中考数学压轴题破解策略专题25《全等三角形的存在性》

合集下载

2019-2020中考数学压轴题突破与提升策略:全等三角形的存在性问题(无答案)

2019-2020中考数学压轴题突破与提升策略:全等三角形的存在性问题(无答案)

2019-2020中考数学压轴题突破与提升策略:全等三角形的存在性问题一. 问题解读全等三角形存在性的处理思路1.分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.注:全等三角形存在性问题主要结合对应关系及不变特征考虑分类.2.画图求解:往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑边、角的对应相等和不变特征后列方程求解.3.结果验证:回归点的运动范围,画图或推理,验证结果.二. 例题解析例1.如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,与y轴交于点D,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式.(2)设抛物线对称轴与x轴交于点E,F是y轴上一动点,在y轴右侧的抛物线上是否存在一点P,使△POE与△POF全等?若存在,求出点P的坐标;若不存在,请说明理由.I 当△POE≌△POF时,OE=OF=1∴F1(0,1),F2(0,-1)①当OF 1=OE 时,此时∠F 1OP =∠EOP ,则l OP :y =x∴ 则或∴P 1) ②当OF 2=OE 时,此时∠F 2OP =∠EOP ,则l OP :y =-x∴则或∴P2(,)II 当△POE ≌△OPF 时,当OE ,PF 在OP 的异侧时,分析可得四边形OEPF 为平行四边形(矩形),此时,P 与A 重合,P 3(1,-4).当OE ,PF 在OP 的同侧时,分析可得四边形OEFP 为等腰梯形,此时不存在符合题意的点P .综上,点P 的坐标为(,),(,),(1,-4). 三. 练习反馈1.已知抛物线与x 轴交于A ,B 两点(点A 在点B的左侧),与y 轴交于点C ,直线与x轴交于点D .在第一象限内,若直线上223y xy x x =⎧⎨=--⎩32x y ⎧=⎪⎪⎨+⎪=⎪⎩32x y ⎧=⎪⎪⎨⎪=⎪⎩223y x y x x =-⎧⎨=--⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩1212-323212+12--存在点P,使得以P,B,D为顶点的三角形与△OBC全等,则点P的坐标为( )A.(4,1),(0,3)B.(4,1),(3,2)或(1,2)C.(4,1),(0,3)或(3,2)D.(4,1),(4,-1),(3,2)或(3,-2)2. 如图所示,抛物线的顶点为A,直线与y轴的交点为B,其中.若Q为抛物线的对称轴直线上一个动点,在对称轴左侧的抛物线上存在点P,使以P,Q,A为顶点的三角形与△OAB全等,则点P的坐标为( )A.B.C.D.3. 如图,在△ABC 中,AB=AC=10cm ,BC=8cm ,D 为AB 的中点.点P 在BC 边上以3cm/s 的速度由点B 向点C 运动;同时点Q 在AC 边上以相同的速度由点C 向点A 运动,其中一个点到达终点时另一个点也随之停止运动.当△BPD 与△CQP 全等时,点P 运动的时间为( )A. B. C. D.4. 如图,抛物线与x 轴的一个交点为A (-2,0),与y 轴交于点C ,对称轴与x 轴交于点B .若点D 在x 轴上,点P 在抛物线上,使得△PBD ≌△PBC ,则点P 的坐标为_____________________________________.与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过原点O ,与抛物线的一个交点为D (6,-8),与抛物线的对称轴交于点E ,连接CE .若点F 在抛物线上,使△FOE ≌△FCE ,则点F 的坐标为____________.6. 如图,抛物线与y 轴交于点C ,对称轴与x 轴交于点D ,顶213442y x x =-++38x -21(2)62y x =--+点为M.设点Q是y轴右侧该抛物线上的一动点,若经过点Q的直线QE与y轴交于点E,使得以O,Q,E为顶点的三角形与△OQD全等,则直线QE的解析式为_______________.7.如图,在平面直角坐标系中,点A坐标为(2,1),点B坐标为(3,0),点D 为平面直角坐标系中任一点(与点O,A,B不重合).(1)△AOB和△DOB的公共边为_________.(2)若△DOB与△OAB全等,则点D的坐标为_________.(3)在下图中画出可能的△DOB,并考虑与△AOB之间的联系.8. 如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,与y轴交于点D,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式.(2)设抛物线对称轴与x轴交于点E,F是y轴上一动点,在y轴右侧的抛物线上是否存在一点P,使△POE与△POF全等?若存在,求出点P的坐标;若不存在,请说明理由.9. 如图,抛物线C 1经过A ,B ,C 三点,顶点为D ,且与x 轴的另一个交点为E .(1)求抛物线C 1的解析式.(2)设抛物线C 1的对称轴与x 轴交于点F ,另一条抛物线C 2经过点E (抛物线C 2与抛物线C 1不重合),且顶点为M (a ,b ),对称轴与x 轴交于点G ,且以M ,G ,E 为顶点的三角形与以D ,E ,F 为顶点的三角形全等,求a ,b 的值.(只需写出结果,不必写出解答过程)10.已知抛物线经过点A (2,0),顶点为P ,与x 轴的另一交点为B .(1)求b 的值及点P ,点B 的坐标.(2)如图,在直线上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,请求出点M 的坐标;如果不存在,试说明理由.22y x bx =++y=11. 如图,已知抛物线y =ax 2+bx +c 经过点A (-6,0),B (2,0)和C (0,3),点D 是该抛物线的顶点,AC ,OD 相交于点M .(1)求点D 的坐标.(2)在x 轴下方的平面内是否存在点N ,使△DBN 与△ADM 全等?若存在,请求出该点的坐标;若不存在,请说明理由.12.已知抛物线过点(-6,-2),与y 轴交于点C ,且对称轴与x 轴交于点B (-2,0),顶点为A .(1)求该抛物线的解析式和点A 的坐标.(2)若点M 是第二象限内该抛物线上的一个动点,经过点M 的直线MN 与y 轴交于点N ,是否存在以O ,M ,N 为顶点的三角形与△OMB 全等?若存在,请求出直线MN 的解析式;若不存在,请说明理由.212y x bx c =-++13. 如图,在平面直角坐标系中,直线l 1过点A (1,0)且与y 轴平行,直线l 2过点B (0,2)且与x 轴平行,直线l 1与l 2相交于点P .点E 为直线l 2上一点,反比例函数(k >0)的图象过点E 且与直线l 1相交于点F . (1)若点E 与点P 重合,求k 的值.(2)连接EF .是否存在点E 及y 轴上的点M ,使得以M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求出点E 的坐标;若不存在,请说明理由. k y x。

中考数学压轴题解题策略直角三角形的存在性问题解题策略

中考数学压轴题解题策略直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3)直角三角形的存在性问题解题策略《挑战压轴题·中考数学》的作者上海马学斌专题攻略解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).例题解析例❶如图1-1,在△ABC中,AB=AC=10,cos∠B=45.D、E为线段BC上的两个动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值.图1-1【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点.在Rt△ABH中,AB=10,cos∠B=45,所以BH=8.所以BC=16.由EF//AC,得BF BEBA BC=,即31016BF x+=.所以BF=5(3)8x+.图1-2 图1-3 图1-4①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠==,得45BD BF =. 解方程45(3)58x x =⨯+,得x =3. ②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠==,得45BF BD =. 解方程5154885x x +=,得757x =. 我们看到,在画示意图时,无须受到△ABC 的“限制”,只需要取其确定的∠B . 例❷ 如图2-1,已知A 、B 是线段MN 上的两点,,,.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成 △ABC ,设AB =x ,若△ABC 为直角三角形,求x 的值.图2-1【解析】△ABC 的三边长都可以表示出来,AC =1,AB =x ,BC =3-x .如果用斜边进行分类,每条边都可能成为斜边,分三种情况:①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根.②若AB 为斜边,则1)3(22+-=x x ,解得35=x (如图2-2). ③若BC 为斜边,则221)3(x x +=-,解得34=x (如图2-3). 因此当35=x 或34=x 时,△ABC 是直角三角形.图2-2 图2-3例❸ 如图3-1,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.图3-1【解析】A 、B 两点是确定的,以线段AB 为分类标准,分三种情况.4=MN 1=MA 1>MB如果线段AB 为直角边,那么过点A 画AB 的垂线,与第一象限内的一支双曲线没有交点;过点B 画AB 的垂线,有1个交点.以AB 为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.由题意,得点B 的坐标为(2,0),且∠BAP 不可能成为直角.①如图3-2,当∠ABP =90°时,点P 的坐标为(2,1).②方法一:如图3-3,当∠APB =90°时,OP 是Rt △APB 的斜边上的中线,OP =2.设P 2(,)x x ,由OP 2=4,得2244x x +=.解得x =P (2,2).图3-2 图3-3方法二:由勾股定理,得P A 2+PB 2=AB 2.解方程2222222(2)()(2)()4x x x x +++++=,得x =方法三:如图3-4,由△AHP ∽△PHB ,得PH 2=AH ·BH .解方程22()(2)(2)x x x =+-,得x =图3-4 图3-5这三种解法的方程貌似差异很大,转化为整式方程之后都是(x 2-2)2=0.这个四次方程的解是x 1=x 2=2,x 3=x 4=,它的几何意义就是以AB 为直径的圆与双曲线相切于P 、P ′两点(如图3-5).例❹ 如图4-1,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.图4-1【解析】和例题3一样,过A 、B 两点分别画AB 的垂线,各有1个点Q .和例题3不同,以AB 为直径画圆,圆与y 轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.将A (1,-4)代入y =kx -6,可得k =2.所以y =2x -6,B (3,0).设OQ 的长为m .分三种情况讨论直角三角形ABQ :①如图4-2,当∠AQB =90°时,△BOQ ∽△QHA ,BO QH OQ HA =.所以341m m -=. 解得m =1或m =3.所以Q (0,-1)或(0,-3).②如图4-3,当∠BAQ =90°时,△QHA ∽△AGB ,QH AG HA GB =.所以4214m -=. 解得72m =.此时7(0,)2Q -. ③如图4-4,当∠ABQ =90°时,△AGB ∽△BMQ ,AG BM GB MQ=.所以243m =. 解得32m =.此时3(0,)2Q .图4-2 图4-3 图4-4三种情况的直角三角形ABQ ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.已知A (1,-4)、B (3,0),设Q (0, n ),那么根据两点间的距离公式可以表示出AB 2,AQ 2和BQ 2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了.例❺ 如图5-1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧).若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.图5-1【解析】有且只有三个直角三角形ABM 是什么意思呢?过A 、B 两点分别画AB 的垂线,与直线l 各有一个交点,那么第三个直角顶点M 在哪里?以AB 为直径的⊙G 与直线l 相切于点M 啊! 由23333(4)(2)848y x x x x =--+=-+-,得A (-4, 0)、B (2, 0),直径AB =6. 如图5-2,连结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.因此3tan 4GEM ∠=. 设直线l 与y 轴交于点C ,那么OC =3.所以直线l (直线EC )为334y x =-+. 根据对称性,直线l 还可以是334y x =-.图5-2例❻ 如图6-1,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.图6-1【解析】这道题目画示意图有技巧的,如果将点D 看作主动点,那么CE 就是从动线段.反过来画图,点E 在以CA 为半径的⊙C 上,如果把点E 看作主动点,再画∠ACE 的平分线就产生点D了.(1)如图6-2,设AB边上的高为CH,那么AH=BH=4.在Rt△ACH中,AH=4,4cos5A∠=,所以AC=5,CH=3.(2)①如图6-3,当∠AFC=90°时,F是AB的中点,AF=4,CF=3.在Rt△DEF中,EF=CE-CF=2,4cos5E∠=,所以52DE=.此时52AD DE==.②如图6-4,当∠ACF=90°时,∠ACD=45°,那么△ACD的条件符合“角边角”.作DG⊥AC,垂足为G.设DG=CG=3m,那么AD=5m,AG=4m.由CA=5,得7m=5.解得57m=.此时2557AD m==.图6-2 图6-3 图6-4 (3)因为DA=DE,所以只存在∠ADE=90°的情况.①如图6-5,当E在AB下方时,根据对称性,知∠CDA=∠CDE=135°,此时△CDH 是等腰直角三角形,DH=CH=3.所以AD=AH-DH=1.②如图6-6,当E在AB上方时,根据对称性,知∠CDA=∠CDE=45°,此时△CDH 是等腰直角三角形,DH=CH=3.所以AD=AH+DH=7.图6-5 图6-6。

2022年九年级数学中考压轴专题-与存在性问题有关的压轴题讲义附答案

2022年九年级数学中考压轴专题-与存在性问题有关的压轴题讲义附答案

中考压轴专题:与存在性问题有关的压轴题附答案知识点主要题型抛物线的存在性等腰、直角三角形掌握等腰三角形与直角三角形的性质,并能求出相关的点的存在性问题平行四边形问题理解并掌握抛物线与特殊的平行四边形的求法相似三角形理解并掌握抛物线与相似三角形问题的解法等腰梯形、直角梯形理解并掌握抛物线与梯形的存在性问题的求法线段最值掌握线段最大值或线段和的最小值的求法面积最值问题解决相关的三角形或四边形的面积最大(小)值问题归纳1:抛物线的存在性问题基础知识归纳:抛物线的存在性问题主要涉及等腰三角形、直角三角形、相似三角形、等腰梯形、直角梯形、线段的最值与面积的最值问题.基本方法归纳:等腰三角形要注意顶点问题的讨论、直角三角形主要讨论斜边、相似三角形的涉及对应边问题、梯形的上底和下底互相平行、平行四边形的对边平行且相等、对角线互相平分、线段的最值注意二次函数配方法的应用和对称问题.注意问题归纳:点的存在性问题中,关键是点的找法,点不要漏找.【例1】如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,﹣3)(1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积.(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q ,是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式,若不存在,请说明理由.【例2】在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD .若两个点同时运动的时间为x 秒(0<x ≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值;(2)是否存在x 的值,使得QP ⊥DP ?试说明理由.练习题1.已知抛物线C :23y x x m =-+,直线l :y =kx (k >0),当k =1时,抛物线C 与直线l 只有一个公共点.(1)求m 的值;(2)若直线l 与抛物线C 交于不同的两点A ,B ,直线l 与直线l 1:y =﹣3x +b 交于点P ,且112OA OB OP+=,求b 的值;(3)在(2)的条件下,设直线l 1与y 轴交于点Q ,问:是否在实数k 使S △APQ =S △BPQ ?若存在,求k 的值,若不存在,说明理由.2.如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线2y mx nx =+相交于A (1,,B (4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得△ABD 是以线段AB 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)点P 是线段AB 上一动点,(点P 不与点A 、B 重合),过点P 作PM ∥OA ,交第一象限内的抛物线于点M ,过点M 作MC ⊥x 轴于点C ,交AB 于点N ,若△BCN 、△PMN 的面积S △BC N 、S △PM N 满足S △BC N =2S △PM N ,求出MN NC的值,并求出此时点M 的坐标.3.如图,顶点为M 的抛物线2(1)4y a x =+-分别与x 轴相交于点A ,B (点A 在点B 的右侧),与y 轴相交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)判断△BCM 是否为直角三角形,并说明理由.(3)抛物线上是否存在点N (点N 与点M 不重合),使得以点A ,B ,C ,N 为顶点的四边形的面积与四边形ABMC 的面积相等?若存在,求出点N 的坐标;若不存在,请说明理由.4.已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P (3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当PM AM -的最大值时点M 的坐标,并直接写出PM AM -的最大值.5.抛物线()240y x ax b a =-++>与x 轴相交于O 、A 两点(其中O 为坐标原点),过点P (2,2a )作直线PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C (其中B 、C 不重合),连接AP 交y 轴于点N ,连接BC 和PC .(1)32a =时,求抛物线的解析式和BC 的长;(2)如图1a >时,若AP ⊥PC ,求a 的值;(3)是否存在实数a ,使12AP PN =,若存在,求出a 的值;若不存在,请说明理由.6.已知抛物线与x 轴交于A (6,0)、B (54-,0)两点,与y 轴交于点C ,过抛物线上点M (1,3)作MN ⊥x 轴于点N ,连接OM .(1)求此抛物线的解析式;(2)如图1,将△OMN 沿x 轴向右平移t 个单位(0≤t ≤5)到△O ′M ′N ′的位置,MN ′、M ′O ′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.7.已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.9.如图1,抛物线23[(2)]5y x n =--+与x 轴交于点A (m ﹣2,0)和B (2m +3,0)(点A 在点B 的左侧),与y 轴交于点C ,连结BC .(1)求m 、n 的值;(2)如图2,点N 为抛物线上的一动点,且位于直线BC 上方,连接CN 、BN .求△NBC 面积的最大值;(3)如图3,点M 、P 分别为线段BC 和线段OB 上的动点,连接PM 、PC ,是否存在这样的点P ,使△PCM 为等腰三角形,△PMB 为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,已知抛物线213y x bx c =++经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.11.已知:如图,在矩形ABCD 中,Ab =6cm ,BC =8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.12.如图,在平面直角坐标系中,已知抛物线2y x bx c =++过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,﹣3),动点P 在抛物线上.(1)b =,c =,点B 的坐标为;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.13.如图,抛物线223y ax x =+-与x 轴交于A 、B 两点,且B (1,0)(1)求抛物线的解析式和点A 的坐标;(2)如图1,点P 是直线y =x 上的动点,当直线y =x 平分∠APB 时,求点P 的坐标;(3)如图2,已知直线2439y x =-分别与x 轴、y 轴交于C 、F 两点,点Q 是直线CF 下方的抛物线上的一个动点,过点Q 作y 轴的平行线,交直线CF 于点D ,点E 在线段CD 的延长线上,连接QE .问:以QD 为腰的等腰△QDE 的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.14.如图,抛物线23y ax bx =+-(a ≠0)的顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且BO =OC =3AO ,直线113y x =-+与y 轴交于点D .(1)求抛物线的解析式;(2)证明:△DBO ∽△EBC ;(3)在抛物线的对称轴上是否存在点P ,使△PBC 是等腰三角形?若存在,请直接写出符合条件的P 点坐标,若不存在,请说明理由.15.如图,抛物线L :2y ax bx c =++与x 轴交于A 、B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x =1.(1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线l :x =﹣3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.16.如图,已知抛物线经过原点O ,顶点为A (1,1),且与直线y =x ﹣2交于B ,C 两点.(1)求抛物线的解析式及点C 的坐标;(2)求证:△ABC 是直角三角形;(3)若点N 为x N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案【例1】(1)223y x x =--;(2)P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;(3)存在,113y x =-.【例2】(1)S =21262x x -+,S 不存在最大值,当x =2时,S 有最小值,最小值为4;(2)当x =72时,QP ⊥DP .练习题1.(1)4;(2)8;(3)不存在.2.(1)2y =+;(2)D (1,0)或(0,2)或(0,2);(3),M (1+,+).3.(1)223y x x =+-;(2)△BCM 是直角三角形;(3)N (2212-+,32)或N (2212--,32)或N (﹣2,﹣3).4.(1)239344y x x =--+;(2)存在,P (5,3);(3)M (1,0)或(﹣5,92-)时,|PM ﹣AM |的值最大,为5.5.(1)26y x x =-+,BC =2;(2)2(3)34.. 6.(1)241921515y x x =-++;(2)①1;②t =2时,EH 最大值为121995.7.(1)12y x =(0<x <20);(2)当x =10或x =16,存在点P 使△PEF 是Rt △.8.(1)21566y x x =-,直角三角形;(2)103;(3)M 1(52,202+),M 2(52,202-),M 3(52,5192),M 4(52,5192-).9.(1)m =1,n =﹣9;(2)758;(3)P (95-,0)或(34,0).10.(1)21213y x x =++;(2)P (92-,54-);(3)Q (﹣4,1),Q (3,1).11.(1)t 为258或5;(2)2131232S t t =-++;(3)t =92;(4)t =2.88.12.(1)b =﹣2,c =﹣3,B (﹣1,0);(2)P (1,﹣4)或(﹣2,5);(3)(2102+,32-)或(2102-,32-).13.(1)223y x x =+-,A (﹣3,0);(2)P (32,32);(3)QD 为腰的等腰三角形的面积最大值为5413.14.(1)223y x x =--;(2)证明见解析;(3)P (1,﹣1)或P (1P (1P(1,3-+)或P (1,3--15.(1)223y x x =-++;(2)2≤h ≤4;(3)P (1,4)或(0,3)或(32+,92)或(32-,3392-).16.(1)22y x x =-+,C (﹣1,﹣3);(2)证明见解析;(3)(53,0)或(73,0)或(﹣1,0)或(5,0).。

中考数学压轴题解题策略:相似三角形的存在性问题

中考数学压轴题解题策略:相似三角形的存在性问题

相似三角形的存在性问题解题策略专题攻略相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组).例题解析例❶如图1-1,抛物线y=1x2-3x+4与X轴交于A、B两点(A点在B点左侧),与y轴交于点C.动82直线EF(EF//x轴)从点C开始,以每秒1个单位的速度沿y轴负方向平移,且分别交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段0B上以每秒2个单位的速度向原点0运动.是否存在t,使得△匕卩卩与厶ABC相似.若存在,试求出t的值;若不存在,请说明理由.图1-1【解析】ABP卩与厶ABC有公共角ZB,那么我们梳理两个三角形中夹ZB的两条边.△ABC是确定的.由y=x2-x+4,可得A(4,0)、B(&0)、C(0,4).782于是得到BA=4,BC=4*5.还可得到C E=C0=1.EF OB2△BPF中,BP=21,那么BF的长用含t的式子表示出来,问题就解决了. 在RtAEFC中,CE=t,EF=21,所以CF=^5t.因此BF=处5-呂二*;5(4-1).于是根据两边对应成比例,分两种情况列方程BABP ①当—时,BCBF42t44_—.解得t—(如图1-2). 4冒55(4-1)3BABF ②当—时,BCBP4—〔5(4-1).解得1—20(如图1-3). 4f5217得顶点M(1,-图1-2 图1-3例❷如图2-1,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,ZAOB=120°.(1)这条抛【解析】AABC与AAOM中相等的一组角在哪里呢?本题由简到难,层层深入.第(1)题求出抛物线的解析式,得到顶点M的坐标,为第(2)题求ZAOM的大小作铺垫;求得了ZAOM的大小,第(3)题暗示了要在△ABC中寻找与ZAOM相等的角.(1)如图2-2,过点A作AH丄y轴,垂足为H.容易得到A(-1,3).再由A(-1,J3)、B(2,0)两点,可求得抛物线的解析式为y二辜x2-睾x.⑵由y吕x2一斗x召(x-1)2-斗,v33(3)由A (-1,\:'3)、B(2,0),可得ZABO=30°. 因此当点C 在点B 右侧时,ZABC=ZA0M=150°. 所以△ABC 与AAOM 相似,存在两种情况:① 当燮=_°A 仝时,BC =BA ==2.此时C(4,0)(如图2-3).BCOM J3弋3 BC OA —② 当==时,BC =x/3BA =\3x 2\;3=6.此时C (8,0)(如图2-4).BAOM图2-3.图2-4例❸如图3-1,抛物线y=ax 2+bx —3与x 轴交于A(l,0)、B(3,0)两点,与y 轴交于点D,顶点为C.(1)求此抛物线的解析式;(2)在x 轴下方的抛物线上是否存在点M,过M 作MN 丄x 轴于点N,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,求出点M 的坐标;若不存在,请说明理由.图3-1【解析】AAMN 是直角三角形,因此必须先证明△BCD 是直角三角形.一般情况下,根据直角边对应成比例分两种情况列方程.所以 tan ZBOM=.所以ZBOM=30。

中考数学压轴题“存在性”问题的解题策略(含解答)

中考数学压轴题“存在性”问题的解题策略(含解答)

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

【典型例题】 例1.223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且,3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。

分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。

解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]()=+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。

第3讲 中考压轴题专题之三角形存在性问题

第3讲  中考压轴题专题之三角形存在性问题

第三讲中考压轴题专题之三角形存在性问题板块一、等腰三角形存在性1.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5B.6C.7D.82.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.3.(2016滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.4.(2014兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.板块二、直角三角形5.如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=﹣2,点P是抛物线上位于A,C两点之间的一个动点,则△P AC的面积的最大值为()T5 T7 T8 A.B.C.D.36.将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为()A.个单位B.1个单位C.个单位D.个单位7.如图,直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D 作DE⊥AC于E点,DF⊥BC于F点,连接EF,则线段EF长的最小值为.8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△P AC为直角三角形时点P的坐标.9.(2015连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?10.(2016黄岗)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.板块三、等腰直角三角形11.已知⼀次函数y=x+1的图象与y轴交于点A,将该函数图象绕点A旋转45°,旋转后的图象对应的函数关系式是.12.二次函数y=x2+bx+c的图象的顶点为D,与x轴正方向从左至右依次交于A,B两点,与y轴正方向交于C点,若△ABD和△OBC均为等腰直角三角形(O为坐标原点),则b+2c=.13.如图,P是抛物线C:y=2x2﹣8x+8对称轴上的一个动点,直线x=k平行于y轴,分别与直线y =x、抛物线C交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,则满足条件的k为.14.(2019青龙县期末)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C (0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析1.【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,与坐标轴的交点P1,P2,P3,P4,P5符合题意;作AB的垂直平分线,与坐标轴的交点P6,P7符合题意,故选:C.2.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).3.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),∴点M3坐标为(﹣1,﹣1).③当点A为等腰三角形的顶角的顶点的三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).4.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=×4×EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).5.【解答】解:∵x=﹣=﹣2,且a=1,∴b=4;则,抛物线:y=x2+4x+c;∴AB=x B﹣x A===2,点M(﹣2,c﹣4);∵抛物线是轴对称图形,且△MAB是直角三角形,∴△MAB必为等腰直角三角形,则有:AB=2=2|c﹣4|,解得:c=3;∴抛物线:y=x2+4x+3,且A(﹣3,0)、B(﹣1,0)、C(0,3).过点P作直线PQ∥y轴,交直线AC于点Q,如右图;设点P(x,x2+4x+3),由A(﹣3,0)、C(0,3)易知,直线AC:y=x+3;则:点Q(x,x+3),PQ=(x+3)﹣(x2+4x+3)=﹣x2﹣3x;S△P AC=PQ×OA=×(﹣x2﹣3x)×3=﹣(x+)2+,∴△P AC有最大面积,且值为;故选:C.6.解:设抛物线向上平移a(a>1)个单位,使抛物线与坐标轴有三个交点,且这些交点能构成直角三角形,则有平移后抛物线的解析式为:y=﹣2x2﹣1+a,AM=a,∵抛物线y=﹣2x2﹣1与y轴的交点M为(0,﹣1),即OM=1,∴OA=AM﹣OM=a﹣1,令y=﹣2x2﹣1+a中y=0,得到﹣2x2﹣1+a=0,解得:x=±,∴B(﹣,0),C(,0),即BC=2,又△ABC为直角三角形,且B和C关于y轴对称,即O为BC的中点,∴AO=BC,即a﹣1=,两边平方得:(a﹣1)2=,∵a﹣1≠0,∴a﹣1=,解得:a=.故选:A.7.【解答】解:如图,连接CD.∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短,可得当CD⊥AB时,CD最短,即线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×4×3=×5•CD,解得CD=2.4,∴线段EF长的最小值为2.4.故答案为:2.48.【解答】解:∵直线y=x+2过点B(4,m),∴m=6,∴B(4,6).将A、B两点坐标代入抛物线解析式得:,解得:∴抛物线的解析式为:y=2x2﹣8x+6.①若A为直角顶点,如图1,设AC的解析式为:y=﹣x+b,将A点代入y=﹣x+b得b=3∴AC的解析式为y=﹣x+3,由,解得:或(舍去)令P点的横坐标为3,则纵坐标为5,∴P(3,5);②若C为直角顶点,如图2,令,解得:x=或x=(舍去),令P点的横坐标为,则纵坐标为,∴P(,);故答案为:(3,5)或(,).9.【解答】解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵﹣2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.10.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).11.【解答】解:如图1,∵⼀次函数y=x+1的图象与y轴交于点A,与x轴交于B,∴A(0,1),B(﹣2,0),当直线y=x+1绕点A顺时针旋转45°后的图象为直线l,过B作BD⊥直线l于D,过D作FD⊥y轴于F,过B作BE⊥FD延长线于E,则△ABD为等腰直角三角形,易得△ADF≌△DBE(AAS),设AF=a,则DE=a,∵点A(0,1),点B(﹣2,0),∴DF=BE=OF=1+a,EF=ED+DF=a+1+a=OB=2,∴a=,∴DF=OF=1+a=,∴D(﹣,),设直线l的解析式为y=kx+1,则=﹣k+1,解得k=﹣,∴y=﹣x+1;如图2,直线y=x+1绕点A逆时针旋转45°后的图象为直线l,过B作BD⊥直线l于D,过D作FD⊥y轴于F,作DE⊥x轴于E,则△ABD为等腰直角三角形,易得△ADF≌△BDE(AAS),设DF=b,则DE=b,∵点A(0,1),点B(﹣2,0),∴AF=BE=1+b,BO=BE+OE=b+1+b=OB=2,∴b=,∴D(﹣,﹣),设直线l的解析式为y=kx+1,则﹣=﹣k+1,解得k=3,∴y=3x+1;综上,旋转后的图象对应的函数关系式是y=﹣x+1或y=3x+1.故答案为y=﹣x+1或y=3x+1.12.【解答】解:由已知,得C点的坐标为:(0,c),,,.过D作DE⊥AB于点E,则2DE=AB,即,得:,所以或.又b2﹣4c>0,所以.又OC=OB,即:,得:.故答案为:2.13.【解答】解:∵直线x=k分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,∴A(k,k),B(k,2k2﹣8k+8),AB=|k﹣(2k2﹣8k+8)|=|2k2﹣9k+8|,①当△ABP是以点A为直角顶点的等腰直角三角形时,∠P AB=90°,此时P A=AB=|k﹣2|,即|2k2﹣9k+8|=|k﹣2|,解得k=或1或3;②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|k﹣2|,结果同上.故答案为:或1或3.14.【解答】解:(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ==,CQ的解析式为y=x+3,又∵AE==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴S△P AD====×4×3.解得m=0或1.(4)存在,点P的坐标为(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2(舍去),∴点P(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,如图4,同理可得n=2,解得m1=1+(舍去),m2=1﹣.故点P(1﹣,2).综上可得,点P的坐标为(0,3)或(1﹣,2).。

中考数学“全等、相似三角形的存在性问题”题型解析

中考数学“全等、相似三角形的存在性问题”题型解析

中考数学“全等、相似三角形的存在性问题”题型解析解此类问题,一般分为三个步骤:第一步寻找分类标准;第二步列方程;第三步解方程并验根 .难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快 .一般情况下,寻找一组相等的角或边,分情况列方程 .本节主要来讨论下全等三角形和相似三角形的存在性问题 .类型一:全等三角形存在性问题【例题1】如图,抛物线y = ax^2 + c (a ≠0)与y 轴交于点A,与x 轴交于B , C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4,现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一交点为E,其顶点为F,对称轴与x 轴的交点为H .(1)求a , c 的值;(2)连接OF,试判断△OEF 是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E,另一直角边与y 轴相交于点P,是否存在这样的点Q,使以点P、Q、E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由 .【解题策略】(1)关键是利用等腰直角三角形的性质及面积,求出关键点坐标,用待定系数法求解;(2)关键是求得平移后的函数抛物线,证明两边相等即可;(3)关键是分类讨论分两种情形,而情形一又分两种情形,依据全等三角形性质,寻找边角相等求解 .类型二:相似三角形存在性问题【例题2】如图,已知抛物线y = ax^2 + 8/5 x + c 与x 轴交于A , B 两点,与y 轴交于点C,且A(2,0),C(0,-4),直线l : y = -1/2 x - 4 与x 轴交于点D,点P 是抛物线y = ax^2 + 8/5 x + c 上的一动点,过点P 作PE⊥x 轴,垂足为E , 交直线l 于点F .(1)试求该抛物线表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图(2),过点P 作PH⊥y 轴, 垂足为H,连接AC .①求证:△ACD 是直角三角形;②试问当P 点横坐标为何值时,使得以点P , C , H 为顶点的三角形与△ACD 相似?【解题策略】解析本题主要应用了待定系数法求二次函数的解析式、平行四边形的性质、勾股定理的逆定理、相似三角形的性质 .依据平行四边形的对边相等列出关于m 的方程是解析问题(2)的关键;利用相似三角形的性质列出关于n 的方程是解析问题(3)的关键 .。

中考数学复习必考题型全等三角形经模型突破与提升策略

中考数学复习必考题型全等三角形经模型突破与提升策略

中考数学复习必考题型《全等三角形》经典模型突破与提升策略一.手拉手模型FGHDECBA例1. 如图,直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE、CD,二者交点为H。

求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB;(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC。

二.一线三等角模型例2. 将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为()A.3,1)B.(﹣13)C.31)D.3,﹣1)解析:①若题目中有一线三等角,可以直接证明相似或全等实现边与角的转化;②若题目中没有给出一线三等角,可以根据需要来构造。

练习反馈:1.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3 B.4 C.5 D.72.已知:如图,△ABC是以AB为斜边的等腰直角三角形,∠C=90°,若A点坐标为(0,6),点B坐标为(2,0),则点C的坐标为______.3. 已知点P的坐标为(3,4),O为原点,连结OP,将线段OP绕点P按顺时针方向旋转90°得线段PQ,则点Q的坐标为________4. 如图,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数是_________5. AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=________.6. 如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE' 的位置,若AE=1,BE=2,CE=3,则∠AEB=_______度.7. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为.OH GABCDFE CB A8.如图,△ADC 与△EDC 都为等腰直角三角形,连接AG 、CE ,相交于点H , 问:(1)AG 与CE 是否相等?(2)AG 与CE 之间的夹角为多少度?9.如图,在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在 BC 上,且AE=CF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题25《全等三角形的存在性》
破解策略
全等三角形的存在性问题的解题策略有:
(1)当有一个三角形固定时(三角形中所有边角为定值),另一个三角形会与这个固定的三角形有一个元素相等;再根据全等三角形的判定,利用三角函数的知识(画图)或列方程来求解.
(2)当两个三角形都不固定时(三角形中有角或边为变量),若条件中有一条边对应相等时,就要使夹这条边的两个角对应相等,或其余两条边对应相等;若条件中有一个角对应相等时,就要使夹这个角的两边对应相等,或再找一个角和一条边对应相等.
例题讲解
例1 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的表达式;
(2)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,求点P 的坐标;若不存在,请说明理由.
(3)若点M在y轴的正半轴上,连结MA,过点M作MA的垂线,交抛物线的对称轴于点N.问:是否存在点M,使以点M、A、N为顶点的三角形与△BAN全等?若存在,求出点M 的坐标;若不存在,请说明理由.
解:(1)由题意可列方程组
4240
3
2
a b
b
a
-+=



-=
⎪⎩
,解得
1
4
3
2
a
b

=-
⎪⎪

⎪=
⎪⎩

所以抛物线的表达式为213
442
y x x =-++.
(2)显然OA =2, OB =3, OC =4.
所以5BC BA =. 若△P BD ≌△PBC ,则BD = BC =5,PD =PC
所以D 为抛物线与x 轴的左交点或右交点,点B ,P 在CD 的垂直平分线上, ①若点D 为抛物线与 x 轴的左交点,即与点A 重合.
如图1,取AC 的中点E ,作直线BE 交抛物线于P 1(x 1,y 1),P 2(x 2.y 2)两点. 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2 B D .
由A 、C 两点的坐标可得点E 的坐标为(-1,2).
所以直线BE 的表达式为13
22y x =-+.
联立方程组2132213442y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩
,解得114x y ⎧=⎪⎨=⎪⎩
224x y ⎧=+⎪⎨=
⎪⎩ . 所以点P 1,P 2的坐标分别为(4
).(4
②若D 为抛物线与x 轴的右交点,则点D 的坐标为(8,0).
如图2,取CD 的中点F .作直线BF 交抛物线于P 3(x 3,y 3),P 4(x 4,,y 4)两点. 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4 B D .
由C 、D 两点的坐标可得点F 的坐标为(4,2), 所以直线BF 的表达式为y =2x -6.
联立方程组22613
442y x y x x =-⎧⎪
⎨=-++⎪⎩
,解得3318x y ⎧=-+⎪⎨=-+⎪⎩
4418x y ⎧=--⎪⎨=--⎪⎩所以点P 3,P 4的坐标分别为(-1
,-8+
),( -1
,-8-
), 综上可得,满足题意的点P 的坐标为(4
),(4
(-1
,-8+
)或(-1
,-8-
).
(3)由题意可设点M (0,m ),N (3,n ),且m >0,
则AM 2=4+m 2,MN 2=9+(m -n )2,BN 2=n 2. 而∠AMN =∠ABN =900
, 所以△AMN 与△ABN 全等有两种可能: ①当AM =AB ,MN =BN 时,
可列方程组222
4259()m m n n
⎧+=⎪
⎨+-=⎪⎩
,解得11m n ⎧=⎪⎨=⎪⎩
22m n ⎧=⎪⎨=⎪⎩
(舍), 所以此时点M 的坐标为(0
).
②当AM =NB ,MN =BA 时,可列方程组:222
49()25
m n
m n ⎧+=⎪⎨+-=⎪⎩·
解得11
325
2m n ⎧=⎪⎪⎨⎪=-⎪⎩
,223252m n ⎧=-⎪⎪⎨
⎪=⎪⎩(舍) 所以此时点M 的坐标为(0,
3
2
). 综上可得,满足题意的点M 的坐标为(0
)或(0,
3
2
). 例2 如图,在平面直角坐标系xoy 中,△ABO 为等腰直角三角形,∠ABO = 900
,点A 的坐标为(4.0),点B 在第一象限.若点D 在线段BO 上,OD = 2DB ,点E ,F 在△OAB 的边上,且满足△DOF 与△DEF 全等,求点E 的坐标.
图1 图2
解: 由题意可得OA =4,从而OB =AB
=.所以OD =23OB
,BD =1
3OB

①当点F 在OA 上时,
(ⅰ)若△DFO ≌△DFE ,点E 在OA 上.如图1.
此时DF ⊥OA ,所以OF
=43,所以OE =2OF =83,即点E 的坐标为(8
3
,0).
(ⅱ)若△DFO ≌△DFE ,点F 在AB 上,如图2.
此时ED =OD =2BD ,所以sin ∠BED =BD ED =12;所以∠BED =300

从而BE
AE
过点E 作EG ⊥OA 于点G .则EG =AG
=2, 所以OG
=2,即点E
的坐标为(2
,2).
图3 图4
(ⅲ)若△DFO ≌△FDE ,点E 在AB 上,如图3.
此时DE ∥OA ,所以BD =BE . 从而AE =OD
, 过点E 作EG ⊥OA 于点G , 则EG =AG
=43
, 所以OG =83,即点E 的坐标为(83
,4
3).
②当点F 在AB 上时,只能有△ODF ≌△AFD ,如图4.
此时DF ∥0A .且点E 与点A 重合, 即点E 的坐标为(4,0).
综上可得,端足条件的点E 的坐标为(8
3,0),
(2+
,2),(83
,4
3)或(4,0).
进阶训练
1.如图,在平面直角坐标系xOy 中,已知抛物线2
1382
y x x =--与y 轴变于点C . 直线l ;4
3
y x =-
与抛物线的对称轴交于点E .连结CE ,探究;抛物线上是否存在一点F , 使得△FOE ≌△FCE ..若存在,请写出点F 坐标;若不存在,请说明理由.
答案:
存在.点F
的坐标为(3-
,-4
)或(34)
2. 如图,在平面直角坐标系xOy 中,直线l 1过点A (1,0)且与y 轴平行.直线l 2
过点B (0,2)且与x 轴平行,直线l 1与l 2相交于点P .E 为直线l 2上一点,反比例函数k y x
=
(k >0)的图象过点E 且与直线l 1相交干点F . (1)若点E 与点P 重合,求k 的值;
(2)是否存在点E 及y 轴上的点M ,使得以点M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求点E 的坐标:若不存在,请说明理由.
备用图
答案:
(1)k=2
(2)存在.点E的坐标为(
3
8
,2)或(
8
3
,2)
【提示】(2)易得点E(
3
k
,2),F(1,k).①如图1,当k<2时,只能有△MEF≌△PEF.过点F作FH⊥y轴于点H,易证△BME∽△HFM,用k表示相关线段的长度,从而得到BM=
1
2
,再解Rt△BME,得k=
3
4
,所以点E的坐标为(
3
8
,2);②如图2,当k>2时,只能有△MEF≌△PFE.过点F作FQ⊥y轴于点Q,同①可得点E的坐标为(
8
3
,2)
图1
图2
3.如图,抛物线2
y ax bx c
=++经过A
(-,0),B
(0),C(0,3)三点,线段BC与抛物线的对称轴交干D,该抛物线的顶点为P,连结PA,A D.线段AD与y轴相交于点E.
(1)求该抛物线的表达式;
(2)在平面直角坐标系中是否存在一点Q.使以Q,C,D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,请说明理由.
答案:
(1
)抛物线的表达式为2
1
3
33
y x x
=-++
(2)存在.点Q
的坐标为(4
2
),(-1)或(0,7).
【提示】(2)方法一:易求直线BC
:3
3
y x
=-+,从而点D
2),可
得CD=PD,所以△QCD与△ADP全等有两种情况.设点Q坐标,通过两点间距离公式列出QC,QD,AP,AD的长.再分类讨论列方程组,从而求得点Q点坐标.
方法二:连接CP,易证△CDP为等边三角形,∠ADC=60°,所以∠PDA=120°.
△QCD与△ADP全等有两种情况,①如图1,∠DCQ=120°,CQ=DA=4,此时点Q1的坐标为
(0,7),点Q2
的坐标为(-1);
②如图2,∠CDQ=120°,DQ=DA=4,此时点Q3的坐标为
-2),点Q4的坐标为

4)。

相关文档
最新文档