第9讲概率统计模型
概率论中几种概率模型方法总结

○高校讲坛○
SCIENCE & TECHNOLOGY INFORMATION
2008 年 第 11 期
概率论中几种概率模型方法总结
徐寅生 (许昌学院数学科学学院 河南 许昌 461000)
【摘 要】概率论中几种常用的概率模型是古典概型、几何概型、贝努里概型.本文对概率论中几种概率模型方法进行了总结. 【关键词】概率模型方法; 概率论; 概率计算
关于求“n 重贝努里试验中至少发生一次”的概率.“n 次 试 验 中 至
0
少发生一次”, 它的对立事件是“n 次试验全部没有发生”.由 Pn (0)=Cn p
0n n
q =q 根据相互对立事件的概率之和为 1, 可得 P{至少发生一次}=1- q
n ,同理 P{至少不发生一次}=1- pn. 例 6 一个学生在罚球线投篮的命中率为 0.2, 问: ( 1) 该生独立进行 25 次投篮恰有 10 次命中的概率是多少? ( 2) 至
例 7 某人有一串 m 把外形相同的钥匙, 其中只有一把能打开家 门, 有一天该人酒醉后回家, 下意识地每次从 m 把钥匙中随便拿一只 去开门, 问该人在第 k 次才把门打开的概率多大?
解: 因为每把钥匙试用后不做记号又放回, 所以每把被选中的概 率为 1 , 由独立性得
m P(第 k 次才把门打开)= 1 (1- 1 )k-1.
少有 1 次命中的概率是多少?
解 : 设 A={投 篮 命 中}, 则 P(A)=p=0.2,A ={投 篮 不 命 中}, 则 P(A )=
q=0.8.
10
10
15
( 1) 依 题 意 , n=25,k=10,由 公 式 有 P25( 10) =C25 ×0.2 ×0.8 ≈0.18
概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。
概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。
一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。
在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。
而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。
二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。
三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。
2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。
3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。
4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。
5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。
6、验证模型:对建立的模型进行验证,确保其准确性和适用性。
7、应用模型:将建立的模型应用于实际问题的解决和预测中。
概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。
通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。
概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。
概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。
一、概率模型的应用概率模型在投资决策中的应用广泛。
概率统计模型

-50000
对决策D,因为采取应急措施的数学期望为-50800,正常施工的期望即为-50000 显然,应采取决策为正常施工。
同理,对决策C,应采取应急措施进行施工,即C的期望值为-19800
提前加班
阴雨 0.4
-19800
(0.5)
-14900
应急
-19800
A
正常速度 B
为:E(B)=0×0.4+(-19800) ×0.5+(-50000) ×0.1=-14900
提前加班
阴雨 0.4
-19800
(0.5)
-14900
应急
-19800
A
正常速度 B
0.5 风暴
C
E
(0.3)
(0.2)
正常施工
台风 0.1
-
应急
-50000
-50800
F
D 正常施工
最后结论:
-18000 0 -24000
应急
减少误工3天(0.2) F
减少误工4天(0.1)
-54000 -46000 -38000
D 正常施工
-50000
提前加班
阴雨 0.4
-19800
(0.5)
应急
E
(0.3) (0.2)
A
正常速度 B
0.5 风暴
C
正常施工
台风 0.1
应急
-50800
F
-18000 0 -24000
-18000 -12000
方案或策略:参谋人员为决策者提供的各种可行计划和谋 略.
风险决策的基本要素
内容包括:决策者、方案、准则、状态、结果
概率与统计的数学模型

概率与统计的数学模型概率与统计是数学中两个重要的分支,它们在现代科学和实际生活中都起着至关重要的作用。
概率是研究随机现象发生的规律性,而统计是用数据推断总体特征的方法。
它们的数学模型在研究和应用中具有广泛的应用和意义。
一、概率的数学模型概率的数学模型主要有概率空间和概率分布两个方面。
1. 概率空间概率空间是指由样本空间和样本空间中的事件组成的数学模型。
样本空间是指所有可能结果的集合,事件是指样本空间的某些子集。
概率空间由三个元素组成:样本空间Ω,事件的集合F和概率函数P。
概率函数P定义了事件在样本空间中的概率,它满足三个条件:非负性、规范性和可列可加性。
2. 概率分布概率分布是指随机变量在各取值上的概率分布情况。
随机变量是样本空间到实数集的映射,它描述了随机现象的数值特征。
概率分布可以分为离散型和连续型两种。
离散型概率分布可以用概率质量函数(probability mass function,PMF)来描述。
例如,二项分布是描述n重伯努利试验的概率分布,其PMF可以用来计算在n次试验中成功的次数。
连续型概率分布可以用概率密度函数(probability density function,PDF)来描述。
例如,正态分布是一种常见的连续型概率分布,它在自然界和社会科学中有广泛应用。
二、统计的数学模型统计的数学模型主要有样本和总体两个方面。
1. 样本样本是指从总体中获取的部分观察结果。
样本可以是随机抽样或非随机抽样得到的,它用来代表总体并推断总体的特征。
样本是统计推断的基础。
2. 总体总体是指研究对象的整体集合。
总体可以是有限总体或无限总体,它包含了研究对象的所有可能结果。
总体的特征可以用参数来描述,例如总体的均值、方差等。
统计的数学模型主要是通过样本推断总体的特征。
统计推断包括点估计和区间估计两个方面。
点估计是利用样本数据来估计总体参数的值,常用的点估计方法有最大似然估计和矩估计等。
区间估计是利用样本数据给出总体参数的区间范围,常用的区间估计方法有置信区间和预测区间等。
营销活动的概率统计模型构建及运用

关键词:营销活动;概率统计模型;市场调查;市场预测;不可控因素营销活动中商品的销售情况是经营者最为关心的问题,同时也是难以预测的问题,其直接决定着营销活动成功与否。
通常,营销活动成功与否、销售业绩好坏是不可控因素,不是经营者能够决定的,其中也存在一定的随机性。
概率统计模型是数学领域重要的统计方法,其在营销活动中也有着一定的应用。
运用概率统计模型,一方面能够帮助解决现实生活中实际问题,另一方面能够确保经济利益最大化。
一、概率统计模型在市场调查环节的应用作为营销活动重要的组成部分,市场调查能够为市场预测及营销方案的制定提供可靠的参考依据,其主要指的是对市场营销相关资料、信息进行搜集、整理、分析,常用的调查方法为随机抽样法,引入数理统计知识,能够提升市场调查的科学性,包括分层抽样、整群抽样以及随机抽样等。
市场是由多个购买者构成的,购买群体不同、地理位置不同、购买态度及习惯等不同,其购买行为也会呈现明显的差异。
因此,市场调查期间,必须将市场细分,充分了解市场需求。
好的运营活动除了制定活动主题,还需要撰写活动方案,制定详细的活动流程,按照活动流程一步步地进行活动,并且能够详细传达活动的各项信息。
针对消费者年龄的不同,可以采用分层抽样法。
首先,根据某一特点将抽样单位中没有重叠的抽取出来,抽出的样本构成一个新的总样本,将其用于对总体目标量的推断。
如:在调查某一地区乳制品需求量时,首先需要对该地区居民每年用于乳制品的消费支出进行调查统计,抽样单位为地区居民户;在市场细分环节,可以按照居民收入水平将其划分成为4个级别,从每个级别中随机抽取10户作为样本,经过调查可获得以下数据(见表1),结合该地区居民乳制品年消费额对标准差进行估计。
胡俊红/文营销活动的概率统计模型构建及运用10.13999/ki.scyj.2020.05.026表1某地区乳制品消费支出情况总样本数量N 为2750,n k =10,其中k 表示1,2,3,4,对各层层权以及抽样比进行计算,计算方法为W 1=N 1N=2502750≈0.09,f 1=n1N 1=15250=0.06,根据该计算方法可以一次求出W 2、W 3、W 4的值。
第讲概率统计模型数据拟合方法分解

第讲概率统计模型数据拟合方法分解在概率统计模型中,数据拟合是指通过已有的数据来估计未知的参数,以便建立模型并进行进一步的分析与预测。
数据拟合方法可以分为参数估计和非参数估计两种。
参数估计方法是假设数据服从其中一特定参数分布,通过最大似然估计或最小二乘估计等方法,估计出这些参数的值。
最大似然估计是基于参数的似然函数,通过寻找使得似然函数取最大值的参数值来进行估计。
最小二乘估计是通过最小化观测值与模型预测值之间的平方差来进行参数估计。
这两种方法都可以通过求导数等数学手段来获得估计值的闭式解,从而得到参数的估计结果。
非参数估计方法是不对数据分布做任何假设,直接通过样本来进行估计。
常见的非参数估计方法包括核密度估计、最近邻估计等。
核密度估计是基于核函数的方式,通过将每个样本点周围一定区域内的所有样本点都等权重地加权平均来估计该点的密度。
最近邻估计则是通过找到每个样本点周围一定区域内的最靠近的样本点,以及这些样本点与该点之间的距离,来估计该点的密度。
在数据拟合过程中,可以通过拟合优度检验来评估模型的拟合效果。
常见的拟合优度检验方法有卡方检验和残差分析。
卡方检验是通过计算观测频数和预期频数之间的差异来检验模型的拟合优度。
残差分析是通过分析观测值与预测值之间的差异,来评估模型的拟合效果。
数据拟合方法的选择应根据具体问题的性质和可用数据的特点来确定。
参数估计方法适用于已知数据分布的情况,且假设其中一特定参数分布是合理的。
非参数估计方法适用于数据分布未知或无法假设特定参数分布的情况。
总之,数据拟合是概率统计模型中的重要步骤,通过参数估计和非参数估计方法,可以对数据进行拟合,建立相应的模型,并进行进一步的分析与预测。
在选择拟合方法时,应根据具体问题的性质和数据的特点来确定适用的方法,并通过拟合优度检验来评估模型的拟合效果。
《概率统计模型》课件

在市场营销领域,回归分析可以用于预 测产品需求、销售量、市场份额等方面 。
通过回归分析,企业可以了解市场趋势 ,制定有针对性的营销策略,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
03
统计方法在医学领域的应用还包括疾病预测、诊断和治疗效果评估等 方面。
04
统计方法在医学领域的应用有助于提高医学研究的准确性和可靠性。
回归分析在市场预测中的应用
回归分析是一种常用的统计分析方法, 用于探索变量之间的关系,并对未来趋 势进行预测。
回归分析在市场预测中的应用有助于企 业做出科学合理的决策,提高市场占有 率和盈利能力。
详细描述
时间序列分析涉及对按时间顺序排列的数据 进行统计处理,以揭示其内在的规律和特性 。这种方法广泛应用于金融、气象、医学等 领域,用于预测未来趋势和进行决策分析。
06 案例研究
概率论在金融中的应用
概率论在金融领域中有着 广泛的应用,如风险评估 、投资组合优化、期权定 价等。
概率论在金融领域的应用 还包括信用评级、保险精 算、风险管理等方面。
描述随机变量取值的平均水平和分散程度。
常见的随机变量分布
二项分布、泊松分布、正态分布等。
02 统计推断
参数估计
参数估计的概念
参数估计是用样本信息来估计总体参 数的过程,是统计推断的重要内容之 一。
点估计
点估计是指用一个单一的数值来估计 总体参数,常用的方法有矩估计和极 大似然估计。
区间估计
区间估计是指用一个区间范围来估计 总体参数,常用的方法有置信区间和 预测区间。
假设检验的步骤
概率统计模型的原理和应用

概率统计模型的原理和应用前言概率统计模型是一种基于概率论和统计学原理建立的数学模型,用于描述和推断随机现象的规律。
在实际应用中,概率统计模型被广泛应用于各个领域,包括金融、医学、工程等。
本文将介绍概率统计模型的原理和应用,并以列点的方式呈现相关内容。
概率统计模型的基本概念•概率:指事件发生的可能性或程度,用数值表示。
•统计:指通过对样本数据的观察和分析,对总体特征进行推断。
•随机变量:指表示随机现象结果的数值化变量,在概率统计模型中起重要作用。
•概率分布:指随机变量所有可能取值及其对应概率的分布情况,常见的概率分布包括正态分布、均匀分布等。
概率统计模型的原理1.概率论基础:概率统计模型建立在概率论的基础上,概率论提供了描述随机现象的理论框架和推断方法。
概率论中的公理系统和概率推断方法为概率统计模型的构建和分析提供了理论基础。
2.参数估计:参数估计是概率统计模型中的一个重要步骤,用于通过样本数据来估计总体参数。
常见的参数估计方法包括极大似然估计、最小二乘估计等。
3.假设检验:假设检验是通过观察样本数据,判断总体参数是否符合某个假设的一种推断方法。
假设检验在概率统计模型中应用广泛,用于验证模型的有效性和检测变量之间的相关性。
4.相关性分析:概率统计模型可以通过相关性分析来探索变量之间的关系。
常见的相关性分析方法包括相关系数分析和回归分析等。
概率统计模型的应用概率统计模型在各个领域有广泛的应用,以下是一些常见的应用场景: 1. 金融领域:通过概率统计模型可以对股票价格、汇率变动等金融现象进行建模和预测,帮助投资者做出决策。
2. 医学领域:概率统计模型在医学研究和临床实践中有重要应用,例如用于分析疾病的发病机制、评估疗效等。
3. 工程领域:在工程项目中,概率统计模型可以用于风险评估、质量控制等方面。
例如,建筑工程中的结构安全分析。
4. 社会科学领域:概率统计模型可以用于社会调查、数据分析等方面,帮助研究人员理解社会现象和预测社会趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sig =1.2122
的置信度为0.95的置信区
2
(99.05,100.91),总体方差 的置信度为 0.95 的 置 信 区 间 为 ( 0.8188^2,2.3223^2 ) =(0.67,5.39计的命令还有:
[lam,lamci]=poissfit(x,alpha) 泊松分布的估计函数
lam、lamci分别是泊松分布中参数 的点估计及区 间估计值。 [a,b,aci,bci]=unifit(x,alpha) 均匀分布的估计函数
a、b、aci、bci分别是均匀分布中参数a,b的点估计及 区间估计值。
[mu,sig,muci,sigci]=normfit(x,alpha)
x为向量或者矩阵,为矩阵时是针对矩阵的 每一个列向量进行运算的。 alpha为给出的显著水平 (即置信度 ( 1 )%, 缺省时默认 0.05,置信度为95%) mu、sig分别为分布参数 计值。
、
的点估
Muci、sigci分别为分布参数 区间估计。
2
标准正态分布:N (0, 1) 正态分布也称高斯分布,是概率论中最重要的一个分布。
如果一个变量是大量微小、独立的随机因素的 叠加,那么它一定满足正态分布。 如:年降雨量; 身高; 产品的质量指标,如零件的尺寸; 纤维的强度和张力; 农作物的产量 小麦的穗长、株高; 测量误差 射击目标的水平或垂直偏差,等等 都服从或近似服从正态分布.
正态分布 N ( , 2 ) 的图形特点
正态分布的密度曲线是一条关于 对 称的钟形曲线. 特点是“两头小,中间大,左右对称”.
正态分布 N ( , 2 ) 的图形特点
决定了图形的中心位置, 决定了图形
中峰的陡峭程度.
能不能根据密度函数的表达式, 得出正态分布的图形特点呢?
标准正态分布
0, 1 的正态分布称为标准正态分布. 其密度函数和分布函数常用 ( x)和 ( x )表示:
1 ( x) e , x 2 t2 1 x 2 ( x) e dt 2
( x)
x2 2
( x )
正态分布有些什么性质呢? 由于连续型随机变量唯一地由它 的密度函数所描述,我们来看看正态 分布的密度函数有什么特点。
mu =0.5089
0.5173 0.0208
sig =0.0109
结果显示,总体均值的点估计为0.5089,总体方 差为0.109。在95%置信水平下,总体均值的区间 估计为(0.5005,0.5173),总体方差的区间估 计为
(0.0073,0.0208)。
案例某厂用自动包装机包装糖,每包糖的质量 X ~ N ( , 2 ) 某日开工后,测得9包糖的重量如下: 99.3,98.7,100.5,101.2,98.3,99.7,102.1, 100.5,99.5(单位:千克)。分别求总体均值 及方差 2 的置信度为0.95的置信区间。
第9讲 概率统计模型
9.1 参数估计 9.2 回归分析
常见的概率分布
二项式分布 卡方分布 指数分布 F分布 几何分布 正态分布 泊松分布 T分布 均匀分布 离散均匀分布 Binomial Chisquare Exponential F Geometric Normal Poisson T Uniform Discrete Uniform bino chi2 exp f geo norm poiss t unif unid
正态分布
正态分布 (应用最广泛的一种连续型分布)
如果随机变量 X 的概率密度函数为:
1 f ( x) 2
( X )2 2 2 e
x , 0
~ N ( , )
2
则称 X 服从正态分布。记做:X
其中
任意, >0, 和 都是常数, 2 则称X服从参数为 和 的正态分布. :总体均值 :标准差
[lam,lamci]=expfit(x,alpha)
指数分布的估计函数
lam、lamci分别是指数分布中参数 及区间估计值 [p,pci]=binofit(x,alpha)
的点估计
二项分布的估计函数
p、pci分别是二项分布中参数 区间估计值。
p 的点估计及
案例从某超市的货架上随机抽取9包0.5千克装的食 糖,实测其重量分别为(单位:千克):0.497, 0.506,0.518,0.524,0.488,0.510,0.510,0.515, 0.512,从长期的实践中知道,该品牌的食糖重量 服从正态分布 N。根据数据对总体的均值及 ( , 2 ) 标准差进行点估计和区间估计。
解: 在MATLAB命令窗口输入 >> x=[99.3,98.7,100.5,101.2,98.3,99.7,102.1,100.5,99.5] ; >> alpha=0.05; >>[mu,sig,muci,sigci]=normfit(x,alpha)
回车键,显示: mu = 99.9778 muci = 99.0460 sigci =0.8188 所以得,总体均值 间为 100.9096 2.3223
解:在MATLAB命令窗口输入 >> x=[0.497,0.506,0.518,0.524,0.488,0.510,0.510,0.5 15,0.512]; >> alpha=0.05; >> [mu,sig,muci,sigci]=normfit(x,alpha)
回车键,显示: muci = 0.5005 sigci =0.0073
1 f ( x) e 2
( x )2 2 2
, x
容易看到,f(x)≥0 即整个概率密度曲线都在x轴的上方;
利用MATLAB进行参数估计
如果已经知道了一组数据来自正态分布总体,但 是不知道正态分布总体的参数。 我们可以利用 normfit()命令来完成对总体参数的点估计和区间 估计,格式为 [mu,sig,muci,sigci]=normfit(x,alpha)