f (x )的单调递增区间为:[,],k ∈Z ,∴可得:﹣ω≥①,ω≤②,k∈Z,∴解得:0<ω2≤且0<ω2≤2k,k∈Z,解得:﹣,k∈Z,∴可解得:k=0,又∵由ωx+=kπ+,可解得函数f(x)的对称轴为:x=,k∈Z,∴由函数y=f(x)的图象关于直线x=ω对称,可得:ω2=,可解得:ω=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤).17.(10分)已知||=1,||=,与的夹角为θ.(1)若∥,求•;(2)若﹣与垂直,求θ.【解答】(10分)解:(1)∵||=1,||=,∥,∴θ=0°或180°,∴•=||||cosθ=±.…5’(2)∵﹣与垂直;∴(﹣)•=0,即||2﹣•=1﹣cos θ=0,∴cos θ=.又0°≤θ≤180°,∴θ=45°.…10’18.(12分)已知sinα=,cosβ=﹣,α∈(,π),β∈(π,),求cos (α﹣β)的值.【解答】解:由sinα=,cosβ=﹣,α∈(,π),β∈(π,),则cosα=﹣=﹣,sinβ=﹣=﹣,则有cos(α﹣β)=cosαcosβ+sinαsinβ=﹣+=.19.(12分)已知圆C:x2+y2﹣8y+12=0,直线l经过点D(﹣2,0),且斜率为k.(1)求以线段CD为直径的圆E的方程;(2)若直线l与圆C相离,求k的取值范围.【解答】解:(1)将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心为C(0,4),半径为2.所以CD的中点E(﹣1,2),|CD|=,∴r=,故所求圆E的方程为(x+1)2+(y﹣2)2=5.(2)直线l的方程为y﹣0=k(x+2),即kx﹣y+2k=0.若直线l与圆C相离,则有圆心C到直线l的距离,解得k<.20.(12分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S=,△VAB∵OC⊥平面VAB,∴V C=•S△VAB=,﹣VAB=V C﹣VAB=.∴V V﹣ABC21.(12分)已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|<)的最大值为2,最小值为﹣,周期为π,且图象过(0,﹣).(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间.【解答】(12分)解:(1)∵f(x)=Asin(ωx+φ)+B的最大值为2,最小值为﹣,∴A=,B=.又∵f(x)=Asin(ωx+φ)+B的周期为π,∴T==π,即ω=2.∴f(x)=sin(2x+φ)+.又∵函数f(x)过(0,﹣),∴﹣=sin φ+,即sin φ=﹣.又∵|φ|<,∴φ=﹣,∴f(x)=sin(2x)+.…8’(2)令t=2x﹣,则y=sin t+,其增区间为:[2k,2k],k ∈Z.即2kπ﹣≤2x﹣≤2kπ+,k∈Z.解得kπ﹣≤x≤kπ+.所以f(x)的单调递增区间为[,k],k∈Z.…12’22.(12分)已知函数f(x)=log a(2x+1),g(x)=log a(1﹣2x)(a>0且a≠1)(1)求函数F(x)=f(x)﹣g(x)的定义域;(2)判断F(x)=f(x)﹣g(x)的奇偶性,并说明理由;(3)确定x为何值时,有f(x)﹣g(x)>0.【解答】解:(1)要使函数有意义,则有.(2)F(x)=f(x)﹣g(x)=log a(2x+1)﹣log a(1﹣2x),F(﹣x)=f(﹣x)﹣g(﹣x)=log a(﹣2x+1)﹣log a(1+2x)=﹣F(x).∴F(x)为奇函数.(3)∵f(x)﹣g(x)>0∴log a(2x+1)﹣log a(1﹣2x)>0即log a(2x+1)>log a(1﹣2x).①0<a<1,.②a>1,.。

相关文档
最新文档