2015高考文科数学汇编——三角函数
专题四三角函数与解三角形第十二讲解三角形十年高考数学(文科)真题题型分类汇编

专题四 三角函数与解三角形第十二解说三角形2019年1.(全国Ⅱ文 15)△ABC的内角A ,B ,C 的对边分别为a ,b ,c.已知bsinA+acosB=0,则 B=___________.2(.2019全国Ⅰ文 11)△ABC 的内角A ,B ,C 的对边分别为 a ,b ,c ,已知asinA -bsinB=4csinC ,cosA=- 1,则b= 4 cA .6B .5C .4D .33.(2019北京文15)在△ABC 中,a=3,b –c2,cosB= 1 .2 (Ⅰ)求b ,c 的值;(Ⅱ)求 sin (B+C )的值.4.(2019 全国三文18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知 asin AC bsinA .2(1)求B ; (2)若△ABC 为锐角三角形,且 c=1,求△ABC 面积的取值范围. 5.(2019天津文16)在ABC 中,内角A ,B ,C 所对的边分别为a,b,c.已知bc 2a , 3csinB 4asinC. (Ⅰ)求cosB 的值;(Ⅱ)求sin 2B 的值.66.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a=3c ,b=2 ,cosB= 2,求c 的值;3(2)若sinAcosB,求sin(B)的值. a 2b27.(2019浙江14)在△ABC中, ABC90 ,AB4,BC3,点D 在线段AC 上,________.若BDC45,则BD____,cos ABD2010-2018年一、选择题1.(2018全国卷Ⅱ)在△ABC中,cos C5,BC1,AC5,则AB25A.42B.30C.29D.252(2018全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若ABC的面积.为a2b2c2,则C4A.2B.C.4D.3632017新课标Ⅰ)ABC的内角A、B、C的对边分别为a、b、c.已知.(sinB sinA(sinC cosC)0,a2,c2,则C=A.B.6C.4D.312.(2016全国I)△ABC的内角、B、C的对边分别为、、c.已知a5,c2,4A abcosA 2,则b=3A.2B.3C.2D.35.(2016全国III)在ABC中,B4,BC边上的高等于1BC,则sinA33B.105310A.10C.D.101056.(2016山东)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1-sinA),则A=A.3πB.πC.πD.π43467.(2015广东)设ΑΒC的内角A,B,C的对边分别为a,b,c.若a2,c23,cosA3,且bc,则b2A .3B .22C .2D . 38.(2014新课标2)钝角三角形ABC 的面积是1, AB1 ,BC2,则 AC =2A .5B . 5C .2D .19.(2014重庆)已知ABC 的内角A ,B ,C 知足sin2A sin(A BC)=sin(CAB) 12 ,面积S 知足1≤S≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则以下不等式必定建立的是A .bc(b c) 8 B .ab(ab)16 2C .6abc 12 D .12abc 2410.(2014江西)在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若 c 2 (ab)26,C ,则 ABC 的面积是3A .3B . 9 33 3 D .33 2 C . 211.(2014四川)如图,从气球 A 上测得正前面的河流的两岸 B C 的俯角分别为 75 30 ,, , 此时气球的高是 60cm ,则河流的宽度 BC 等于A30°75°60m BCA .240(3 1)mB .180( 2 1)mC .120(3 1)m D .30( 3 1)m12.(2013新课标1)已知锐角ABC 的内角A,B,C 的对边分别为a,b,c ,23cos 2Acos2A 0,a 7,c 6,则bA .10B .9C .8D .513.(2013辽宁)在ABC ,内角A,B,C 所对的边长分别为a,b,c .若asinBcosCcsinBcosA 1b,则B=b,且a2C.2D.5A.B.6336 14.(2013天津)在△ABC中,ABC,AB2,BC 3,则sin BAC=4A.10B.10C.3105 D.10510515.(2013陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosCccosBasinA,则△ABC的形状为A.锐角三角形B.直角三角形C.钝角三角形D.不确立16.(2012广东)在ABC中,若A60,B45,BC32,则ACA.43B.23C.D.17.(2011辽宁)ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB bcos2Ab2a,则aA.23B.22C.3D.218.(2011天津)如图,在△ABC中,D是边AC上的点,且AB AD,2AB3BD,BC2BD,则sinC的值为BA D C3B.366A.6C.D.33619.(2010湖南)在ABC中,角A,B,C所对的边长分别为a,b,c.若C120,c2a,则A.abB.abC.abD.a与b的大小关系不可以确立二、填空题20.(2018全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知bsinC csinB 4asinBsinC ,b 2 c 2 a 28,则△ABC 的面积为__.21(2018 ) 在 ABC 中,角 A , B , C 所对的边分别为 a, b ,c .若 a7 , b2,. 浙江 60,则sinB=___________,c=___________.22.(2018北京)若△ABC 的面积为 3(a 2 c 2b 2),且 C 为钝角,则B= ;c 的 4a 取值范围是.23.(2018江苏)在△ABC 中,角A,B,C 所对的边分别为a,b,c , ABC120, ABC 的平分线交AC 于点D ,且BD 1,则 4a c 的最小值为 . 24 2017 新课标Ⅱ) ABC 的内角 A,B , C 的对边分别为 a, b ,c ,若 .(2bcosBacosC ccosA ,则B25 2017 新课标Ⅲ) ABC 的内角 A ,B ,C 的对边分别为 a, b ,c .已知 C60,.( 6,c3,则A=_______.26.(2017浙江)已知 ABCAB AC4 BC 2 .点 D 为 AB 延伸线上一点,BD 2 ,, , 连接CD ,则 BDC 的面积是_______,cos BDC=_______.27.(2016全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为 4 , a ,b ,c ,若cosA5cosC 5,a1,则b _____.13 228.(2015北京)在△ABC中,a 3,b 6,A ,则 B=_________. 3129.(2015重庆)设 ABC 的内角A,B,C 的对边分别为a,b,c ,且a2,cosC ,4 3sinA 2sinB ,则c=________. 30.(2015安徽)在 ABC 中,AB 6,A 75 , B 45 ,则AC .31.(2015福建)若锐角ABC 的面积为10 3,且AB 5,AC 8,则BC 等于 .32.(2015新课标1)在平面四边形ABCD 中,AB C 75,BC 2,则AB 的取值范围是_______.33.(2015天津)在 ABC 中,内角A,B,C 所对的边分别为 a,b,c ,已知 ABC 的面积为315,bc2,cosA 1,则a的值为.434.(2015湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后抵达B处,测得此山顶在西偏北75的方向上,仰角为3,则此山的高度CD m.35.(2014新课标1)如图,为丈量山高MN,选择A和另一座山的山顶C为丈量观察点.从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA6.已知山高BC100m,则山高MN________m.MCNBA36.(2014广东)在ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosCccosB2b,则a.b37.(2013安徽)设ABC的内角A,B,C所对边的长分别为a,b,c.若bc2a,则3sinA 5sinB,则角C_____.38.(2013福建)如图ABC中,已知点D在BC边上,AD22AC,sinBAC,3AB32,AD 3,则BD的长为_______________.ABDC39.(2012 安徽)设 ABC 的内角A,B,C 所对的边为a,b,c ;则以下命题正确的选项是.①若ab c 2;则C ②若a b2c ;则C 33③若a 3 b 3 c 3;则C ④若(a b)c2ab ;则C 22⑤若(a 2b 2)c 2 2a 2b 2;则C 340.(2012 北京)在 ABC 中,若a2,b c7,cosB 1,则b= . 441.(2011 新课标) ABC 中,B 60,AC3,,则AB+2BC 的最大值为____. 42.(2011 新课标) ABC 中,B 120,AC 7,AB 5,则ABC 的面积为___. 432010 江苏)在锐角三角形 ABC ,a , b ,c 分别为内角 A , B , C所对的边长,.( b a 6cosC tanC tanCa b ,则 =_______.tanA tanB44.(2010 山东)在 ABC 中,角A,B,C 所对的边分别为 a,b,c ,若a2,b 2, sinB cosB 2,则角A 的大小为 .三、解答题45.(2018天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知bsinA acos(B).6求角B 的大小; (2)设a2,c 3,求b 和sin(2AB)的值.46.(2017天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c .已知 asinA4bsinB ,ac5(a 2 b 2c 2).(Ⅰ)求cosA 的值;(Ⅱ)求sin(2B A)的值.47.(2017 山东)在 ABC 中,角A ,B ,C 的对边分别为 a ,b ,c ,已知b3,ABAC 6,S ABC 3,求A 和a .48.(2015 新课标2)ABC 中,D 是BC 上的点,AD 均分∠BAC,?ABD 面积是?ADC 面 积的2倍. (Ⅰ)求 sinB ; sinC(Ⅱ)若AD=1,DC=2,求BD 和AC 的长.249.(2015新课标1)已知a,b,c 分别是 ABC 内角A,B,C 的对边,sin 2B 2sinAsinC . (Ⅰ)若a b ,求cosB; (Ⅱ)若B 90 ,且a 2 ,求 ABC 的面积.502014 山东) ABC 中,a , b , c 分别为内角 A , B , C 所对的边长.已知a 3 ,.( cosA6,B A2 .3(I)求b 的值;(II )求ABC 的面积.51.(2014安徽)设ABC 的内角A,B,C 所对边的长分别是a,b,c ,且b 3,c 1,A 2B .(Ⅰ)求a 的值;(Ⅱ)求sin(A )的值.452.(2013新课标1)如图,在ABC 中,∠ABC=90°,AB=3,BC=1,P 为△ABC 内一点,∠BPC=90°.(Ⅰ)若PB=1,求PA ; 2(Ⅱ)若∠APB=150°,求tan∠PBA.53.(2013新课标2)ABC在内角A,B,C的对边分别为a,b,c,已知abcosCcsinB.(Ⅰ)求B;(Ⅱ)若b2,求△ABC面积的最大值..(2012安徽)设ABC的内角A,B,C所对边的长分别为a,b,c,,且有2sinBcosA54sinAcosC cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b2,c 1,D为BC的中点,求AD的长.55.(2012新课标)已知a、b、c分别为ABC三个内角A、B、C的对边,acosC3asinC b c0.(Ⅰ)求A;(Ⅱ)若a2,ABC的面积为3,求b、c.56.(2011山东)在ABC中,a,b,c分别为内角A,B,C所对的边长.已知cosA2cosC2c acosB b.(I)求sinC的值;sinA1(II)若cosB2,ABC的面积S.,b457.(2011安徽)在ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,12cos(B C)0,求边BC上的高.58.(2010陕西)如图,A,B是海面上位于东西方向相距533海里的两个观察点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的营救船立刻前去营救,其航行速度为30海里/小时,该营救船抵达D点需要多长时间?59.(2010江苏)某兴趣小组丈量电视塔AE 的高度H(单位:m),如表示图,垂直搁置的标杆BC 的高度h=4m,仰角∠ABE=,∠ADE=.EHCDβhαAB d(1)该小组已经测得一组、的值,tan,tan,请据此算出H的值;(2)该小组剖析若干测得的数据后,以为适合调整标杆到电视塔的距离d(单位:m),使与之差较大,能够提升丈量精准度。
高三文科数学总复习课件:三角函数的图像与性质

递减区间.
第二十一页,编辑于星期日:二十二点 四十八 分。
备选例题.已知函数f (x) sin(x )( 0, 0 ) 是R上的偶函数,其图象关于点M (3 , 0)对称,且在
4
区间[0, ]上是单调函数,求和的值.
2
第二十二页,编辑于星期日:二十二点 四十八 分。
(方法一) 由于f (x)是R上的偶函数,所以f (x) f (x),
(其中 0) 6
6
2
(1)求函数 f (x) 的值域;
(2)若函数 y f (x)的图象与直线 y 1
的两个相邻交点间的距离为 ,求函数
y f (x)的单调增区间.
2
第十一页,编辑于星期日:二十二点 四十八分。
点评 研究三角函数 y Asin(x )( A 0, 0)
的单调性,基本思想是把 x 看作
f
6
1.
(1)求实数a的值;
(2)求f (x)的单调区间、周期和最值.
第十三页,编辑于星期日:二十二点 四十八分。
练习2.已知函数
f (x) cos(2x ) 2sin(x ) sin(x ).
3
4
4
(1)求函数f (x)的最小正周期和图象的对称轴方程;
(2)求函数f (x)在区间[ , ]上的值域.
的1 图象,
2
第八页,编辑于星期日:二十二点 四十八分。
第九页,编辑于星期日:二十二点 四十八分。
类型二 三角函数的图象与性质
定义域 周期性 奇偶性
值域、最值 单调性
对称性
第十页,编辑于星期日:二十二点 四十八分。
例1
设函数 f (x) sin(x ) sin(x ) 2 cos2 x,
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
高考数学专题复习-三角函数与解三角形

第1讲 三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟1.(全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 B2.(全国Ⅲ卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误. 答案 D3.(全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 答案 B4.(全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4. 答案 A考 点 整 合1.常用三种函数的图象与性质(下表中k ∈Z )图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的定义【例1】 (1)(北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin 2α+cos 2α+11+tan α=________.解析 (1)法一 由已知得β=(2k +1)π-α(k ∈Z ). ∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=13(k ∈Z ). 当cos α=1-sin 2α=223时,cos β=-223,∴cos(α-β)=cos αcos β+sin αsin β=223×⎝ ⎛⎭⎪⎫-223+13×13=-79. 当cos α=-1-sin 2α=-223时,cos β=223,∴cos(α-β)=cos αcos β+sin αsin β=-79.综上可知,cos(α-β)=-79.法二 由已知得β=(2k +1)π-α(k ∈Z ),∴sin β=sin[(2k +1)π-α]=sinα, cos β=cos[(2k +1)π-α]=-cos α,k ∈Z .当sin α=13时,cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=-(1-sin 2α)+sin 2α=2sin 2α-1=2×19-1=-79.(2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825. 答案 (1)-79 (2)1825探究提高 1.当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.2.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练1】 (1)(潍坊三模)在直角坐标系中,若角α的终边经过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,则sin(π-α)=( ) A.12B.32C.-12D.-32(2)(北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵解析 (1)∵角α的终边过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,且|OP |=1.∴由三角函数定义,知sinα=cos 2π3=-12.因此sin(π-α)=sin α=-12.(2)设点P 的坐标为(x ,y ),由三角函数的定义得yx <x <y ,所以-1<x <0,0<y <1.所以P 所在的圆弧是EF ︵. 答案 (1)C (2)C 热点二 三角函数的图象 考法1 三角函数的图象变换【例2-1】 (1)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A.向左平移π4个单位长度,再向上平移1个单位长度 B.向右平移π4个单位长度,再向上平移1个单位长度 C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度(2)(湖南六校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,其图象相邻两条对称轴之间的距离为π2,将函数y =f (x )的图象向左平移π3个单位长度后,得到的图象关于y 轴对称,那么函数y =f (x )的图象( )A.关于点⎝ ⎛⎭⎪⎫π12,0对称B.关于点⎝ ⎛⎭⎪⎫-π12,0对称C.关于直线x =π12对称D.关于直线x =-π12对称解析 (1)因为y =sin 2x +1=cos ⎝ ⎛⎭⎪⎫2x -π2+1=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+1,故只需将函数y =cos 2x 的图象向右平移π4个单位长度,再向上平移1个单位长度,即可得到函数y =sin 2x +1的图象. (2)由题意,T =π,ω=2.又y =f ⎝ ⎛⎭⎪⎫x +π3=sin ⎝⎛⎭⎪⎫2x +φ+2π3的图象关于y 轴对称.∴φ+2π3=k π+π2,k ∈Z . 由|φ|<π2,取φ=-π6,因此f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,代入检验f ⎝ ⎛⎭⎪⎫π12=0,A 正确.答案 (1)B (2)A探究提高 1.“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.考法2 由函数的图象特征求解析式【例2-2】 (1)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6B.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3C.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π12D.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(2)(济南调研)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.1B.12C.22D.32解析 (1)由题意知A =2,T =4⎝ ⎛⎭⎪⎫5π12-π6=π,ω=2,因为当x =5π12时取得最大值2,所以2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ, 所以2×5π12+φ=2k π+π2,k ∈Z ,解得φ=2k π-π3,k ∈Z , 因为|φ|<π2,得φ=-π3. 因此函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.(2)观察图象可知,A =1,T =π,则ω=2. 又点⎝ ⎛⎭⎪⎫-π6,0是“五点法”中的始点,∴2×⎝ ⎛⎭⎪⎫-π6+φ=0,φ=π3. 则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 22=π12,则x 1+x 2=π6,因此f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32. 答案 (1)B (2)D探究提高 已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练2】 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.解 (1)设函数f (x )的最小正周期为T ,由题图可知 A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0,由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π,k ∈Z , 则φ=2k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3,当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x )min =12. 热点三 三角函数的性质 考法1 三角函数性质【例3-1】 (合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间. 考法2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调递增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π3.由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,整理得k π-π12≤x ≤kx +5π12,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【训练3】 (湖南师大附中质检)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2)(ω>0),函数f (x )=m·n +3,若函数f (x )的图象的两个相邻对称中心的距离为π2. (1)求函数f (x )的单调增区间;(2)若将函数f (x )的图象先向左平移π4个单位,然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,求函数g (x )的值域.解 (1)f (x )=m·n +3=2cos ωx (sin ωx -cos ωx )-2+3 =sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π4.依题意知,最小正周期T =π.∴ω=1,因此f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,求得f (x )的增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z .(2)将函数f (x )的图象先向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4的图象.故g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4,由π4≤x ≤π2,知5π4≤4x +π4≤9π4.∴-1≤sin ⎝ ⎛⎭⎪⎫4x +π4≤22.故函数g (x )的值域是[-2,1].1.已知函数y=A sin(ωx+φ)+B(A>0,ω>0)的图象求解析式(1)A=y max-y min2,B=y max+y min2.(2)由函数的周期T求ω,ω=2πT.(3)利用“五点法”中相对应的特殊点求φ.2.运用整体换元法求解单调区间与对称性类比y=sin x的性质,只需将y=A sin(ωx+φ)中的“ωx+φ”看成y=sin x中的“x”,采用整体代入求解.(1)令ωx+φ=kπ+π2(k∈Z),可求得对称轴方程;(2)令ωx+φ=kπ(k∈Z),可求得对称中心的横坐标;(3)将ωx+φ看作整体,可求得y=A sin(ωx+φ)的单调区间,注意ω的符号.3.函数y=A sin(ωx+φ)+B的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y=A sin(ωx +φ)+B(一角一函数)的形式;第二步:把“ωx+φ”视为一个整体,借助复合函数性质求y=A sin(ωx+φ)+B的单调性及奇偶性、最值、对称性等问题.一、选择题1.(全国Ⅲ卷)函数f(x)=tan x1+tan2x的最小正周期为()A.π4 B.π2 C.π D.2π解析f(x)=tan x1+tan2x=sin xcos x1+sin2xcos2x=sin x cos xcos2x+sin2x=sin x cos x=12sin 2x,所以f(x)的最小正周期T=2π2=π.答案 C2.(全国Ⅲ卷)函数f(x)=15sin⎝⎛⎭⎪⎫x+π3+cos⎝⎛⎭⎪⎫x-π6的最大值为()A.65 B.1 C.35 D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A3.(湖南六校联考)定义一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,将函数f (x )=⎪⎪⎪⎪⎪⎪2 2sin x 3 cos x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值是( ) A.π6B.π3C.2π3D.5π6解析 f (x )=2cos x -23sin x =4cos ⎝ ⎛⎭⎪⎫x +π3,依题意g (x )=f (x +φ)=4cos ⎝ ⎛⎭⎪⎫x +π3+φ是偶函数(其中φ>0).∴π3+φ=k π,k ∈Z ,则φmin =23π. 答案 C4.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG 是斜边为4的等腰直角三角形(E ,F 是函数与x 轴的交点,点G 在图象上),则f (1)的值为( )A.22B.62C. 2D.2 2解析 依题设,T 2=|EF |=4,T =8,ω=π4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π2,在等腰直角△EGF 中,易求A =2. 所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π2=2cos π4x ,则f (1)= 2.答案 C5.(天津卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减C.在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减解析 把函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度得函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π4,即函数g (x )=sin 2x 的一个单调递增区间为⎣⎢⎡⎦⎥⎤3π4,5π4.答案 A 二、填空题6.(江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.因为-π2<φ<π2,所以π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.答案 -π67.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,其中|PQ |=2 5.则f (x )的解析式为________.解析 由题图可知A =2,P (x 1,-2),Q (x 2,2),所以|PQ |=(x 1-x 2)2+(-2-2)2=(x 1-x 2)2+42=2 5.整理得|x 1-x 2|=2,所以函数f (x )的最小正周期T =2|x 1-x 2|=4,即2πω=4,解得ω=π2.又函数图象过点(0,-3),所以2sin φ=-3,即sin φ=-32.又|φ|<π2,所以φ=-π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π3.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π38.(北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23.答案 23 三、解答题9.已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z },f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.10.(西安模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π,k ∈Z ,∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23,故cos(x 1-x 2)=23.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3,已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx=32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z ,故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12. 因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。
高考数学三角函数公式常考题型汇总

2.
若
sin
,则
cos
=
A. 7 9
B. 1 3
C. 1 3
D. 7 9
3.
(2012
江苏)设
为锐角,若 cos
6
4 5
,则
sin
2
12
的值为
.
4. 已知 , (, ) ,且 tan( ) , tan ,则 _______.
题型三:二倍角及降幂公式 1. 化简: sin __________.
D.
9.
(2014
全国Ⅰ)设
(,
)
,
(,
)
,且
tan
sin cos
,则
A.
B.
C.
D.
10. 若 f (x) sin(x ) 为奇函数,则 _________;若 f (x) sin(x ) 为偶 函数,则 _________.
3. (2018 全国Ⅲ)函数 f(x)=
的最小正周期为( )
A.
B.
C.π
D.2π
4. (2018 全国卷Ⅰ)已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两
点
A(1, a)
, B(2,b) ,且 cos 2
2 3
,则
ab
A. 1 5
B. 5 5
C. 2 5 5
D. 1
5. (2019 江苏)已知
sin(x x ) ___________.
题型五:万能公式
1.
(2010 全国)若 cos
,
是第三象限的角,则
tan tan
A.
B.
C.
三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。
专题20 三角函数及解三角形解答题丨十年(2014-2023)高考数学真题分项汇编(原卷版)(共1
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1十年(2014-2023)年高考真题分项汇编—三角函数解答题目录题型一:三角恒等变换...........................................................................1题型二:三角函数与向量综合...............................................................2题型三:三角函数的图像与性质...........................................................3题型四:正余弦定理的应用...................................................................6题型五:与三角形周长、面积有关问题..............................................10题型六:三角函数的建模应用.............................................................12题型七:结构不良型试题 (14)(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -.2.(2023年新课标全国Ⅰ卷·第17题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.3.(2018年高考数学江苏卷·第16题)(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos 2α的值;(2)求tan()αβ-的值.4.(2018年高考数学浙江卷·第18题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin(π)α+的值;(2)若角β满足5sin()13αβ+=,求cos β值.5.(2014高考数学广东理科·第16题)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭,(1)求A 的值;(2)若23)()(=-+θθf f ,2,0(πθ∈,求)43(θπ-f .6.(2014高考数学江苏·第15题)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.题型二:三角函数与向量综合1.(2014高考数学山东理科·第16题)已知向量(,cos 2)a m x = ,(sin 2,)b x n = ,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.2.(2017年高考数学江苏文理科·第16题)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a b,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.3.(2014高考数学辽宁理科·第17题)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.4.(2015高考数学陕西理科·第17题)(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c.向量()m a =与()cos ,sin n =A B平行.(Ⅰ)求A ;(Ⅱ)若a =2b =求C ∆AB 的面积.5.(2015高考数学广东理科·第16题)(本小题满分12分)在平面直角坐标系xOy 中,已知向量22,22m ⎛⎫=-⎪ ⎪⎝⎭,(sin ,cos )n x x = ,(0,)2x π∈.(1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值.题型三:三角函数的图像与性质1.(2014高考数学江西理科·第17题)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.2.(2019·浙江·第18题)设函数()sin f x x =,x ∈R .(Ⅰ)已知[0,2)θπ∈,函数()f x θ+是偶函数,求θ的值;(Ⅱ)求函数22[([(124y f x f x ππ=+++的值域.3.(2018年高考数学上海·第18题)(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a ∈R ,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若14f π⎛⎫=+⎪⎝⎭,求方程()1f x =[],ππ-上的解.4.(2014高考数学重庆理科·第17题)已知函数sin(x )(0,)22ππωϕωϕ+>-≤≤的图像关于直线x 3π=对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值;(II )若2)63αππϕ≤≤f()=24,求3cos()2απ+的值.5.(2014高考数学天津理科·第15题)已知函数2()cos sin()34f x x x x π=⋅+-+,x ∈R .(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在闭区间[,44ππ-上的最大值和最小值.6.(2014高考数学四川理科·第16题)已知函数()34f x sin(x ).π=+(Ⅰ)求()f x 的单调递增区间;(Ⅱ)若α是第二象限角,42354f cos()cos ,απαα⎛⎫=+⎪⎝⎭求cos sin αα-的值7.(2014高考数学福建理科·第16题)(本小题满分13分)已知函数.21)cos (sin cos )(-+=x x x x f (1)若20πα<<,且22sin =α,求()f α的值;(2)求函数)(x f 的最小正周期及单调递增区间.8.(2015高考数学重庆理科·第18题)(本小题满分13分,(1)小问7分,(2)小问6分)已知函数()2sin sin 2f x x x x π⎛⎫=--⎪⎝⎭(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.9.(2015高考数学天津理科·第15题)(本小题满分13,R x ∈(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间上的最大值和最小值.10.(2015高考数学湖北理科·第17题)(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:...........()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2p 个单位长度.(Ⅰ)求函数()f x 的解析式,并求其图像的对称轴方程;(Ⅱ)已知关于x 的方程()()f x g x m +=在[0,2)p 内有两个不同的解,a b .(1)求实数m 的取值范围;(2)证明:22cos ) 1.5m a b -=-(12.(2015高考数学北京理科·第15题)(本小题13分)已知函数2()cos222x x xf x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[π0]-,上的最小值.13.(2017年高考数学浙江文理科·第18题)已知函数22()sin cos cos ()f x x x x x x =--∈R .(Ⅰ)求2()3f π的值;(Ⅱ)求()f x 的最小正周期及单调递增区间.14.(2017年高考数学山东理科·第16题)设函数()sin(sin()62f x x x ππωω=-+-,其中03ω<<.已知(06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的22倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3,44ππ⎡⎤-⎢⎥⎣⎦上的最小值.15.(2016高考数学天津理科·第15题)已知函数()4tan sin()cos(23ππf x x x x =--(Ⅰ)求()f x 的定义域与最小正周期;(Ⅱ)讨论()f x 在区间[,]44ππ-上的单调性.16.(2021年高考浙江卷·第18题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎣⎦上的最大值.17.(2014高考数学江苏·第26题)已知函数0()f x =sin xx(0x >),记()n f x 为1()n f x -的导数,n ∈N *.(1)求122((222f f πππ+的值;(2)证明:对任意n ∈N *,等式14442n n nf f πππ-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立.题型四:正余弦定理的应用1.(2023年新课标全国Ⅱ卷·第17题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABC 的面积D 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .2.(2021年新高考Ⅰ卷·第19题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.3.(2020年浙江省高考数学试卷·第18题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.4.(2022新高考全国I 卷·第18题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A BA B=++.(1)若23C π=,求B ;(2)求222a b c+的最小值.5.(2020天津高考·第16题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知5,a b c ===.(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.6.(2020江苏高考·第16题)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.7.(2019·全国Ⅰ·理·第17题)ABC △的内角,,A B C 的对边分别为,,a b c .设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .8.(201915题)在ABC △中,角,,A B C 的对边分别为,,a b c .(1)若3,23a cb B ===,求c 的值;(2)若sin cos 2A B a b =,求sin(2B π+的值.9.(2019·北京·理·第15题)在△ABC 中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b c ,的值;(Ⅱ)求sin (B –C )的值.10.(2018年高考数学天津(理)·第15题)在ABC △中,内角,,A B C 所对的边分别为,,a b c ,已知πsin cos()6b A a B =-.(1)求角B 的大小;(2)设2,3a c ==,求b 和sin(2)A B -的值.11.(2018年高考数学课标卷Ⅰ(理)·第17题)(12分)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .12.(2018年高考数学北京(理)·第15题)(本小题13分)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.13.(2014高考数学陕西理科·第18题)ABC ∆的内角C B A ,,所对的边分别为c b a ,,.⑴若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ;⑵若c b a ,,成等比数列,求B cos 的最小值.14.(2014高考数学湖南理科·第18题)如图右,在平面四边形ABCD 中,7,2,1===AC CD AD .(Ⅰ)求CAD ∠cos 的值;(Ⅱ)若621sin ,147cos =∠-=∠CBA BAD 求BC 的长.15.(2014高考数学大纲理科·第17题)∆ABC 的内角A 、B 、C 的对边分别为,,a b c ,已知3cos 2cos a C c A =,1tan 3A =,求角B .16.(2014高考数学北京理科·第15题)如图,在△ABC 中,∠B =3π,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17(1)求sin ∠BAD (2)求BD ,AC 的长17.(2014高考数学安徽理科·第16题)设ABC ∆的内角,A B C ,所对边的长分别是,,a b c ,且3,1,2b c A B ===.(Ⅰ)求a 的值;(Ⅱ)求sin()4A π+的值.,,,A B C D ABCD (1)证明:1cos tan;2sin A A A-=(2)若180,6,3,4,5,A C AB BC CD AD +=====o求tantan tan tan 2222A B C D+++的值.19.(2015高考数学湖南理科·第19题)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角.(1)证明:2B A π-=;(2)求sin sin A C +的取值范围.20.(2015高考数学江苏文理·第15题)在ABC ∆中,已知 60,3,2===A AC AB .(1)求BC 的长;(2)求C 2sin 的值.21.(2015高考数学安徽理科·第16题)(本小题满分12分)在ABC ∆中,3,6,4A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长.22.(2017年高考数学天津理科·第15题)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(1)求b 和sin A 的值;(2)求πsin(2)4A +的值.23.(2016高考数学四川理科·第17题)在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且cos cos sin A B Ca b c+=.(1)证明:sin sin sin A B C =;(2)若22265b c a bc +-=,求tan B .24.(2016高考数学山东理科·第16题)(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+(Ⅰ)证明:2a b c +=;(Ⅱ)求cos C 的最小值.25.(2016高考数学江苏文理科·第15题)在ABC △中,6AC =,4cos 5B =,π4C =.(1)求AB 的长;(2)求πcos 6A ⎛⎫-⎪⎝⎭的值.26.(2016高考数学北京理科·第15题)(本小题13分)在ABC ∆中,222a cb +=+.(I )求B ∠的大小(II cos cos A C +的最大值.27.(2019·天津·理·第15题)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值.题型五:与三角形周长、面积有关问题1.(2023年全国乙卷理科·第18题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.2.(2021年新高考全国Ⅱ卷·第18题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.3.(2020年高考课标Ⅱ卷理科·第17题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.4.(2022高考北京卷·第16题)在ABC 中,sin 2C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为,求ABC 的周长.5.(2022年浙江省高考数学试题·第18题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos5a C ==.(1)求sin A 的值;(2)若11b =,求ABC 的面积.6.(2022新高考全国II 卷·第18题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12331,sin 23S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b .7.(2022年高考全国乙卷数学(理)·第17题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.8.(2014第18中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a b ≠,c =22cos cos cos cos .A B A A B B -=-(I )求角C 的大小;(II )若4sin ,5A =求ABC 的面积。
高考数学专题: 三角函数的诱导公式
第四章
三角函数
三角函数的诱导公式
栏 目 导 航
链教材 ·夯基固本 研题型 ·技法通关
链教材 ·夯基固本
激活思维
- 3-1 . 1. (必修4P19例1改编)计算:tan300° +2sin450° · cos(-120° ) 的值为__________
cos
2
π π π 2 x+ +1=sinx+ +sin x+ =a+a2. 6 6 6
知识梳理 1. 诱导公式 -α sin( ) cos( ) tan( ) -sin α cos α -tan α π-α sin α π+α 2π-α π 2-α cos α sin α / π 2+α cos α 3π 2 -α 3π 2 +α
【解析】tan300° +2sin450° cos(-120° )=tan(360° -60° )+2sin(360° +90° ) cos120° =tan(-60° )+2sin90° cos(180° -60° )=-tan60° -2cos60° =- 3-1.
2.
2 π 5 (必修4P23习题11改编)已知tan(π+θ)=2,那么sinθ· sin2-θ=________.
π 以sinθsin tanθ 2 2 = = . tan2θ+1 22+1 5
sinθ· cosθ =sinθcosθ= = 2 2 sin θ+cos θ
2 3. (必修4P20练习3改编)化简:sin2(π+α)-cos(π+α)· cos(-α)+1=________.
cos180° +10° [-sin180° +30° ] (2) 原式= cos360° -10° [-tan360° +225° ]
2012-2018年高考真题汇编:三角函数文科(带答案)
历年高考试题集锦(文)——三角函数1、弧度制任意角与三角函数1.(2014大纲文)已知角的终边经过点(-4,3),则cos=(D)A.45B.35C.-35D.-452.(2013福建文)已知函数2x3,x 0f(x),则f(f())-2tan x,0x 4253.(2013年高考文)已知a是第二象限角,sin a ,则cosa (A)131255A.B.C.1313131213D.2、同角三角函数间的关系式及诱导公式514.(2013广东文)已知sin(),那么cos (C)252112A.B.C.D.55555.(2018北京文)在平面直角坐标系中,AB,CD,EF,G H是圆x2y21上的四段弧(如图),点P在其中一段上,角以O为始边,OP为终边,若tan cos sin,则P所在的圆弧是(C)(A)AB(B)CD(C)EF(D)G H6、(2017年全国I卷)已知πa(0,),tanα=2,则2πcos()=_____310410_____。
7.(2014安徽文)若函数f x x R是周期为4的奇函数,且在0,2上的解析式为f xx(1x),0x 1,sin x,1x 2第1页(共14页)2941则f f _______46【简解】原式=f(-34)+f(-76)=-f(34)-f(76)=-31-sin(4475)=6165,结果168、(2018江苏)函数f(x)满足f(x 4)f(x)(x R),且在区间(2,2]上,f(x)xcos,0x2,21|x|,-2x0,2则f(f(15))的值为22.9、(2015年广东文)已知tan 2.1求t an4的值;2求sin 2的值.sin sin cos cos 212【答案】(1)3;(2)1.3、三角函数的图象和性质10.(2014大纲)设a sin33,b cos55,c tan35,则(C)A.a b c B.b c a C.c b a D.c a b11.(2014福建文)将函数y sin x的图象向左平移个单位,得到函数y f x的函数图象,则下列说2法正确的是(D)第2页(共14页)A.y f x是奇函数B.y f x 的周期为C y f x xD y f x.的图象关于直线对称.的图象关于点-,0对称2212.(2018天津文))将函数y sin(2x )的图象向右平移510个单位长度,所得图象对应的函数(A)353[,]上单调递增(B)在区间(A)在区间[,]上单调递减444533(C)在区间[,2]上单调递减[,]上单调递增(D)在区间42213、(2013山东)将函数y=sin(2x +)的图象沿x轴向左平移则的一个可能取值为(B)8个单位后,得到一个偶函数的图象,(A)34(B)4(C)0(D)414.(2013山东)函数y=x cos x+sin x的图象大致为(D)π115.(2016 年全国I 卷)将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为(D)64ππππ(A)y=2sin(2x+)(B)y=2sin(2x+)(C)y=2sin(2x–)(D)y=2sin(2x–)434316.(1)(2018新课标2文)若f(x)cos x sin x在[0,a]是减函数,则a的最大值是(C)A.π4B.π2C.3π4D.π(2)(2018新课标理文)若f(x)cos x sin x在[a,a]是减函数,则a的最大值是(A)A.π4B.π2C.3π4D.π17.(2014四川理)为了得到函数y sin(2x 1)的图象,只需把函数y sin2x的图象上所有的点(A)A、向左平行移动12个单位长度B、向右平行移动12个单位长度C、向左平行移动1个单位长度D、向右平行移动2个单位长度ππ18、(2013四川)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则ω,φ的值分别是(A)22第 3 页(共 14 页)π3 A.2,-π6B.2,-π6C.4,-π3D.4,19.(2016年全国II卷)函数y=Asin(x )的部分图像如图所示,则(A)(A)y 2sin(2x )(B)y 2sin(2x )63(C)y 2sin(2x+)(D)y 2sin(2x+)6320.(2013天津文)函数f(x)=sinπ2x-4在区间π0,2上的最小值为(B)A.-1B.-22C.22D.021.(2014浙江)为了得到函数y sin3x cos3x的图象,可以将函数y 2sin3x的图象(C)A.向右平移4个单位 B.向左平移4个单位 C.向右平移12个单位 D.向左平移12个单位322.(2012大纲)已知为第二象限角,sin cos ,则cos 2355A.B.C.3959D.5312【简解】原式两边平方可得1sin 2sin 2332215是第二象限角,因此sin 0,c os 0,所以cos sin (cos sin)133第4页(共14页)225cos 2cos sin (cos sin )(cos sin)323.(2013福建文)将函数f(x)sin(2x )()的图象向右平移(0)个单位长度后得到223函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值可以是()2A.53B.56C.2D.6【简解】P在f(x)上,θ=,f(x)=sin(2x+);g(x)=sin[2(x-φ)+]过点P,φ=333π2x+3的最小正周期为(C) 24.(2017年新课标Ⅱ文)函数f(x)=sinπ2 A.4πB.2πC.πD.56满足条件。
十年高考真题汇编(北京卷,含解析)之三角函数
十年高考真题(2011-2020)(北京卷)专题05三角函数与解三角形本专题考查的知识点为:三角函数与解三角形,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三角函数的性质,正余弦定理解三角形,正余弦定理的实际应用,三角函数的实际应用,预测明年本考点题目会比较稳定,备考方向以三角函数的性质,正余弦定理解三角形的方法为重点较佳.1.【2020年北京卷10】2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“ 割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是(). A .3n (sin 30°n +tan 30°n ) B .6n (sin 30°n +tan 30°n) C .3n (sin60°n+tan60°n)D .6n (sin60°n+tan60°n)2.【2018年北京理科07】在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x ﹣my ﹣2=0的距离.当θ、m 变化时,d 的最大值为( ) A .1B .2C .3D .43.【2016年北京理科07】将函数y =sin (2x −π3)图象上的点P (π4,t )向左平移s (s >0)个单位长度得到点P ′,若P ′位于函数y =sin2x 的图象上,则( ) A .t =12,s 的最小值为π6 B .t =√32,s 的最小值为π6 C .t =12,s 的最小值为π3D .t =√32,s 的最小值为π34.【2020年北京卷12】若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 5.【2019年北京理科09】函数f (x )=sin 22x 的最小正周期是 .6.【2018年北京理科11】设函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为 .7.【2017年北京理科12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sinα=13,则cos(α﹣β)=.8.【2015年北京理科12】在△ABC中,a=4,b=5,c=6,则sin2AsinC=.9.【2014年北京理科14】设函数f(x)=A sin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[π6,π2]上具有单调性,且f(π2)=f(2π3)=﹣f(π6),则f(x)的最小正周期为.10.【2012年北京理科11】在△ABC中,若a=2,b+c=7,cos B=−14,则b=.11.【2011年北京理科09】在△ABC中.若b=5,∠B=π4,tan A=2,则sin A=;a=.12.【2020年北京卷17】在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a的值:(Ⅱ)sinC和△ABC的面积.条件①:c=7,cosA=−17;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第一个解答计分.13.【2019年北京理科15】在△ABC中,a=3,b﹣c=2,cos B=−12.(Ⅰ)求b,c的值;(Ⅱ)求sin(B﹣C)的值.14.【2018年北京理科15】在△ABC中,a=7,b=8,cos B=−17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.15.【2017年北京理科15】在△ABC中,∠A=60°,c=37a.(1)求sin C的值;(2)若a=7,求△ABC的面积.16.【2016年北京理科15】在△ABC中,a2+c2=b2+√2ac.(Ⅰ)求∠B的大小;(Ⅱ)求√2cos A+cos C的最大值.17.【2015年北京理科15】已知函数f(x)=√2sin x2cos x2−√2sin2x2.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.18.【2014年北京理科15】如图,在△ABC中,∠B=π3,AB=8,点D在边BC上,且CD=2,cos∠ADC=17.(1)求sin∠BAD;(2)求BD,AC的长.19.【2014年北京理科18】已知函数f(x)=x cos x﹣sin x,x∈[0,π2](1)求证:f(x)≤0;(2)若a<sinxx <b对x∈(0,π2)上恒成立,求a的最大值与b的最小值.20.【2013年北京理科15】在△ABC中,a=3,b=2√6,∠B=2∠A.(Ⅰ)求cos A的值;(Ⅱ)求c的值.21.【2012年北京理科15】已知函数f(x)=(sinx−cosx)sin2xsinx.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.22.【2011年北京理科15】已知f(x)=4cos x sin(x+π6)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[−π6,π4]上的最大值和最小值.1.sin75o cos30o−cos75o sin30o的值为()A.1B.12C.√22D.√322.【北京市石景山区2019届高三第一学期期末】在△ABC中,a=7,c=3,∠A=60°,则△ABC的面积为()A.152√3B.154√3C.12√3D.6√33.【2020届北京怀柔区高三下学期适应性练习】函数y=2cos2x−1的最小正周期为()A.π2B.πC.2πD.4π4.【2020届北京市人民大学附属中学高考模拟(4月份)】下列函数中,值域为R且为奇函数的是()A.y=x+2B.y=sinx C.y=x−x3D.y=2x5.【北京市丰台区2020届高三下学期综合练习(二)(二模)】下列函数中,最小正周期为π的是()A.y=12sinx B.y=sin12xC.y=cos(x+π4)D.y=12tanx6.把函数y=sinx(x∈R)的图象上所有的点向左平移π6个单位长度,再把所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到图象的函数表达式为()A.y=sin(2x−π3),x∈R B.y=sin(2x+π3),x∈RC.y=sin(12x−π6),x∈R D.y=sin(12x+π6),x∈R7.【北京市人大附中2019届高三高考信息卷(三)】在三角形ABC中,AB=1,AC=√2,∠C=π6,则∠B=()A.π4B.π4或π2C.3π4D.π4或3π48.【北京市海淀区2020届高三年级第二学期期末练习(二模)】将函数f(x)=sin(2x−π6)的图象向左平移π3个单位长度,得到函数g(x)的图象,则g(x)=()A.sin(2x+π6)B.sin(2x+2π3)C.cos2x D.−cos2x9.【北京市西城外国语学校2019-2020学年高一第二学期诊断性测试】为了得到函数y=sin(2x−π4)的图象,可以将函数y=sin2x的图象()A.向左平移π4个单位长度B.向右平移π4个单位长度C.向左平移π8个单位长度D.向右平移π8个单位长度10.【2020届北京市朝阳区六校联考高三年级四月份测试】已知△ABC,则sinA=cosB”是△ABC是直角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.【北京市西城区北京师范大学附属实验中学2019-2020学年高三上学期12月月考】在△ABC中,a、b、c分别是角A、B、C的对边,如果2b=a+c,B=30°,△ABC的面积是32,则b=()A.1+√3B.1+√32C.2+√32D.2+√312.【2020届北京市高考适应性测试】为得到y=sin(2x−π3)的图象,只需要将y=sin2x的图象()A.向左平移π3个单位B.向左平移π6个单位C.向右平移π3个单位D.向右平移π6个单位13.【北京市第四中学2019届高三高考调研】△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cosC+√33sinC ),a=2,c=2√63,则角C=()A.π3B.π6C.3π4D.π414.【2020届北京市首都师范大学附属中学高三北京学校联考】若f(x)=Asin(ωx+φ)(其中A>0,|φ|<π2)的图象如图,为了得g(x)=sin(2x−π3)的图象,则需将f(x)的图象()A.向右平移π6个单位B.向右平移π3个单位C.向左平移π6个单位D.向左平移π3个单位15.【北京市海淀区2020届高三年级第二学期期末练习(二模)】在△ABC中,若a=7,b=8,cosB=−17,则∠A的大小为()A.π6B.π4C.π3D.π216.【2020届北京市大兴区高三第一次模拟】已知函数f(x)=sin(ωx+π6)(ω>0).若关于x的方程f(x)= 1在区间[0 , π]上有且仅有两个不相等的实根,则ω的最大整数值为()A.3B.4C.5D.617.【2020届北京市第22中学高三第一学期第二次阶段性考试】为了得到函数y=sin(2x−π3)的图像,只需将函数y=sin2x的图像()A.向右平移π6个单位B.向右平移π3个单位C.向左平移π6个单位D.向左平移π3个单位18.【2019届北京市十一学校高考前适应性练习】在ΔABC中,A=60°,B=75°,BC=10,则AB= A.5√2B.10√2C.5√6D.10√6319.【2020届北京市昌平区新学道临川学校高三上学期第三次月考】将函数y=2sin(2x+π6)的图象向右平移14个周期后,所得图象对应的函数为()A.y=2sin(2x+π4)B.y=2sin(2x+π3)C.y=2sin(2x−π4)D.y=2sin(2x−π3)20.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知函数f(x)=cos2ωx2+√32sinωx−12(ω>0,x∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的最大值是()A.512B.56C.1112D.3221.【北京市人大附中2020届高三(6月份)高考数学考前热身】设函数f(x)=sin(ωx−π6)+sin(ωx−π2),其中0<ω<3.已知f(π6)=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y=g(x)的图象,求g(x)在[−π4,3π4]上的最小值.22.【北京市人大附中2019届高考信息卷(二)】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acosC+√3asinC-b-c=0.(1)求A ;(2)若AD 为BC 边上的中线,cosB =17,AD =√1292,求△ABC 的面积.23.【北京五中2020届高三(4月份)高考数学模拟】在ΔABC 中,角A,B,C 的对边分别为a,b,c ,b =2√3,c =3,cosB =−13. (1)求sinC 的值; (2)求ΔABC 的面积.24.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)】如图,在四边形ABCD 中,∠A =60°,∠ABC =90°,已知AD =√3,BD =√6.(1)求sin∠ABD 的值;(2)若CD =2,且CD >BC ,求BC 的长.25.【北京市西城区第八中学2019-2020学年高三上学期期中】ΔABC 中,角A ,B ,C 所对边分别是a 、b 、c ,且cosA =13.(1)求sin 2B+C 2+cos2A 的值;(2)若a =√3,求△ABC 面积的最大值.26.【2020届北京市大兴区高三第一次模拟】在ΔABC 中,c =1,A =2π3,且ΔABC 的面积为√32. (1)求a 的值;(2)若D 为BC 上一点,且,求sin∠ADB 的值.从①AD =1,②∠CAD =π6这两个条件中任选一个,补充在上面问题中并作答.27.【2020届北京市房山区高三第一次模拟】在△ABC 中,a =√2,c =√10,________.(补充条件) (1)求△ABC 的面积;(2)求sin (A +B ).从①b =4,②cosB =−√55,③sinA =√1010这三个条件中任选一个,补充在上面问题中并作答.28.【2020届北京市海淀区高三一模】已知函数f(x)=2cos 2ω1x +sinω2x . (I)求f (0)的值;(II)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在[−π2,π6]上的最小值,并直接写出函数f (x )的一个周期.29.【北京市第十三中学2020届高三下学期开学测试】已知△ABC 同时满足下列四个条件中的三个: ①A =π3;②cosB =−23;③a =7;④b =3. (Ⅰ)请指出这三个条件,并说明理由; (Ⅱ)求△ABC 的面积.30.【2020届北京市石景山区高三4月统一测试】已知锐角△ABC ,同时满足下列四个条件中的三个: ①A =π3②a =13③c =15④sinC =13 (1)请指出这三个条件,并说明理由; (2)求△ABC 的面积.1.【2020年北京卷10】2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的割圆术”相似.数学家阿尔·卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A.3n(sin30°n +tan30°n)B.6n(sin30°n+tan30°n)C.3n(sin60°n +tan60°n)D.6n(sin60°n+tan60°n)【答案】A 【解析】单位圆内接正6n边形的每条边所对应的圆周角为360°n×6=60°n,每条边长为2sin30°n,所以,单位圆的内接正6n边形的周长为12nsin30°n,单位圆的外切正6n边形的每条边长为2tan30°n ,其周长为12ntan30°n,∴2π=12nsin 30°n+12ntan30°n2=6n(sin30°n+tan30°n),则π=3n(sin30°n +tan30°n).故选:A.2.【2018年北京理科07】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1B.2C.3D.4【答案】解:由题意d=√12+m2=|√m2+1sin(θ+α)−2|√m2+1,tanα=1m =yx,∴当sin(θ+α)=﹣1时,d max=1√m2+1≤3.∴d的最大值为3.故选:C .3.【2016年北京理科07】将函数y =sin (2x −π3)图象上的点P (π4,t )向左平移s (s >0)个单位长度得到点P ′,若P ′位于函数y =sin2x 的图象上,则( ) A .t =12,s 的最小值为π6B .t =√32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =√32,s 的最小值为π3【答案】解:将x =π4代入得:t =sin π6=12,将函数y =sin (2x −π3)图象上的点P 向左平移s 个单位,得到P ′(π4−s ,12)点,若P ′位于函数y =sin2x 的图象上, 则sin (π2−2s )=cos2s =12,则2s =±π3+2k π,k ∈Z ,则s =±π6+k π,k ∈Z ,由s >0得:当k =0时,s 的最小值为π6,故选:A .4.【2020年北京卷12】若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 【答案】π2(2kπ+π2,k ∈Z 均可) 【解析】因为f (x )=cosφsinx +(sinφ+1)cosx =√cos 2φ+(sinφ+1)2sin (x +θ), 所以√cos 2φ+(sinφ+1)2=2,解得sinφ=1,故可取φ=π2.故答案为:π2(2kπ+π2,k ∈Z 均可).5.【2019年北京理科09】函数f (x )=sin 22x 的最小正周期是 . 【答案】解:∵f (x )=sin 2(2x ), ∴f (x )=−12cos(4x)+12, ∴f (x )的周期T =π2,26.【2018年北京理科11】设函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为 .【答案】解:函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,可得:ω⋅π4−π6=2kπ,k ∈Z ,解得ω=8k +23,k ∈Z ,ω>0则ω的最小值为:23.故答案为:23.7.【2017年北京理科12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sin α=13,则cos (α﹣β)= .【答案】解:方法一:∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sin α=sin β=13,cos α=﹣cos β,∴cos (α﹣β)=cos αcos β+sin αsin β=﹣cos 2α+sin 2α=2sin 2α﹣1=29−1=−79 方法二:∵sin α=13,当α在第一象限时,cos α=2√23, ∵α,β角的终边关于y 轴对称,∴β在第二象限时,sin β=sin α=13,cos β=﹣cos α=−2√23, ∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79:∵sin α=13,当α在第二象限时,cos α=−2√23, ∵α,β角的终边关于y 轴对称,∴β在第一象限时,sin β=sin α=13,cos β=﹣cos α=2√23, ∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79综上所述cos (α﹣β)=−79,98.【2015年北京理科12】在△ABC 中,a =4,b =5,c =6,则sin2AsinC = . 【答案】解:∵△ABC 中,a =4,b =5,c =6, ∴cos C =16+25−362×4×5=18,cos A =25+36−162×5×6=34∴sin C =3√78,sin A =√74, ∴sin2AsinC =2×√74×343√78=1.故答案为:1.9.【2014年北京理科14】设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=﹣f (π6),则f (x )的最小正周期为 . 【答案】解:由f (π2)=f (2π3),可知函数f (x )的一条对称轴为x =π2+2π32=7π12,则x =π2离最近对称轴距离为7π12−π2=π12.又f (π2)=﹣f (π6),则f (x )有对称中心(π3,0),由于f (x )在区间[π6,π2]上具有单调性,则π2−π6≤12T ⇒T ≥2π3,从而7π12−π3=T4⇒T =π. 故答案为:π.10.【2012年北京理科11】在△ABC 中,若a =2,b +c =7,cos B =−14,则b = . 【答案】解:由题意,∵a =2,b +c =7,cos B =−14, ∴b 2=22+(7−b)2−2×2×(7−b)×(−14)∴b =4 故答案为:411.【2011年北京理科09】在△ABC 中.若b =5,∠B =π4,tan A =2,则sin A = ;a = .【答案】解:由tan A =2,得到cos 2A =11+tan 2A =15, 由A ∈(0,π),得到sin A =√1−15=2√55,根据正弦定理得:asinA=b sinB,得到a =bsinA sinB=5×2√55√22=2√10.故答案为:2√55;2√10 12.【2020年北京卷17】在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sinC 和△ABC 的面积. 条件①:c =7,cosA =−17;条件②:cosA =18,cosB =916.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32,S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74,S =15√74. 【解析】选择条件①(Ⅰ)∵c =7,cosA =−17,a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =2A =4√37由正弦定理得:a sinA =c sinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√74. 13.【2019年北京理科15】在△ABC 中,a =3,b ﹣c =2,cos B =−12.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B ﹣C )的值.【答案】解:(Ⅰ)∵a =3,b ﹣c =2,cos B =−12. ∴由余弦定理,得b 2=a 2+c 2﹣2ac cos B =9+(b −2)2−2×3×(b −2)×(−12), ∴b =7,∴c =b ﹣2=5;(Ⅱ)在△ABC 中,∵cos B =−12,∴sin B =√32, 由正弦定理有:csinC =b sinB,∴sinC =csinB b=5×√327=5√314, ∵b >c ,∴B >C ,∴C 为锐角, ∴cos C =1114,∴sin (B ﹣C )=sin B cos C ﹣cos B sin C=√32×1114−(−12)×5√314=4√37. 14.【2018年北京理科15】在△ABC 中,a =7,b =8,cos B =−17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【答案】解:(Ⅰ)∵a <b ,∴A <B ,即A 是锐角, ∵cos B =−17,∴sin B =√1−cos 2B =√1−(−17)2=4√37, 由正弦定理得a sinA =b sinB 得sin A =asinB b=7×4√378=√32, 则A =π3.(Ⅱ)由余弦定理得b 2=a 2+c 2﹣2ac cos B , 即64=49+c 2+2×7×c ×17, 即c 2+2c ﹣15=0, 得(c ﹣3)(c +5)=0,得c =3或c =﹣5(舍), 则AC 边上的高h =c sin A =3×√32=3√32. 15.【2017年北京理科15】在△ABC 中,∠A =60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积. 【答案】解:(1)∠A =60°,c =37a ,由正弦定理可得sin C =37sin A =37×√32=3√314, (2)a =7,则c =3, ∴C <A ,∵sin 2C +cos 2C =1,又由(1)可得cos C =1314, ∴sin B =sin (A +C )=sin A cos C +cos A sin C =√32×1314+12×3√314=4√37, ∴S △ABC =12ac sin B =12×7×3×4√37=6√3.16.【2016年北京理科15】在△ABC 中,a 2+c 2=b 2+√2ac . (Ⅰ)求∠B 的大小;(Ⅱ)求√2cos A +cos C 的最大值.【答案】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+√2ac . ∴a 2+c 2﹣b 2=√2ac . ∴cos B =a 2+c 2−b 22ac=√2ac2ac=√22, ∴B =π4(Ⅱ)由(I )得:C =3π4−A ,∴√2cos A +cos C =√2cos A +cos (3π4−A ) =√2cos A −√22cos A +√22sin A =√22cos A +√22sin A =sin (A +π4). ∵A ∈(0,3π4),∴A +π4∈(π4,π),故当A +π4=π2时,sin (A +π4)取最大值1, 即√2cos A +cos C 的最大值为1.17.【2015年北京理科15】已知函数f (x )=√2sin x2cos x2−√2sin 2x2. (Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间[﹣π,0]上的最小值. 【答案】解:(Ⅰ)f (x )=√2sin x2cos x2−√2sin 2x2 =√22sin x −√22(1﹣cos x ) =sin x cos π4+cos x sin π4−√22=sin (x +π4)−√22, 则f (x )的最小正周期为2π; (Ⅱ)由﹣π≤x ≤0,可得 −3π4≤x +π4≤π4,即有﹣1≤sin(x +π4)≤√22, 则当x =−3π4时,sin (x +π4)取得最小值﹣1, 则有f (x )在区间[﹣π,0]上的最小值为﹣1−√22. 18.【2014年北京理科15】如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17. (1)求sin ∠BAD ; (2)求BD ,AC 的长.【答案】解:(1)在△ABC 中,∵cos ∠ADC =17,∴sin ∠ADC =√1−cos 2∠ADC =√1−(17)2=√4849=4√37, 则sin ∠BAD =sin (∠ADC ﹣∠B )=sin ∠ADC •cos B ﹣cos ∠ADC •sin B =4√37×12−17×√32=3√314. (2)在△ABD 中,由正弦定理得BD =AB⋅sin∠BAD sin∠ADB=8×3√3144√37=3,在△ABC 中,由余弦定理得AC 2=AB 2+CB 2﹣2AB •BC cos B =82+52﹣2×8×5×12=49, 即AC =7.19.【2014年北京理科18】已知函数f (x )=x cos x ﹣sin x ,x ∈[0,π2] (1)求证:f (x )≤0; (2)若a <sinx x<b 对x ∈(0,π2)上恒成立,求a 的最大值与b 的最小值.【答案】解:(1)由f (x )=x cos x ﹣sin x 得 f ′(x )=cos x ﹣x sin x ﹣cos x =﹣x sin x , 此在区间∈(0,π2)上f ′(x )=﹣x sin x <0, 所以f (x )在区间∈[0,π2]上单调递减, 从而f (x )≤f (0)=0. (2)当x >0时,“sinx x>a ”等价于“sin x ﹣ax >0”,“sinx x<b ”等价于“sin x ﹣bx <0”令g (x )=sin x ﹣cx ,则g ′(x )=cos x ﹣c , 当c ≤0时,g (x )>0对x ∈(0,π2)上恒成立,当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x ﹣c <0,所以g (x )在区间[0,π2]上单调递减,从而,g (x )<g (0)=0对任意x ∈(0,π2)恒成立,当0<c <1时,存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0﹣c =0, g (x )与g ′(x )在区间(0,π2)上的情况如下:x (0,x 0) x 0 (x 0,π2) g ′(x ) + ﹣ g (x )↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,π2)恒成立,当且仅当g(π2)=1−π2c≥0即0<c≤2π综上所述当且仅当c≤2π时,g(x)>0对任意x∈(0,π2)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,π2)恒成立,所以若a<sinxx <b对x∈(0,π2)上恒成立,则a的最大值为2π,b的最小值为120.【2013年北京理科15】在△ABC中,a=3,b=2√6,∠B=2∠A.(Ⅰ)求cos A的值;(Ⅱ)求c的值.【答案】解:(Ⅰ)由条件在△ABC中,a=3,b=2√6,∠B=2∠A,利用正弦定理可得asinA =bsinB,即3sinA=2√6sin2A=2√62sinAcosA.解得cos A=√63.(Ⅱ)由余弦定理可得a2=b2+c2﹣2bc•cos A,即9=(2√6)2+c2﹣2×2√6×c×√63,即c2﹣8c+15=0.解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cos B=a 2+c2−b22ac=13,cos A=b2+c2−a22bc=√63,∴cos2A=2cos2A﹣1=13=cos B,∴B=2A,满足条件.综上,c=5.21.【2012年北京理科15】已知函数f(x)=(sinx−cosx)sin2xsinx.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.【答案】解:f(x)=(sinx−cosx)sin2xsinx =(sinx−cosx)2sinxcosxsinx=2(sinx−cosx)cosx=sin2x﹣1﹣cos2x=√2sin(2x−π4)﹣1k∈Z,{x|x≠kπ,k∈Z}(1)原函数的定义域为{x|x≠kπ,k∈Z},最小正周期为π.(2)由2kπ−π2≤2x−π4≤2kπ+π2,k∈Z,解得kπ−π8≤x≤kπ+3π8,k∈Z,又{x|x≠kπ,k∈Z},原函数的单调递增区间为[kπ−π8,kπ),k∈Z,(kπ,kπ+3π8],k∈Z22.【2011年北京理科15】已知f(x)=4cos x sin(x+π6)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[−π6,π4]上的最大值和最小值.【答案】解:(Ⅰ)∵f(x)=4cosxsin(x+π6)−1,=4cos x(√32sinx+12cosx)﹣1=√3sin2x+2cos2x﹣1=√3sin2x+cos2x=2sin(2x+π6),所以函数的最小正周期为π;(Ⅱ)∵−π6≤x≤π4,∴−π6≤2x+π6≤2π3,∴当2x+π6=π2,即x=π6时,f(x)取最大值2,当2x+π6=−π6时,即x=−π6时,f(x)取得最小值﹣1.1.sin75o cos30o−cos75o sin30o的值为()A.1B.12C.√22D.√32【答案】C 【解析】sin75o cos30o−cos75o sin30o2.【北京市石景山区2019届高三第一学期期末】在△ABC中,a=7,c=3,∠A=60°,则△ABC的面积为()A.152√3B.154√3C.12√3D.6√3【答案】D【解析】∵a=7,c=3,∠A=60°,∴由正弦定理可得:sin C=c•sin Aa=3×√327=3√314,∵a>c,C为锐角,∴cos C=√1−sin2C=1314,∴可得:s inB=sin(A+C)=sin A cos C+cos A sin C==√32×1314+12×3√314=4√37,∴SΔABC=12ac sin B=12×7×3×4√37=6√3.故选D.3.【2020届北京怀柔区高三下学期适应性练习】函数y=2cos2x−1的最小正周期为()A.π2B.πC.2πD.4π【答案】B【解析】由题可知:y=2cos2x−1=cos2x所以最小正周期为T=2π|ω|=2π2=π故选:B4.【2020届北京市人民大学附属中学高考模拟(4月份)】下列函数中,值域为R且为奇函数的是()A.y=x+2B.y=sinx C.y=x−x3D.y=2x【答案】C【解析】A.y=x+2,值域为R,非奇非偶函数,排除;B.y=sinx,值域为[−1,1],奇函数,排除;C.y=x−x3,值域为R,奇函数,满足;D.y=2x,值域为(0,+∞),非奇非偶函数,排除;故选:C.5.【北京市丰台区2020届高三下学期综合练习(二)(二模)】下列函数中,最小正周期为π的是()A.y=12sinx B.y=sin12xC.y=cos(x+π4)D.y=12tanx【答案】D【解析】由函数y=12sinx的最小正周期为2π,故排除A;由函数y=sin12x的最小正周期为2π12=4π,故排除B;由函数y=cos(x+π4)的最小正周期为2π,故排除C;由正切函数的最小正周期的公式,可得函数y=12tanx的最小正周期为π,故D满足条件,故选:D.6.把函数y=sinx(x∈R)的图象上所有的点向左平移π6个单位长度,再把所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到图象的函数表达式为()A.y=sin(2x−π3),x∈R B.y=sin(2x+π3),x∈RC.y=sin(12x−π6),x∈R D.y=sin(12x+π6),x∈R【答案】D 【解析】由题意将函数y=sinx(x∈R)的图象上所有的点向左平移π6个单位长度可得到函数y=sin(x+π6)(x∈R)的图象,再把所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数y=sin(12x+π6),x∈R的图象.故选:D.7.【北京市人大附中2019届高三高考信息卷(三)】在三角形ABC中,AB=1,AC=√2,∠C=π6,则∠B=()A.π4B.π4或π2C.3π4D.π4或3π4【答案】D 【解析】由正弦定理得ABsinC =ACsinB∴1sinπ6=√2sinB,sinB=√22∴B=π4或B=3π4,选D.8.【北京市海淀区2020届高三年级第二学期期末练习(二模)】将函数f(x)=sin(2x−π6)的图象向左平移π3个单位长度,得到函数g(x)的图象,则g(x)=()A.sin(2x+π6)B.sin(2x+2π3)C.cos2x D.−cos2x 【答案】C【解析】由题意g(x)=sin[2(x+π3)−π6]=sin(2x+π2)=cos2x.故选:C.9.【北京市西城外国语学校2019-2020学年高一第二学期诊断性测试】为了得到函数y=sin(2x−π4)的图象,可以将函数y=sin2x的图象()A.向左平移π4个单位长度B.向右平移π4个单位长度C.向左平移π8个单位长度D.向右平移π8个单位长度【答案】D 【解析】sin(2x−π4)=sin2(x−π8),据此可知,为了得到函数y=sin(2x−π4)的图象,可以将函数y=sin2x的图象向右平移π8个单位长度.本题选择D选项.10.【2020届北京市朝阳区六校联考高三年级四月份测试】已知△ABC,则sinA=cosB”是△ABC是直角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D 【解析】若sinA=cosB,则A+B=π2或A=B+π2,不能推出△ABC是直角三角形;若A=π2,则sinA≠cosB,所以△ABC是直角三角形不能推出sinA=cosB;所以sinA=cosB”是△ABC是直角三角形”的既不充分也不必要条件.故选:D.11.【北京市西城区北京师范大学附属实验中学2019-2020学年高三上学期12月月考】在△ABC中,a、b、c分别是角A、B、C的对边,如果2b=a+c,B=30°,△ABC的面积是32,则b=()A.1+√3B.1+√32C.2+√32D.2+√3【答案】A 【解析】由已知S=12acsinB=12acsin30°=14ac=32,ac=6,所以b2=a2+c2−2accos30°=(a+c)2−2ac−√3ac=4b2−6(2+√3),解得b=√3+1.故选:A.12.【2020届北京市高考适应性测试】为得到y=sin(2x−π3)的图象,只需要将y=sin2x的图象()A.向左平移π3个单位B.向左平移π6个单位C.向右平移π3个单位D.向右平移π6个单位【答案】D【解析】因为,所以为得到y=sin(2x−π3)的图象,只需要将y=sin2x的图象向右平移π6个单位;故选D.13.【北京市第四中学2019届高三高考调研】△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cosC+√33sinC ),a=2,c=2√63,则角C=()A.π3B.π6C.3π4D.π4【答案】D 【解析】∵b =a (cosC +√33sinC), ∴由正弦定理可得:sinB =sinAcosC +√33sinCsinA ,又∵sinB =sin (A +C )=sinAcosC +cosAsinC , ∴可得:√33sinA =cosA ,可得:tanA =√3,∵A ∈(0,π),∴A =π3,可得:sinA =√32, 又∵a =2,c =2√63, ∴由正弦定理可得:sinC =c ⋅sinA a=2√63×√322=√22,∵c <a ,C 为锐角,∴C =π4.故选:D .14.【2020届北京市首都师范大学附属中学高三北京学校联考】若f(x)=Asin(ωx +φ)(其中A >0,|φ|<π2)的图象如图,为了得g(x)=sin(2x −π3)的图象,则需将f(x)的图象()A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π6个单位 D .向左平移π3个单位【答案】B 【解析】由已知中函数f(x)=Asin(ωx +φ)(其中A >0,|φ|<π2)的图象, 可得:A =1,T =4(7π12−π3)=π,即ω=2 即f (x )=sin(2x +φ),将(7π12,−1)点代入得:7π6+φ=3π2+2kπ,k ∈Z 又由|φ|<π2∴φ=π3∴f(x)=sin(2x +π3),即f(x)=sin(2x +π3)=sin2(x +π6)g(x)=sin(2x −π3)=sin2(x −π6)所以将函数f (x )的图象向右平移π6−(−π6)=π3个单位得到函数g(x)=sin(2x −π3)的图象, 故选:B15.【北京市海淀区2020届高三年级第二学期期末练习(二模)】在△ABC 中,若a =7,b =8,cosB =−17,则∠A 的大小为() A .π6 B .π4C .π3D .π2【答案】C 【解析】cosB =−17,B ∈(π2,π),故sinB =√1−cos 2B =4√37,根据正弦定理:a sinA =bsinB ,故sinA =7×4√378=√32,A ∈(0,π2),故A =π3.故选:C.16.【2020届北京市大兴区高三第一次模拟】已知函数f(x)=sin(ωx +π6)(ω>0).若关于x 的方程f(x)=1在区间[0 , π]上有且仅有两个不相等的实根,则ω的最大整数值为() A .3 B .4 C .5 D .6【答案】B 【解析】令t =ωx +π6,∵x ∈[0 , π],∴π6≤ωx +π6≤ωπ+π6,∵y =sint 的图象如图所示,∵关于x 的方程f(x)=1在区间[0,]上有且仅有两个不相等的实根,∴y=sint=1在[π6,ωπ+π6]上有且仅有两个不相等的实根,∴5π2≤ωπ+π6≤17π4⇒52≤ω≤4912,∴ω的最大整数值为4,故选:B.17.【2020届北京市第22中学高三第一学期第二次阶段性考试】为了得到函数y=sin(2x−π3)的图像,只需将函数y=sin2x的图像()A.向右平移π6个单位B.向右平移π3个单位C.向左平移π6个单位D.向左平移π3个单位【答案】A 【解析】根据函数平移变换,由y=sin2x变换为y=sin(2x−π3)=sin2(x−π6),只需将y=sin2x的图象向右平移π6个单位,即可得到y=sin(2x−π3)的图像,故选A.18.【2019届北京市十一学校高考前适应性练习】在ΔABC中,A=60°,B=75°,BC=10,则AB= A.5√2B.10√2C.5√6D.10√63【答案】D【解析】由内角和定理知C=180°−(60°+75°)=45°,所以ABsinC =BCsinA,即AB=BCsinCsinA =10×sin45°sin60°=10√63,故选D.19.【2020届北京市昌平区新学道临川学校高三上学期第三次月考】将函数y=2sin(2x+π6)的图象向右平移14个周期后,所得图象对应的函数为()A.y=2sin(2x+π4)B.y=2sin(2x+π3)C.y=2sin(2x−π4)D.y=2sin(2x−π3)【答案】D 【解析】函数y=2sin(2x+π6)的周期为π,将函数y=2sin(2x+π6)的图象向右平移14个周期即π4个单位,所得图象对应的函数为y=2sin[2(x−π4)+π6)]=2sin(2x−π3),故选D.20.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知函数f(x)=cos2ωx2+√32sinωx−12(ω>0,x∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的最大值是()A.512B.56C.1112D.32【答案】C 【解析】f(x)=cos2ωx2+√32sinωx−12=√32sinωx+12cosωx=sin(ωx+π6),令f(x)=0,ωx+π6=kπ(k∈Z),x=kπω−π6ω(k∈Z),函数f(x)在区间(π,2π)内没有零点,{kπω−π6ω≤π(k+1)πω−π6ω≥2π解得k−16≤ω≤k+12−112(k∈Z),ω>0,∴k=0,0<ω≤512,k=1,56<ω≤1112ω的最大值是1112.故选:C.21.【北京市人大附中2020届高三(6月份)高考数学考前热身】设函数f(x)=sin(ωx−π6)+sin(ωx−π2),其中0<ω<3.已知f(π6)=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y=g(x)的图象,求g(x)在[−π4,3π4]上的最小值.【答案】(Ⅰ)ω=2.(Ⅱ)−32. 【解析】(Ⅰ)因为f(x)=sin(ωx −π6)+sin(ωx −π2), 所以f(x)=√32sinωx −12cosωx −cosωx=√3sinωx −3cosωx =√3(12sinωx −√32cosωx)=√3(sinωx −π3)由题设知f(π6)=0, 所以ωπ6−π3=kπ,k ∈Z . 故ω=6k +2,k ∈Z ,又0<ω<3, 所以ω=2.(Ⅱ)由(Ⅰ)得f(x)=√3sin(2x −π3) 所以g(x)=√3sin(x +π4−π3)=√3sin(x −π12). 因为x ∈[−π4,3π4],所以x −π12∈[−π3,2π3],当x −π12=−π3,即x =−π4时,g(x)取得最小值−32.22.【北京市人大附中2019届高考信息卷(二)】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且acosC +√3asinC -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cosB =17,AD =√1292,求△ABC 的面积.【答案】(1)A =60°;(2)10√3 【解析】(1)acosC +√3asinC -b -c =0,由正弦定理得sinAcosC +√3sinAsinC =sinB +sinC , 即sinAcosC +√3sinAsinC =sin(A +C)+sinC ,又sinC≠0,所以化简得√3sinA -cosA =1,所以sin(A -30°)=12. 在△ABC 中,0°<A <180°,所以A -30°=30°,得A =60°. (2)在△ABC 中,因为cosB =17,所以sinB =4√37. 所以sinC =sin(A +B)=√32×17+12×4√37=5√314. 由正弦定理得,a c =sin A sinC =75.设a =7x ,c =5x(x >0),则在△ABD 中,AD 2=AB 2+BD 2-2AB·BDcosB, 即1294=25x 2+14×49x 2-2×5x×12×7x×17,解得x =1,所以a =7,c =5,故S △ABC =12acsinB =10√3.23.【北京五中2020届高三(4月份)高考数学模拟】在ΔABC 中,角A,B,C 的对边分别为a,b,c ,b =2√3,c =3,cosB =−13. (1)求sinC 的值; (2)求ΔABC 的面积. 【答案】(1)√63;(2)√2【解析】(1)在ΔABC 中,cosB =−13, ∴sinB =√1−cos 2B =√1−(13)2=2√23, ∵b =2√3,c =3,由正弦定理b sinB =csinC 得√32√23=3sinC ,∴sinC =√63.(2)由余弦定理b 2=a 2+c 2−2accosB 得12=a 2+9−2×3a ×(−13), ∴a 2+2a −3=0,解得a=1或a=−3(舍)∴SΔABC=12acsinB=12×1×3×2√23=√2.24.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)】如图,在四边形ABCD中,∠A=60°,∠ABC=90°,已知AD=√3,BD=√6.(1)求sin∠ABD的值;(2)若CD=2,且CD>BC,求BC的长.【答案】(1)√64(2)BC=1【解析】(1)在△ABD中,由正弦定理,得ADsin∠ABD =BDsin∠A,因为∠A=60°,AD=√3,BD=√6,所以sin∠ABD=ADBD ×sin∠A=√2×√32=√64;(2)由(1)可知,sin∠ABD=√64,因为∠ABC=90°,所以cos∠CBD=cos(90°−∠ABD)=sin∠ABD=√64,在△BCD中,由余弦定理,得CD2=BC2+BD2−2BC⋅BDcos∠CBD,因为CD=2,BD=√6,所以4=BC2+6−2BC×√6×√64,即BC2−3BC+2=0,解得BC=1或BC=2,又CD>BC,则BC=1.25.【北京市西城区第八中学2019-2020学年高三上学期期中】ΔABC中,角A,B,C所对边分别是a、b、c,且cosA=13.(1)求sin2B+C2+cos2A的值;(2)若a=√3,求△ABC面积的最大值.【答案】(1)−19;(2)3√24【解析】 (1)sin 2B +C 2+cos 2A =sin 2π−A 2+2cos 2A −1=cos 2A +2cos 2A −1=1+cos A +2cos 2A −1=1+132+2×19−1=−19;(2)由cos A =13,可得sin A =√1−19=2√23,由余弦定理可得a 2=b 2+c 2−2bc cos A =b 2+c 2−23bc ≥2bc −23bc =43bc ,即有bc ≤34a 2=94,当且仅当b =c =32,取得等号.则△ABC 面积为12bc sin A ≤12×94×2√23=3√24.即有b =c =32时,△ABC 的面积取得最大值3√24.26.【2020届北京市大兴区高三第一次模拟】在ΔABC 中,c =1,A =2π3,且ΔABC 的面积为√32.(1)求a 的值;(2)若D 为BC 上一点,且,求sin∠ADB 的值.从①AD =1,②∠CAD =π6这两个条件中任选一个,补充在上面问题中并作答.【答案】(1)a =√7;(2)选①,sin∠ADB =√217;选②,sin∠ADB =2√77.【解析】(1)由于c =1,A =2π3,S ΔABC =12bcsinA ,所以b =2,由余弦定理a 2=b 2+c 2−2bccosA ,解得a =√7.(2)①当AD =1时,在ΔABC 中,由正弦定理b sinB =BC sin∠BAC ,即2sinB =√7√32,所以sinB =√217.因为AD =AB =1,所以∠ADB =∠B .所以sin∠ADB =sinB ,即sin∠ADB =√217.②当∠CAD =30°时,在ΔABC 中,由余弦定理知,cosB =AB 2+BC 2−AC 22AB⋅BC =2√7×1=2√77.因为A =120°,所以∠DAB =90°,所以∠B +∠ADB =π2,所以sin∠ADB =cosB ,即sin∠ADB =2√77.27.【2020届北京市房山区高三第一次模拟】在△ABC 中,a =√2,c =√10,________.(补充条件) (1)求△ABC 的面积;(2)求sin (A +B ).从①b =4,②cosB =−√55,③sinA =√1010这三个条件中任选一个,补充在上面问题中并作答.【答案】详见解析【解析】选择①(1)在△ABC 中,因为a =√2,c =√10,b =4,由余弦定理得cosC =a 2+b 2−c 22ab =√2)22√10)22×2×4=√22,因为C ∈(0,π),所以sinC =√1−cos 2C =√22,所以S =12absinC =12×√2×4×√22=2.(2)在△ABC 中,A +B =π﹣C.所以sin(A +B)=sinC =√22.选择②(1)因为cosB =−√55,B ∈(0,π),所以sinB =√1−cos 2B =2√55,因为a =√2,c =√10,所以S =12acsinB =12×√2×√10×2√55=2.(2)因为a =√2,c =√10,cosB =−√55,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015高考题汇编——三角函数
1.(2015福建卷).若5sin13,且为第四象限角,则tan的值等于( )
A.125 B.125 C.512 D.512
2.(2015新课标I卷)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间
为
(A)(k-, k-),k
(B)(2k-, 2k-),k
(C)(k-, k-),k
(D)(2k-, 2k-),k
3.(2015陕西卷)、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y=3sin(6x
+Φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为____________.
4.(2015江苏).已知tan2,1tan7,则tan的值为_______.
5.(2015重庆)若11tan,tan()32aab=+=,则tan=b
(A) 17 (B) 16 (C) 57 (D) 56
6(2015山东).要得到函数y=sin(4x-3)的图象,只需要将函数y=sin4x的图象( )
(A).向左平移12个单位 (B)向右平移12个单位
(C).向左平移3个单位 (D)向右平移3个单位
7.(2015湖南卷)、已知>0,在函数y=2sinx与y=2cosx的图像的交点中,距离最短的
两个交点的距离为23,则 =_____.
8.(2015浙江卷)、函数2sinsincos1fxxxx的最小正周期是 ,最小值
是 .
9.(2015天津卷). 已知函数sincos0,,fxxxxR 若函数fx在区间
,内单调递增,且函数
fx
的图像关于直线x对称,则的值为 .
10.(2015广东卷).已知tan2.
1
求tan4的值;
2
求2sin2sinsincoscos21的值.
11.(2015重庆)已知函数f(x)=12sin2x-32cosx.
(1)求f(x)的最小周期和最小值;
(2)将函数f(x)的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g
(x)的图像.当x,2时,求g(x)的值域.
12.(2015安徽卷) 已知函数2()(sincos)cos2fxxxx
(1)求()fx最小正周期;
(2)求()fx在区间[0,]2上的最大值和最小值.
13(2015湖北卷).某同学用“五点法”画函数π()sin()(0,||)2fxAx在某一
个周期内的图象时,列表并填入了部分数据,如下表:
x
0 π2 π 3π2 2π
x
π
3
5π
6
sin()Ax
0 5 5 0
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()fx的解
析式;
(Ⅱ)将()yfx图象上所有点向左平行移动π6个单位长度,得到()ygx图象,求
()ygx
的图象离原点O最近的对称中心.
14.(2015福建卷).(本题满分12分)
已知函数2103sincos10cos222xxxfx.
(Ⅰ)求函数fx的最小正周期;
(Ⅱ)将函数fx的图象向右平移6个单位长度,再向下平移a(0a)个单位长度后
得到函数gx的图象,且函数gx的最大值为2.
(ⅰ)求函数gx的解析式;
(ⅱ)证明:存在无穷多个互不相同的正整数0x,使得00gx.
解三角形
1.(2015广东卷). 设C的内角,,C的对边分别为a,b,c.若2a,23c,
3
cos2
,且bc,则b( )
A.3 B.2 C.22 D.3
2.(2015安徽卷)在ABC中,6AB,75A,45B,则AC 。
3.(2015福建卷).若ABC中,3AC,045A,075C,则BC_______.
4.(2015新课标I卷)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC
(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=2,求△ABC的面积
5.(2015新课标II卷)△ABC中D是BC上的点,AD平分BAC,BD=2DC.
(I)求sinsinBC ;
(II)若60BAC,求B.
6.(2015江苏卷).在ABCV中,已知2,3,60.ABACAo
(1)求BC的长;
(2)求sin2C的值。
7.(2015湖北卷)15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路
北侧一山顶D在西偏北30
的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,
仰角为30,则此山的高度CD_________m.
8.(2015湖南卷)设ABC的内角,,ABC的对边分别为,,,tanabcabA。
(I)证明:sincosBA;
(II)若3sinsincos4CAB,且B为锐角,求,,ABC。
9.(2015陕西卷).ABC的内角,,ABC所对的边分别为,,abc,向量(,3)mab与
(cos,sin)nAB
平行.
(I)求A;
(II)若7,2ab求ABC的面积.
10.(2015浙江卷). 在ABC中,内角A,B,C所对的边分别为,,abc.已知tan(A)24.
(1)求2sin2sin2cosAAA+的值;
(2)若B,34a,求ABC的面积.
11.(2015天津卷). (本小题满分13分)△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC
的面积为315,12,cos,4bcA
(I)求a和sinC的值;
(II)求cos26A 的值.
12.(2015山东卷)
ABC
中,角A,B,C所对的边分别为a,b,c.已知
36
cos,sin(),2339BABac
求sinA 和c 的值.