第3章讲义简单的优化模型

合集下载

3简单优化模型-PPT文档资料

3简单优化模型-PPT文档资料

c q ( t)dt c B 3 3 T
1
T
一周期总费用
1 1 2 C c c QT c r ( T T ) 1 2 1 3 1 2 2
2 2 每天总费用 c ( rT Q ) C c c Q 3 1 2 C ( T , Q ) 平均值 TT2 rT 2 rT (目标函数) ( T ,Q ) Min 求 T ,Q 使 C
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
q Q
2c1r c3 Q c2 c2 c3
0
r
R T1 T t
注意:缺货需补足
Q~每周期初的存贮量
c 2 c rc 2 3 1 每周期的生产量 Rr T R (或订货量) c c 2 3
R Q QQ~不允许缺货时的产量(或订货量)
3.2 生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货。
T
2 c1 rc 2
2c1r Q rT c2
不允许缺货的存贮模型
• 问:为什么不考虑生产费用?在什么条件下才不考虑?
允许缺货的存贮模型
当贮存量降到零时仍有需求r, 出现缺货,造成损失 原模型假设:贮存量降到零时Q件 立即生产出来(或立即到货)

简单的优化模型

简单的优化模型

整数规划模型的基本概念
整数规划定义
整数规划是一类要求决策变量取整数值的数学优化问题。在 实际应用中,由于某些决策变量可能要求取整数值,如设备 数量、人员分配等,因此整数规划具有广泛的应用背景。
整数规划分类
根据决策变量的限制条件,整数规划可分为纯整数规划(所 有决策变量均取整数值)和混合整数规划(部分决策变量取 整数值)。
多目标优化模型的求解方法
权重法
通过给每个目标函数分配一个权 重,将多目标问题转化为单目标 问题进行求解。权重的确定可以
根据实际情况或专家经验。
ε约束法
将多个目标中的一个作为主目标, 其他目标作为约束条件,通过不断 调整约束条件的参数ε来求解多目 标问题。
遗传算法
通过模拟生物进化过程中的选择、 交叉和变异等操作,搜索帕累托最 优解集。遗传算法适用于复杂非线 性多目标问题的求解。
线性规划模型的应用案例
生产计划优化
利用线性规划模型确定各 种产品的生产数量,以最 大化利润或最小化成本。
资源分配问题
在有限资源的条件下,通 过线性规划模型实现资源 的最优分配,满足需求并 最大化效益。
投资组合优化
投资者可以通过线性规划 模型,根据预期收益和风 险约束,求解最优投资组 合。
03
整数规划模型
多目标优化模型的应用案例
水资源分配问题
在水资源规划中,需要同时考虑供水、灌溉、发电、防洪等多个目标。通过构建多目标优 化模型,可以寻求水资源分配方案,使得各个目标在整体上达到最优。
投资组合优化问题
在金融领域,投资者需要在多个投资项目中选择合适的投资组合,以最大化收益并最小化 风险。这是一个典型的多目标优化问题,可以通过多目标优化模型求解得到帕累托最优解 集,供投资者决策参考。

简单的优化模型

简单的优化模型
01
分析问题中的约束条 件
从问题中分析出各种约束条件,如资 源限制、时间限制、物理条件等。
02
将约束条件转化为数 学表达式
将上述约束条件转化为数学表达式, 如不等式、等式等。
03
将约束条件加入目标 函数中
将上述数学表达式加入目标函数中, 作为目标函数的约束条件。
选择适当的变量类型和范围
确定变量的类型和范围
03
优化算法的选择
梯度下降法
1 2
基本概念
梯度下降法是一种基于梯度下降的优化算法, 通过迭代计算函数梯度,逐步逼近函数的最小 值点。
应用场景
适用于凸函数或非凸函数,尤其在大数据处理 和机器学习领域,用于优化损失函数。
3
注意事项
在处理非凸函数时,可能会陷入局部最小值点 ,需要结合全局优化算法使用。
简单的优化模型
xx年xx月xx日
contents
目录
• 引言 • 优化模型的分类 • 优化算法的选择 • 优化模型的建立 • 应用案例展示
01
引言
定义和重要性
定义
优化模型是一套用于描述、分析和解决特定问题的数学 模型,通过采用数学方法和算法,寻找最优解决方案。
重要性
优化模型在各行各业都有广泛的应用,如制造业、物流 、金融等。通过优化模型,可以提高效率、降低成本、 增加效益,为企业和社会创造价值。
金融投资优化模型
要点一
总结词
提高投资收益、降低投资风险
要点二
详细描述
金融投资优化模型是针对金融投资领域的一种优化模型 。它通过优化投资组合,提高投资收益、降低投资风险 。该模型考虑了多种资产价格波动、相关性等因素,并 利用统计学习或机器学习算法计算出最优的投资组合方 案。应用该模型可以帮助投资者在保证本金安全的前提 下获得更高的投资收益。

简单的优化模型

简单的优化模型
目标函数
多目标规划问题通常有多个目标函数,用于描述 不同目标之间的权衡关系。
决策变量
决策变量是问题中可以控制的变量,通过调整决 策变量的取值来达到优化目标的目的。
约束条件
约束条件是对决策变量的限制,可以是等式约束 或不等式约束,用于保证求解结果的可行性。
多目标规划求解方法
线性加权法
将多个目标函数通过加 权求和转化为单目标函 数进行求解,权重可以 根据实际情况进行调整 。
解。
03
整数规划模型
整数规划问题描述
实际问题的离散性
01
某些优化问题中,决策变量只能取整数值,如设备数量、人员
分配等。
约束条件的整数性
02
某些约束条件要求决策变量为整数,如资源分配、时间划分等

目标函数的整数要求
03
某些问题要求目标函数取整数值,如项目收益、成本等。
整数规划数学模型
整数线性规划(Integer Linear Programming, ILP):决策变量限制 为整数的线性规划问题,数学模型包括 目标函数、约束条件和整数变量。
优化模型应用场景
01
工业生产
通过优化生产计划和调度,提高生 产效率,降低成本。
金融投资
通过优化投资组合,实现风险最小 化和收益最大化。
03
02
物流运输
通过优化运输路径和方式,缩短运 输时间,减少运输成本。
城市规划
通过优化城市规划和交通布局,提 高城市运行效率和居民生活质量。

动态规划数学模型
阶段
动态规划问题可以划分为若干 个阶段,每个阶段对应一个决
策过程。
状态
状态表示每个阶段的起始条件 和结束条件,通常用一个变量 或一组变量来描述。

数学建模简明教程课件:简单优化模型

数学建模简明教程课件:简单优化模型

由上面三个表达式可求得:
r
1
4a 4,
cos
r1
4
r 2
r1
22
这也是在能量消耗最小原则下血管分岔处几何形状的 结果.由这个结果得:
a4
cos 2a 4
r 若取a=1和a=2可得 r1 和θ的大致范围约为:
r
1.26
1.32
r1
37
49
23
3.模型检验
记动物大动脉和最细的毛细血管半径分别为rmax和rmin
时刻为t=t2,设t时刻森林烧毁面积为B(t),则造成损失的森
林烧毁面积为B(t2);单位时间烧毁的面积为 dB(t) (这 dt
也表示了火势蔓延的程度).在消防队员到达之前,即0≤t≤t1
期间,火势越来越大,从而
dB随(t )t的增加而增加 dt
;开始救火之后,即t1≤t≤t2期间,如果消防队员救火能力足
合来确定.式(3.3.2)还表明最优价格包括两部分:一部分为
成本的一半,另一部分与“绝对需求量”成正比,与市场
需求对价格的敏感系数成反比.
29
3.4 存贮模型
为了使生产和销售有条不紊地进行,一般的工商企业 总需要存贮一定数量的原料或商品,然而大量库存不但积 压了资金,而且会使仓库保管的费用增加.因此,寻求合理 的库存量乃是现代企业管理的一个重要课题.
min[订货费(或生产费)+存贮费+缺货损失费]
下面我们讨论几个重要的存贮模型.
31
3.4.1 不允许缺货的订货销售模型
为了使问题简化,我们作如下假设: (1)由于不允许缺货,所以规定缺货损失费为无穷大. (2)当库存量为零时,可立即得到补充. (3)需求是连续均匀的,且需求速度(单位时间的需求量) 为常数. (4)每次订货量不变,订货费不变. (5)单位存贮费不变.

第三章简单的优化模型

第三章简单的优化模型

第 三 章 简 单 的 优 化 模 型§1 存贮问题模型[问题的提出]工厂要定期地订购各种原料,存放在仓库中供生产之用;商店里要成批地购进各种商品,放在货柜中以备零售,原料、商品存贮太多,贮存费用高;存得太少则无法满足需求或缺货造成损失.订货时需付一次性订货费,进货时要付商品(原料)费,货物贮存要贮存费.如果允许缺货,缺货时因失去销售机会而使利润减少,减少的利润可以视为因缺货而付出的费用,称为缺货费.在单位时间内货物的需求量为常数的条件下,试制定出存贮策略(多长时间订一次货,每次订货量多少),使总费用最小. [模型的假设]1.为方便起见,时间以天为单位,货物以吨为单位,每隔T 天订一次货(T 称为订货周期),每次订货量为Q 吨;2.每次订货费为1c (元)(一次性的),每吨货物的价格为k (元),每天每吨货物的贮存费为2c (元);3.每天的货物需要量为r 吨;4.每隔T 天订货Q 吨,且订货可以瞬时完成,不允许缺货时,贮存量降到零时订货立即到达.5.允许缺货时,货物在1T t 时售完,有一段时间缺货,每天每吨货物缺货费为3c (元).[模型的建立]1rT Q =,T t =T =1设货物在任意时刻t 的贮存量为()t q (单位时间), 其变化规律为总费用=订货费++缺货费+① 订货费=1c ② 贮存费 =()()rQ c QT c QT c dt t q c tq c ni T iit 2221lim22121212021==⋅==∆∑⎰=→∆ξ ③ 缺货费=()()()r Q rT c T T r c S c dt t q c B TT 2223213331-=-==⎰ ④ 购货费=kQ ,即总费用()kQ rQ rT c r Q c c c +-++=2223221 由于T 是可变的,因此我们的目标函数应该是每天的平均费用最小.目标函数是T 、Q 的二元函数,记作()Q T C ,,即()()TkQrT Q rT c rT Q c T c Q T C +-++=22,23221 问题就是要确定()+∞<<+∞<<Q T Q T 0,0、,使二元函数()Q T C ,取最小值. [模型的求解]2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂,T k rT Q c c rT Q c Q C ++-=∂∂332 0t这里()rTQ c Q c rT c rT Q rT c 222233323+-=- 令0=∂∂T C ,0=∂∂Q C .得到驻点:()⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=3232222332321*32233221*22c c kr c c c r k c c c c c r c Q c c k c c c rc c T 故当允许缺货时,每*T 天订一次货,每次订货*Q 吨,总费用将最少. [模型的讨论]1. 当不允许缺货时,T T =1而rT Q =,此时()kr rT c T c T C ++=2121,221r c T c dT dC +-= 令0=dTdC,解得21*12rc c T =,从而21*1*12c rc rT Q == 结果表明:① 最佳订货周期和订货量与货物本身的价格无关.② 订货费1c 越高,需求量r 越大,订货量Q 就越大;贮存费2c 越高,订货量Q 就越小.2. 若不考虑购货费,则此时模型中可视0=k得到最佳订货周期*2T ,最佳订货量*2Q⎪⎪⎩⎪⎪⎨⎧+=+=32321*233221*222c c c c r c Q c c c rc c T 记()1332>+=c c c μ,于是*1*2T T μ=,μ*1*2Q Q =,结果表明:① 当考虑购货费时,*2T 、*2Q 都比*T 、*Q 增大了. ② *1*2*1*2,Q Q T T <>.③ 当+∞→3c 时,1→μ.此时*1*2T T →,*1*2Q Q →.④ 这个结果是合理的,因为+∞→3c ,即缺货造成的损失无限变大相当于不允许缺货.3. 考虑生产销售存贮问题设生产速率为常数k ,销售速率为常数r ,r k >. 则生产量()1b kt t p +=,销售量()2b rt t q +-= 4. 考虑一般的生产销售存贮问题允许与不允许缺货,函数()t p 、()t q 更一般化.此时要应用函数逼近论理论.。

简单的优化模型

简单的优化模型

整数规划模型的求解方法
穷举法
通过列举所有可能的解来找出最优解。适用于小规模问题,但对于 大规模问题效率低下。
分支定界法
通过不断分割问题空间并排除不可能的解来逼近最优解。适用于大 规模问题,但需要较高的计算复杂度。
启发式算法
通过设计一些启发式规则来加速搜索过程,如贪心算法、遗传算法等 。适用于一些特定类型的问题,但可能无法保证找到全局最优解。
通过动态规划可以求解资源分配问题 ,如任务调度、生产计划等,以实现 资源利用的最优化。
背包问题
通过动态规划可以求解0/1背包问题 、完全背包问题等,避免重复计算物 品的价值和重量。
05
模拟退火算法
模拟退火算法的定义与特点
定义
模拟退火算法是一种启发式搜索算法 ,通过模拟物理退火过程来寻找问题 的最优解。
运输问题
线性规划模型可以用于解决运输问题,如货 物运输、车辆调度等。
投资组合优化
线性规划模型可以用于优化投资组合,降低 风险并提高收益。
03
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊类型的线性规划,其中一部分或全部变量被约束为整数。
特点
整数规划的变量取值范围受到限制,通常用于解决资源分配、组合优化等问题 。
特点
遗传算法具有全局搜索能力,能够处理多维、非线性、非凸问题;同时,它还具有很好的鲁棒性和自适应性,能 够处理大规模、复杂的问题。
遗传算法的求解方法
编码方式
遗传算法需要对问题 进行编码,通常采用 二进制编码、实数编 码等。
适应度函数
适应度函数用于评估 个体的优劣,根据问 题的不同,适应度函 数也会有所不同。
简单优化模型的特点

简单的优化模型

简单的优化模型

04
模拟退火模型
定义和概述
1
模拟退火是一种优化算法,它通过引入类似于 物理中的退火过程来尝试找到问题的全局最优 解。
2
在模拟退火中,我们开始从一个初始解,并在 每一步都随机选择一个邻域内的解,然后比较 新旧解的优劣。
3
如果新解更好,我们接受新解;如果新解更差 ,我们以一个小的概率接受新解,这个概率随 着时间的推移而逐渐降低。
在定义了状态和状态转移方程之 后,需要确定边界条件。边界条 件是问题的初始条件或结束条件
04
计算最优解
在确定了边界条件之后,就可以使 用递归或迭代的方法来计算最优解 。递归方法是从问题的最后一步开 始向前推导,直到找到最优解。迭 代方法是通过多次迭代来逐渐逼近 最优解。
动态规划的应用案例
背包问题
背包问题是动态规划中最经典的问题之一。在这个问题中,给定一组物品,每个物品都有自己的重量 和价值。目标是选择一些物品,使得背包的总重量不超过背包的容量,同时最大化背包中物品的总价 值。通过使用动态规划,可以找到最优解,避免陷入局部最优解的陷阱。
模拟退火的应用案例
在旅行商问题(TSP)中,模 拟退火可以找到最优路径,避 免陷入局部最优解。
在生产调度问题中,模拟退火 可以优化生产计划,降低生产 成本。
在图像处理中,模拟退火可以 应用于图像恢复和去噪等问题 。
感谢您的观看
THANKS
概述
线性规划模型在管理科学、社会科学、生物科学等领域都有 广泛的应用,它可以帮助决策者解决资源分配、生产计划、 物流调度等问题。
线性规划的求解方法
定义
线性规划的求解方法包括图解法、 单纯形法、对偶单纯形法等。
图解法
图解法是一种直观的线性规划求解 方法,它通过在坐标系中绘制可行 域和目标函数来求解最优解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
前一页 后一页 退 出
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
22
3
不允 许缺 货模 型
T 2c1 rc 2
Q rT 2c1r c2
记 c2 c3
c3
T T, Q Q
不 允
1 T'T, Q 'Q c3
许 缺
c3 1 T T,Q Q

前一页 后一页 退 出
允许 缺货
T 2c1 c2 c3 rc2 c3
q Q
模型 Q 2c1r c3 c2 c2 c3
C(T)C ~c1c2rT TT 2
前一页 后一页 退 出
模型求解
dC 0 dT 模型分析
求 T 使C(T)c1c2rTMin T2
T 2 c1 rc 2
Q rT 2c1r c2
c1T,Q
模型应用
c2T,Q rT,Q
c1=5000, c2=1,r=100
• 回答问题
T=10(天), Q=1000(件), C=1000(元)
一周期 c Tq(t)dtcB
缺货费 3 T1
3
一周期总费用
Cc1c2Q21T c3r(T 2T1)2
前一页 后一页 退 出
一周期总费用
Cc11 2c2Q1T 1 2c3r(TT1)2
每天总费用 平均值
C (T ,Q ) C c 1 c 2 Q 2 c 3(r T Q )2
TT2 rT 2 rT
前一页 后一页 退 出
• 经济批量订货公式(EOQ公式)
用于订货、供应、存贮情形
每天需求量 r,每次订货费 c1,每天每件贮存费 c2 , T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货。
T 2 c1 rc 2
Q rT 2c1r c2
不允许缺货的存贮模型
• 问:为什么不考虑生产费用?在什么条件下才不考虑?
2)t1tt2, 降为-x (为队员的平均灭火速度)
前一页 后一页 退 出
模型建立
离散问题连续化
q
贮存量表示为时间的函数 q(t)
t=0生产Q件,q(0)=Q, q(t)以 需求速率r递减,q(T)=0.
Q r
Q rT
A=QT/2
0
T
t
一周期贮存费为
c20Tq(t)d tc2A
一周期 总费用
~
Q
rT 2
Cc1 c2
T 2
c1
c2
2
每天总费用平均 值(目标函数)
平均每天费用2550元
10天生产一次平均每天费用最小吗?
前一页 后一页 退 出
问题分析与思考
• 周期短,产量小 • 周期长,产量大
贮存费少,准备费多 准备费少,贮存费多
存在最佳的周期和产量,使总费用(二者之和)最小
• 这是一个优化问题,关键在建立目标函数。
显然不能用一个周期的总费用作为目标函数
目标函数——每天总费用的平均值
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
平均每天费用950元
• 50天生产一次,每次5000件,贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元。
(目标函数)
求 T ,Q 使 C(T,Q)Min
C 0, C 0 为与不允许缺货的存贮模型
T Q
相比,T记作T ’,Q记作Q’
T 2c1 c2 c3 rc2 c3
Q 2c1r c3 c2 c2 c3
前一页 后一页 退 出
允许 T' 缺货
模型
Q'
2c 1
c2
c3
rc c
2
3
2c1r c3
c c c
前一页 后一页 退 出
模型假设
1. 产品每天的需求量为常数 r; 2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2; 3. T天生产一次(周期), 每次生产Q件,当贮存量
为零时,Q件产品立即到来(生产时间不计); 4. 为方便起见,时间和产量都作为连续量处理。
建模目的
设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小。
问题 分析
• 关键是对B(t)作出合理的简化假设.
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
前一页 后一页 退 出
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
r R
注意:缺货需补足
0
T1 T
t
Q~每周期初的存贮量
每周期的生产量 R (或订货量)
RrT 2c1rc2 c3 c2 c3
RQQQ~不允许缺货时的产量(或订货量)
前一页 后一页 退 出
问题
3.3 森林救火
森林失火后,要确定派出消防队员的数量。 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小。 综合考虑损失费和救援费,确定队员数量。
前一页 后一页 退 出
允许缺货的存贮模型
q
Q 当贮存量降到零时仍有需求r,
出现缺货,造成损失
r
原模型假设:贮存量降到零时Q件
A
Q rT1
立即生产出来(或立即到货)
0
T1B T
t
现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足
周期T, t=T1贮存量降到零
一周期 贮存费
c20T1q(t)d tc2A
问题 记队员人数x, 失火时刻t=0, 开始救火时刻t1, 分析 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定. • 救援费f2(x)是x的增函数, 由队员人数和救火时间决定.
存在恰当的x,使f1(x), f2(x)之和最小
前一页 后一页 退 出
第3章简单的优化模型
精品jin
静态优化模型
• 现实世界中普遍存在着优化问题 • 静态优化问题指最优解是数(不是函数) • 建立静态优化模型的关键之一是根
据建模目的确定恰当的目标函数 • 求解静态优化模型一般用微分法
前一页 后一页 退 出
问题
3.1 存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。
相关文档
最新文档