简单的优化模型

合集下载

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

简单的优化模型

简单的优化模型

整数规划模型的基本概念
整数规划定义
整数规划是一类要求决策变量取整数值的数学优化问题。在 实际应用中,由于某些决策变量可能要求取整数值,如设备 数量、人员分配等,因此整数规划具有广泛的应用背景。
整数规划分类
根据决策变量的限制条件,整数规划可分为纯整数规划(所 有决策变量均取整数值)和混合整数规划(部分决策变量取 整数值)。
多目标优化模型的求解方法
权重法
通过给每个目标函数分配一个权 重,将多目标问题转化为单目标 问题进行求解。权重的确定可以
根据实际情况或专家经验。
ε约束法
将多个目标中的一个作为主目标, 其他目标作为约束条件,通过不断 调整约束条件的参数ε来求解多目 标问题。
遗传算法
通过模拟生物进化过程中的选择、 交叉和变异等操作,搜索帕累托最 优解集。遗传算法适用于复杂非线 性多目标问题的求解。
线性规划模型的应用案例
生产计划优化
利用线性规划模型确定各 种产品的生产数量,以最 大化利润或最小化成本。
资源分配问题
在有限资源的条件下,通 过线性规划模型实现资源 的最优分配,满足需求并 最大化效益。
投资组合优化
投资者可以通过线性规划 模型,根据预期收益和风 险约束,求解最优投资组 合。
03
整数规划模型
多目标优化模型的应用案例
水资源分配问题
在水资源规划中,需要同时考虑供水、灌溉、发电、防洪等多个目标。通过构建多目标优 化模型,可以寻求水资源分配方案,使得各个目标在整体上达到最优。
投资组合优化问题
在金融领域,投资者需要在多个投资项目中选择合适的投资组合,以最大化收益并最小化 风险。这是一个典型的多目标优化问题,可以通过多目标优化模型求解得到帕累托最优解 集,供投资者决策参考。

简单的优化模型

简单的优化模型
01
分析问题中的约束条 件
从问题中分析出各种约束条件,如资 源限制、时间限制、物理条件等。
02
将约束条件转化为数 学表达式
将上述约束条件转化为数学表达式, 如不等式、等式等。
03
将约束条件加入目标 函数中
将上述数学表达式加入目标函数中, 作为目标函数的约束条件。
选择适当的变量类型和范围
确定变量的类型和范围
03
优化算法的选择
梯度下降法
1 2
基本概念
梯度下降法是一种基于梯度下降的优化算法, 通过迭代计算函数梯度,逐步逼近函数的最小 值点。
应用场景
适用于凸函数或非凸函数,尤其在大数据处理 和机器学习领域,用于优化损失函数。
3
注意事项
在处理非凸函数时,可能会陷入局部最小值点 ,需要结合全局优化算法使用。
简单的优化模型
xx年xx月xx日
contents
目录
• 引言 • 优化模型的分类 • 优化算法的选择 • 优化模型的建立 • 应用案例展示
01
引言
定义和重要性
定义
优化模型是一套用于描述、分析和解决特定问题的数学 模型,通过采用数学方法和算法,寻找最优解决方案。
重要性
优化模型在各行各业都有广泛的应用,如制造业、物流 、金融等。通过优化模型,可以提高效率、降低成本、 增加效益,为企业和社会创造价值。
金融投资优化模型
要点一
总结词
提高投资收益、降低投资风险
要点二
详细描述
金融投资优化模型是针对金融投资领域的一种优化模型 。它通过优化投资组合,提高投资收益、降低投资风险 。该模型考虑了多种资产价格波动、相关性等因素,并 利用统计学习或机器学习算法计算出最优的投资组合方 案。应用该模型可以帮助投资者在保证本金安全的前提 下获得更高的投资收益。

简单的优化模型

简单的优化模型
目标函数
多目标规划问题通常有多个目标函数,用于描述 不同目标之间的权衡关系。
决策变量
决策变量是问题中可以控制的变量,通过调整决 策变量的取值来达到优化目标的目的。
约束条件
约束条件是对决策变量的限制,可以是等式约束 或不等式约束,用于保证求解结果的可行性。
多目标规划求解方法
线性加权法
将多个目标函数通过加 权求和转化为单目标函 数进行求解,权重可以 根据实际情况进行调整 。
解。
03
整数规划模型
整数规划问题描述
实际问题的离散性
01
某些优化问题中,决策变量只能取整数值,如设备数量、人员
分配等。
约束条件的整数性
02
某些约束条件要求决策变量为整数,如资源分配、时间划分等

目标函数的整数要求
03
某些问题要求目标函数取整数值,如项目收益、成本等。
整数规划数学模型
整数线性规划(Integer Linear Programming, ILP):决策变量限制 为整数的线性规划问题,数学模型包括 目标函数、约束条件和整数变量。
优化模型应用场景
01
工业生产
通过优化生产计划和调度,提高生 产效率,降低成本。
金融投资
通过优化投资组合,实现风险最小 化和收益最大化。
03
02
物流运输
通过优化运输路径和方式,缩短运 输时间,减少运输成本。
城市规划
通过优化城市规划和交通布局,提 高城市运行效率和居民生活质量。

动态规划数学模型
阶段
动态规划问题可以划分为若干 个阶段,每个阶段对应一个决
策过程。
状态
状态表示每个阶段的起始条件 和结束条件,通常用一个变量 或一组变量来描述。

数学建模简明教程课件:简单优化模型

数学建模简明教程课件:简单优化模型

由上面三个表达式可求得:
r
1
4a 4,
cos
r1
4
r 2
r1
22
这也是在能量消耗最小原则下血管分岔处几何形状的 结果.由这个结果得:
a4
cos 2a 4
r 若取a=1和a=2可得 r1 和θ的大致范围约为:
r
1.26
1.32
r1
37
49
23
3.模型检验
记动物大动脉和最细的毛细血管半径分别为rmax和rmin
时刻为t=t2,设t时刻森林烧毁面积为B(t),则造成损失的森
林烧毁面积为B(t2);单位时间烧毁的面积为 dB(t) (这 dt
也表示了火势蔓延的程度).在消防队员到达之前,即0≤t≤t1
期间,火势越来越大,从而
dB随(t )t的增加而增加 dt
;开始救火之后,即t1≤t≤t2期间,如果消防队员救火能力足
合来确定.式(3.3.2)还表明最优价格包括两部分:一部分为
成本的一半,另一部分与“绝对需求量”成正比,与市场
需求对价格的敏感系数成反比.
29
3.4 存贮模型
为了使生产和销售有条不紊地进行,一般的工商企业 总需要存贮一定数量的原料或商品,然而大量库存不但积 压了资金,而且会使仓库保管的费用增加.因此,寻求合理 的库存量乃是现代企业管理的一个重要课题.
min[订货费(或生产费)+存贮费+缺货损失费]
下面我们讨论几个重要的存贮模型.
31
3.4.1 不允许缺货的订货销售模型
为了使问题简化,我们作如下假设: (1)由于不允许缺货,所以规定缺货损失费为无穷大. (2)当库存量为零时,可立即得到补充. (3)需求是连续均匀的,且需求速度(单位时间的需求量) 为常数. (4)每次订货量不变,订货费不变. (5)单位存贮费不变.

第五章 简单的优化模型

第五章  简单的优化模型

每个消防队员单位时间的费用为 C2 ,于是每个队员的救 火费用是 C2 (t2 t1 ) ,每个队员的一次性支出是C3 .
dB dt
b

0
x
t1
t2
t
模型构成:
B(t2 )
t2
dB 1 dt bt2 dt 2 0
而 t2 t1
t1 b x x
设某商品的市场需求量为 Q ,价格为 p ,需求函数 Q Q( p) 可导,则该商品需求对价格的弹性为
EQ p dQ Ep Q dp
由于需求函数 Q Q( p) 一般是单调减少的,因而需求对价格 的弹性常为负值。 除需求对价格的弹性外,在经济学中还常需研究收益对价格 的弹性: ER p dR Ep R dp 因为 R pQ 于是有 ER 1 d ( pQ) 1 dQ EQ (Q p ) 1 Ep Q dp Q dp Ep 上述公式建立了收益对价格的弹性与需求对价格的弹性二者 之间的关系。
t t2 时
dB 0。 dt
基于上述分析,我们作以下假设: 损失费与森林烧毁面积 B(t2 ) 成正比,比例系数 C1 为烧毁单 位面积的损失费。
dB 从失火到开始救火这段时间 (0 t t1 ) 内, dt 与 t 成正 比,比例系数 为火势蔓延速度。
派出消防队员 x 名,开始救火以后 (t t1 ) 火势蔓延速度降 为 x ,其中 可视为每个队员的平均灭火速度。显然应 有 x .
MR R ' ( x) 50 x
从而边际利润
50 ML MR MC x 3 x
收益对价格的弹性
ER p dR p2 10000 ( ) 1 2 Ep R dp 10000 p

简单的优化模型

简单的优化模型

整数规划模型的求解方法
穷举法
通过列举所有可能的解来找出最优解。适用于小规模问题,但对于 大规模问题效率低下。
分支定界法
通过不断分割问题空间并排除不可能的解来逼近最优解。适用于大 规模问题,但需要较高的计算复杂度。
启发式算法
通过设计一些启发式规则来加速搜索过程,如贪心算法、遗传算法等 。适用于一些特定类型的问题,但可能无法保证找到全局最优解。
通过动态规划可以求解资源分配问题 ,如任务调度、生产计划等,以实现 资源利用的最优化。
背包问题
通过动态规划可以求解0/1背包问题 、完全背包问题等,避免重复计算物 品的价值和重量。
05
模拟退火算法
模拟退火算法的定义与特点
定义
模拟退火算法是一种启发式搜索算法 ,通过模拟物理退火过程来寻找问题 的最优解。
运输问题
线性规划模型可以用于解决运输问题,如货 物运输、车辆调度等。
投资组合优化
线性规划模型可以用于优化投资组合,降低 风险并提高收益。
03
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊类型的线性规划,其中一部分或全部变量被约束为整数。
特点
整数规划的变量取值范围受到限制,通常用于解决资源分配、组合优化等问题 。
特点
遗传算法具有全局搜索能力,能够处理多维、非线性、非凸问题;同时,它还具有很好的鲁棒性和自适应性,能 够处理大规模、复杂的问题。
遗传算法的求解方法
编码方式
遗传算法需要对问题 进行编码,通常采用 二进制编码、实数编 码等。
适应度函数
适应度函数用于评估 个体的优劣,根据问 题的不同,适应度函 数也会有所不同。
简单优化模型的特点

优化模型]

优化模型]
hi ( X ) 0
(1)
(2)
(3) j 1,2,, l .
gi ( X ) 0
i 1,2,, m .
X D T n 其中X ( x1, x2 ,, xn ) , D R 为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
第二年初: x21 x23 x24 1.06x14 第三年初 x31 x32 x34 1.15x11 1.06x24
x11 x14 10
19
项目A,从第一年到第四年每年初投资,次年末收回本金且获利15%; 项目B,第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元; 项目C,第二年初投资,第五年末收回本金且获利40%,最大投资额为3万元; 项目D,每年初投资,年末收回本金且获利6%。
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设 xij表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100
x11 x21 50
i 1,2 m j 1,2 n
决策变量是连续变量,最优解可能是小数或分数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章
部分习题
1. 在3.1节存储模型的总费用中增加购买货物本身的费用,重新确定最优定货周期和定货批量。

证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优定货周期和定货批量都比原来结果减小
3. 在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型。

4. 在3.4节`最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型。

7. 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。

将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离
,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论;
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量
(2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0
30,0==θθ时的总淋雨量。

(3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为∂,如图2建立总淋雨量与速度v 及参数∂,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。

(4)以总淋雨量为纵轴,速度v 为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义。

(5)若雨线方向与跑步方向不在同一平面内,模型会有什么变化。

参考答案
1. 设购买单位重量货物的费用为k ,对于不允许缺货模型,每天平均费用为()Q T kr rT c T c T c ,,2
21++=,的最优结果不变,对于允许缺货模型,每天平均费用为()()⎥⎦
⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T c 23221221,,利用0,0=∂∂=∂∂Q c T c ,可求出Q T ,的最优结果为
()32232222332321*32233221*2,2c c kr c c c r k c c c c c r c Q c c k c c c rc c T +-+-+=-+=
*T ,*Q 均不考虑费用k 时的结果减小.
3. 不妨设()1'
+=b b λλ,表示火势b 越大,灭火速度λ越小,分母1+b 中的1是防止0
→b 时∞→λ而加的,最优解为
()[]()
()''322'
1121122λβλβλ+++++=b c b b b c b c x .
4. 不妨设()k kx q x q ,0-=,是产量增加一个单位时成本的降低,最优价格为()b
a k
b ka q p 2120*+--=
. 7. 1) 全身面积22.222m bc ac ab s =++=,淋雨时间s v d t m 200==,降雨量
s m h cm 181024-==ω,所以总淋雨量44.2≈=ωst Q 升
2) 顶部淋雨量v bcd Q θωcos 1=;雨速水平分量θsin u ,方向与v 相反,合速度v u +θsin ,迎面单位时间、单位面积的淋雨量()u v u +θωsin ,迎面淋雨量()uv v u abd Q +=θωsin 2,所以总淋雨量()v v u a cu u bd Q Q Q ++=+=θθωsin cos 21。

m v v =时Q 最小,15.1,0≈=Q θ升。

55.1,300≈=Q θ升。

3) 与2)不同的是,合速度为v u -αsin ,于是总淋雨量
()()()()⎪⎪⎩⎪⎪⎨⎧>+-=-+≤-+=-+=αααωααωαααωααωsin ,sin cos sin cos sin ,sin cos sin cos u v v av a c u u bd v u v a cu u
bd u v v av a c u u bd v v u a cu u bd Q ,若,0sin cos <-ααa c 即a c >αtan ,则αs i n u v =时Q 最小。

否则m v v =时Q 最小(见下图)当24.0,2,5.12.0tan ,300≈=>=Q s
m v αα升最小,可与93.0,≈=Q v v m 升相比. 4) 雨从背面吹来,只要α不太大,满足a
c >αtan (07.62.0,5.1〉时,αm c m a ==即可),Q u v ,sin α=最小,此时人体背面不淋雨,只有顶部淋雨.
5) 再用一个角度表示雨的方向,应计算侧面的淋雨量,问题本质上没有变化.。

相关文档
最新文档