蛋白激酶和蛋白磷酸酶蛋白激酶

合集下载

蛋白磷酸化的名词解释

蛋白磷酸化的名词解释

蛋白磷酸化的名词解释蛋白磷酸化是一种重要的细胞信号传导过程,它在调控蛋白功能、细胞生理和病理过程中起着关键作用。

磷酸化是一种化学修饰,通过在蛋白质分子上加上磷酸基团改变其结构和功能。

一、蛋白磷酸化的基本概念蛋白磷酸化是指将磷酸基团(PO4)连接到蛋白质的氨基酸残基上。

磷酸化可以发生在多种氨基酸残基上,包括丝氨酸(Ser)、苏氨酸(Thr)和酪氨酸(Tyr)。

这个化学修饰过程由蛋白激酶(protein kinase)和蛋白磷酸酶(protein phosphatase)这两类酶催化进行。

二、蛋白磷酸化的功能蛋白磷酸化在调控细胞的多种生理过程中起着重要作用。

它可以调节蛋白质的酶活性、亚细胞定位、特异性结合以及稳定性。

这种化学修饰可以改变蛋白质的电荷分布和构象,从而调控它们与其他蛋白质、DNA或小分子的相互作用。

1. 调节酶活性:许多蛋白激酶通过磷酸化来激活或抑制底物的酶活性。

例如,丝氨酸/苏氨酸激酶(serine/threonine kinase)可以磷酸化肌球蛋白,进而改变细胞骨架的结构和细胞形态。

另外,酪氨酸激酶可以磷酸化细胞表面受体,从而触发细胞信号通路。

2. 调节亚细胞定位:磷酸化可以改变蛋白质的亚细胞定位,影响它们在细胞内的分布。

例如,磷酸化可以使特定的核转录因子转入或转出细胞核,从而影响基因的转录。

此外,它还可以调节细胞骨架的动态重组,参与细胞的形态变化和迁移。

3. 调节特异性结合:蛋白磷酸化可以改变蛋白质与其他分子的结合能力。

例如,磷酸化可以促使某些蛋白质与DNA结合或解离,从而影响基因的表达。

此外,它还可以调节蛋白质与其他蛋白质之间的相互作用,介导细胞信号转导。

4. 调节蛋白稳定性:磷酸化可以影响蛋白质的降解速率。

一些磷酸化位点的出现或消失可以增加或降低蛋白质的稳定性。

这种调控方式在一些疾病的发生中起着重要作用,如肿瘤的发生和进展。

三、蛋白磷酸化与人类疾病蛋白磷酸化异常与多种人类疾病的发生和进展相关。

蛋白质磷酸化调控细胞信号转导的分子机制

蛋白质磷酸化调控细胞信号转导的分子机制

蛋白质磷酸化调控细胞信号转导的分子机制蛋白质磷酸化是细胞内最重要的信号转导机制之一。

这种机制通过酶催化将蛋白质上的磷酸分子添加或去除,从而调节蛋白质的结构、功能和相互作用,以达到细胞内信号的传递和调控。

在细胞中,磷酸化是由多种酶催化完成的。

其中最重要的是蛋白激酶和蛋白磷酸酶。

蛋白激酶通过磷酸化将ATP转化为ADP,并将磷酸基团转移到蛋白质的氨基酸上,从而改变蛋白质的功能。

蛋白磷酸酶则将磷酸基团从蛋白质上移除,从而还原蛋白质的结构和功能。

细胞内的许多分子过程都依赖于磷酸化的调控。

例如,细胞增殖、细胞分化和凋亡等过程都需要磷酸化的调节。

磷酸化还可以调节细胞内的代谢过程、信号传递以及基因表达等多种生物学过程。

在细胞信号转导的过程中,磷酸化作为一个非常重要的机制,可以通过多个途径调节细胞内的信号转导过程。

一个例子是酪氨酸激酶的作用。

酪氨酸激酶在细胞内的作用是将磷酸基团转移至酪氨酸残基上,从而调节受体蛋白的活性和相互作用。

磷酸化还可以介导细胞内的逆境反应,例如细胞内感应器可以磷酸化IRF3(干扰素调节因子3),促进干扰素的合成和细胞内抵御病原体入侵。

目前,许多生物学家和化学家正在寻找新的方法,以研究蛋白质磷酸化的调节机制。

基于这种机制的研究,将有望为生物医学领域提供新的治疗手段。

总之,蛋白质磷酸化作为细胞内最重要的信号转导机制之一,有着十分重要的生物学意义。

近年来,随着科技的不断发展和研究的进一步深入,人们对蛋白质磷酸化的了解也不断提高。

相信在未来,我们将为研究人员提供更好的工具和方法,以深入研究蛋白质磷酸化的调控机制,为研发新的治疗手段做出更多的贡献。

第五章蛋白激酶

第五章蛋白激酶

PLC-1的PH domain与IP3结合
血影蛋白的PH domain与膜磷脂结合
e)PTB结构域
PTB结构也可识别一些含磷酸化酪氨 酸的模体。
Shc PTB Domain
非受体酪氨酸蛋白激酶重要结构域的特点:
• 一个信号分子可含有两种以上的结构域, 因此可同时与两种以上的其他信号分子结 合。
(一)蛋白激酶的结构
共同的结构特征:
• 保守的催化结构域/亚基
• 调节结构域/亚基
• 其他功能结构域
PKC
1. 催化结构域/亚基
催化核心含有12个高度保守的亚区。
功能: • 与蛋白质或多肽底物结合; • 与磷酸供体ATP/GTP结合; • 转移磷酸基到底物相应的氨基酸残基上。
2. 调节结构域/亚基
p p
ANK ANK ANK ANK
Kinase domain
Mig-2
RTK
paxillin

Integrins
ECM
Generously provided to the CMC by Cary Wu (Apr-03
(9)DNA依赖性蛋白激酶 DNA依赖性蛋白激酶(DNA-dependent protein kinaes,DNA-PK)可磷酸 化许多核蛋白,包括核受体、转录因子、 DNA拓扑异构酶和RNA聚合酶Ⅱ等。 DNA-PK可发生自主磷酸化,其催化 亚基和Ku蛋白都依赖于DNA和ATP而磷酸 化。
(2)受体酪氨酸蛋白激酶
PDGF一类的跨膜受体,可磷酸化靶蛋 白的酪氨酸,因此称为受体酪氨酸蛋白激 酶(receptor tyrosine kinase,RTK)。
1)受体酪氨酸激酶的自主磷酸化位点
常位于受体的羧基末端胞质域的非催 化区,或质膜与酪氨酸激酶结构域之间。 主要功能是与靶蛋白的SH2结构域结合, 激活靶蛋白。 靶蛋白与磷酸化位点的结合依赖于 pTyr附近的氨基酸组成及顺序。

蛋白激酶分类

蛋白激酶分类

蛋白激酶分类
蛋白激酶可以分类为以下几类:
1.酪氨酸激酶(TK):这种类型的蛋白激酶通过磷酸化酪氨酸残基来调节细胞活动。

一些细胞表面受体和高分子物质都可以作为酪氨酸激酶的底物。

2.丝氨酸/苏氨酸激酶(MAPK):这种类型的蛋白激酶将磷酸化丝氨酸和/或苏氨酸残基来调节生物过程,包括细胞增殖、凋亡、分化和细胞周期等。

3.蛋白激酶C(PKC):这种类型的蛋白激酶可以磷酸化多种底物,包括酶、蛋白质和细胞结构组件。

PKC被认为是重要的信号转导途径调节器。

4. 磷脂酰肌醇3激酶(PI3K):这种类型的蛋白激酶可以将磷酸添加到磷脂酰肌醇分子上,导致增强细胞内信号转导过程,如蛋白激酶
B/Akt途径。

5.丝氨酸/苏氨酸蛋白磷酸酶(PPP):这种类型的酶能够将蛋白质中的磷酸基团去除,反向调节细胞信号传递。

可能的应用领域包括糖尿病、心血管疾病和阿尔茨海默病等。

6.细胞外信号调节激酶(ERK):这种类型的蛋白激酶参与细胞内和细胞外信号转导过程,包括生长因子和激素的作用。

ERK调节细胞增殖、分化和凋亡等生物学过程。

总的来说,蛋白激酶在细胞信号转导和调节细胞活动中发挥着重要的作用。

不同类型的蛋白激酶对特定的细胞生物学过程具有不同的影响。

蛋白激酶

蛋白激酶
protein,GAP)以及crk、abl和vav原癌基
因产物等。
SH2能特异地识别磷酸化的酪氨酸残 基以及磷酸化残基的羧基端氨基酸序列并 与其相互结合。
SH2的主要功能是介导胞质内多种信 号蛋白的相互连接,形成蛋白异聚体复合 物,从而调节信号传递。
Cterminal PLC SH2 domain
c)SH3结构域
可见于多种胞质信号蛋白及肌动蛋白 结合蛋白中。
SH3识别的部位是一些富含脯氨酸的 区域PXXP。
功能:参与PTK介导的蛋白质间的相 互作用,可能在亚细胞定位和细胞骨架蛋 白相互作用中起作用。
SH3 Domain
d)PH结构域
最初于一种血小板内PKC底物 pleckstrin中发现的结构域,称为 pleckstrin 同源 (pleckstrin homology, PH) 结构域。
PINCH, ILK domain structures & interacting partners
Nck-2
SH3 SH3 SH3
SH2
PINCH
LIM5 LIM4 LIM3 LIM2
LIM1
ILK
pp
ANK ANK ANK ANK PH
RTK
CH-ILKBP/actopaxin parvins/affixin
黏附斑激酶(focal adhesion kinase, FAK)在黏附分子整合素介导的细胞与细 胞外基质的黏附和信号转导中具有起始作 用。
整 合 素 结 构 模 型
Linear structure of FAK
(2)受体酪氨酸蛋白激酶
PDGF一类的跨膜受体,可磷酸化靶蛋 白的酪氨酸,因此称为受体酪氨酸蛋白激 酶(receptor tyrosine kinase,RTK)。

蛋白磷酸化与蛋白激酶

蛋白磷酸化与蛋白激酶
第四章 蛋白质磷酸化
蛋白激酶、蛋白磷酸酶与信号转导
一、 蛋白激酶
蛋白磷酸化是多种信号转导途径中 的重要环节,细胞内大部分重要的生命过 程都涉及蛋白磷酸化。
可逆的蛋白质磷酸化:
ATP 蛋白激酶 蛋白质 蛋白磷酸酶 Pi H2O 蛋白质 P ADP
蛋白激酶(protein kinase,PK):
是一类磷酸转移酶,其作用是将 ATP 的 - 磷酸基转移到底物特定的氨基 酸残基上,使蛋白质磷酸化, 发挥其生理 生化功能。
SH2能特异地识别磷酸化的酪氨酸残 基以及磷酸化残基的羧基端氨基酸序列并 与其相互结合。 SH2的主要功能是介导胞质内多种信 号蛋白的相互连接,形成蛋白异聚体复合 物,从而调节信号传递。
Cterminal PLC SH2 domain
c)SH3结构域
可见于多种胞质信号蛋白及肌动蛋白 结合蛋白中。 SH3识别的部位是一些富含脯氨酸的 区域PXXP。 功能:参与PTK介导的蛋白质间的相 互作用,可能在亚细胞定位和细胞骨架蛋 白相互作用中起作用。
(一)蛋白激酶的结构
共同的结构特征:
• 保守的催化结构域/亚基
• 调节结构域/亚基
• 其他功能结构域
PKC
1. 催化结构域/亚基
催化核心含有12个高度保守的亚区。
功能: • 与蛋白质或多肽底物结合; • 与磷酸供体ATP/GTP结合; • 转移磷酸基到底物相应的氨基酸残基上。
2. 调节结构域/亚基
NH HC CH2 O C OH NH HC CH2 O C O O P O O
(1)蛋白激酶A(protein kinase A,PKA)
即cAMP依赖性蛋白激酶。
全酶存在胞浆,被cAMP激活后,催化亚 基可① 调节代谢;②调节离子通道;③调 节其他信号转导途径的蛋白;④ 进入细胞 核调节基因表达。

蛋白激酶的分类

蛋白激酶的分类

蛋白激酶的分类蛋白激酶可以根据其作用方式、结构特征以及底物的不同分为多个分类。

根据作用方式,蛋白激酶可以分为两类:1. 蛋白酪氨酸激酶(Protein Tyrosine Kinases,PTKs):这类蛋白激酶主要催化蛋白质上的酪氨酸残基的磷酸化修饰,从而参与调节细胞的生长、分化、凋亡等重要生物学过程。

PTKs可以进一步分为受体型酪氨酸激酶(Receptor Tyrosine Kinases,RTKs)和非受体型酪氨酸激酶(Non-receptor Tyrosine Kinases)。

RTKs主要存在于细胞膜表面,通过与配体结合激活,参与信号传导;而非受体型酪氨酸激酶一般位于细胞质内,参与调节多种信号通路。

2. 蛋白丝氨酸/苏氨酸激酶(Protein Serine/Threonine Kinases,STKs):这类蛋白激酶主要催化蛋白质上的丝氨酸和/或苏氨酸残基的磷酸化修饰。

STKs广泛参与细胞信号转导、细胞周期调控、细胞分化、细胞凋亡等重要生物学过程。

根据结构特征,蛋白激酶可以分为多个家族,包括但不限于:蛋白激酶A家族(PKA)、蛋白激酶G家族(PKG)、蛋白激酶C家族(PKC)、蛋白激酶D家族(PKD)等。

蛋白激酶的分类还可以根据其底物的不同进行划分,例如:MAPK(Mitogen-Activated Protein Kinase,丝裂原激活蛋白激酶)家族、JNK(c-Jun N-terminal Kinase,c-Jun氨基末端激酶)家族、CDK(Cyclin-Dependent Kinase,周期蛋白依赖性激酶)家族等。

以上仅是蛋白激酶分类的一些例子,实际上蛋白激酶家族种类众多,功能多样,不同分类方法可能存在交叉和重叠。

蛋白激酶和蛋白磷酸酶在信号转导中的作用

蛋白激酶和蛋白磷酸酶在信号转导中的作用

蛋白激酶:催化蛋白质磷酸化的酶类,反应中需有高能化合物(如ATP)参加。

将A TP的γ磷酸基转移到底物特定的氨基酸残基上,使蛋白质磷酸化的一类磷酸转移酶。

根据其底物蛋白被磷酸化的氨基酸残基种类,可将它们分为5类:蛋白丝氨酸/苏氨酸激酶、蛋白酪氨酸激酶、蛋白组氨酸激酶、蛋白色氨酸激酶和蛋白天冬氨酰基/谷氨酰基激酶。

蛋白磷酸酶:催化磷酸化氨基酸残基脱磷酸的酶。

与蛋白激酶一起配合调节底物蛋白质的磷酸化作用,调控多种细胞生物学过程。

根据底物蛋白质分子上磷酸化的氨基酸残基的种类主要分为蛋白质丝氨酸/苏氨酸磷酸酶、蛋白质酪氨酸磷酸酶和双特异性磷酸酶。

蛋白激酶可使蛋白质磷酸化,蛋白磷酸酶使蛋白去磷酸化。

蛋白磷酸化与去磷酸化是真核细胞信号转导的共同通路,其动态变化几乎涉及从胚胎发育到个体成熟的所有过程,包括细胞的癌变和凋亡。

磷酸化与去磷酸化的平衡主要由蛋白激酶(protein kinases,PK)和磷酸酶(protein phosphatases, PPs)调控。

磷酸化和去磷酸化作为分子开关,是信号转导中最简便而又十分快捷的反应方式,一般是通过磷酸化而激活,去磷酸化而失活。

大量研究结果表明蛋白质的磷酸化与去磷酸化过程在多种信号识别与转导中起重要作用,它是生物体中普遍存在的一种调节过程。

蛋白激酶是一类将ATP γ位的磷酸基团转移到底物的氨基酸残基上引起靶蛋白发生磷酸化的调节酶,它通过促进功能蛋白的磷酸化而使细胞对各种刺激做出相应的反应。

泛素化途径的功能:由于基因突变、自由基破坏、环境胁迫、疾病等导致反常蛋白的产生,需要被及时降解清除,以免干扰正常的生命活动;维持体内的氨基酸代谢库;防御机制的组成部分;蛋白质前体的裂解加工等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非受体型蛋白酪氨酸激酶:
SH1:催化活性结构域 SH2、SH3、PH:分子间相互作用
Src家族蛋白酪氨酸激酶
Lck(p56lck): 与CD4/CD8相关,受体交联后,Lck活
化并磷酸化CD3z链ITAM的酪氨酸,使ZAP-70能结合 该处,ZAP-70进一步传递信号。
Fyn(p59fyn): 与CD3z链相关,Fyn活化后,细胞内
锚定蛋白:
特殊的接头蛋白,通过分子的一段将某一 信号途径中密切相关的信号分子定位于近膜 区,也称支架蛋白(scaffold protein)。如 Shc、IRS-1等.
穿膜接头蛋白(含大量酪氨酸)
LAT(linker for activation of T cells)主要介 导TCR的信号。TCR交联后激活ZAP-70,后 者磷酸化LAT的酪氨酸残基,为Grb2、Grap 或PLCg提供停泊位点。
ITIM:某些免疫受体胞浆区具有单个排列的 YXXL序列,免疫受体活化后,其酪氨酸残基 可被细胞内的酪氨酸激酶磷酸化,结合抑制性 信号分子,是免疫受体酪氨酸抑制模块。
(四)胞浆信号分子的募集
酶、接头蛋白或锚定蛋白
二. 信号分子的特殊结构域
50-100aa组成、具有一定的空间结构的蛋白 结构域,或称蛋白模块(protein modular) 结合特定的基团或氨基酸序列
SH3结构域:PxxP,存在于NRTK、PSK、 磷脂代谢酶、小G蛋白、接头蛋白、转录 因子等
WW(色胺酸)结构域:PPxY或PPLP基 序
(三)其他结构域
PH结构域:血小板-白细胞C激酶底物同 源区,识别膜磷脂成分及其代谢产物如 PIP2、PIP3、IP3等
死亡结构域:涉及死亡结构域蛋白、TNF 受体相关蛋白及其它多种信号转导蛋白
(二)蛋白酪氨酸激酶的活化
催化多肽链中酪氨酸残基发生磷酸化的酶类
受体型蛋白酪氨酸激酶 可溶性蛋白酪氨酸激酶
(三)受体胞浆区的磷酸化
胞浆区具有蛋白酪氨酸激酶活性的受体发 生交叉磷酸化 胞浆区不具有蛋白酪氨酸激酶活性的受体 主要被Src家族激酶活化
改变酶活性、提供下游分子结合位点
ITAM:大多数免疫受体胞浆区具有YXXLX(6-8)-YXXL序列,免疫受体活化后,其酪氨 酸残基可被细胞内的酪氨酸激酶磷酸化,结合 活化性信号分子,是免疫受体酪氨酸活化模块。
非受体型蛋白酪氨酸磷酸酶: 含有SH2的非受体PTP
SHP-1:CD22、FcgammaIIB、ZAP70、 Fyn、Lyn、NK受体 SHP-2:表达广泛,正、负调控
蛋白丝/苏氨酸激酶
蛋白激酶C:Ca离子、磷脂依赖的蛋白丝/ 苏氨酸激酶
MAPK:ERK、p38MAPK、 JNK,作用于 胞浆信号传导通路的终末位置
TRIM(T-cell receptor-interacting molecule) 可被Src家族PTK激活,能结合Grb2、PI3-K 的p85亚基或p43和p95而传递信号。
SIT(SHP2-interacting
transmembrane
adaptor protein) 被Src家族激酶或Syk激酶酪
Ca2+增加。
Lyn(p53/56lyn): 与Igab和CD19等相关,活化后酪氨
酸磷酸化PI-PLCg2、PI-3K、HS-1、Vav等信号传递分 子。
Blk(p55blk): 与Igab相关,能传递细胞活化信号。
Fgr:不直接接触受体,活化较迟。
Syk/ZAP-70家族:
ZAP-70在T、NK细胞表达,可与CD3z链 ITAM的磷酸酪氨酸结合并活化,进而磷酸 化下游信号分子。
(三)磷脂酶C和磷酸肌醇3激酶
磷脂酶C(phospholipase C, PLC),包括PLCb和 PLCg。PLC以Ca2+依赖的方式水解膜磷脂中磷脂 酰肌醇-4,5二磷酸(PIP2),产生二酰甘油(DAG)和 三磷酸肌醇(IP3)。
PLCg 可被许多免疫受体和接头蛋白活化:
经SLP-76/ZAP70、LAT结合TCR
淋巴细胞活化的分子机制
一. 免疫受体信号转导的一般规律
配体的结合 受体交联、聚集、变构 蛋白酪氨酸激酶活化 受体胞浆区磷酸化 下游信号分子募集、活化
(一)配体激发的受体交联和聚集
受体启动信号传导过程的必要条件或充分条件
受体交联和聚集的机制:
重复抗原表位(细菌、病毒) 二聚体(PDGF)或三聚体(TNF) 二价分子(生长激素) 单价分子(大部分细胞因子)--变构
三. 信号分子的种类
(一)接头蛋白与锚定蛋白
特殊的信号分子,不具有酶活性
接头蛋白:具有多个结合其它分子的结构如 蛋白模块或结合蛋白模块的基团
Grb2:SH2、2xSH3
SLP-76(SH2-containing leukocyte protein of 76KDa):三个酪氨酸磷酸化位 点、富含脯胺酸序列、SH2
在不同信号分子间有高度同源性
常见的结构域:SH2、SH3、PH、PTB、 Death domain
(一)结合磷酸化酪氨酸的结构域
SH2结构域:识别Y-XX-Hy,存在于 NRTK、PSK、磷脂代谢酶、小G蛋白、 接头蛋白、转录因子等
PTB结构域:识别Hy-xNPxY,存在于Shc、 IRS-1等
(二)结合富含脯胺酸序列的结构域
氨酸磷酸化后可结合SHP2,进而抑制TCR相
关的NFAT活化。
(二) 蛋白激酶和 团转移到底物蛋白氨基酸受体的酶类。
蛋白磷酸酶:催化磷酸化蛋白分子的磷酸 酯键发生去磷酸化反应的酶类。
蛋白酪氨酸激酶
受体型蛋白酪氨酸激酶:PLC、
abcddd PI3K、GAP、STAT等
Syk表达于T、B细胞,功能同ZAP-70。
Btk家族
Btk家族包括Btk、Itk、Tec、Txk、Bmx 等,它们表达于不同的细胞,为胞浆内 PTK,被Src家族成员酪氨酸磷酸化后活化。 Btk与B细胞的发育、分化密切相关。
受体型蛋白酪氨酸磷酸酶:
CD45:I型跨膜蛋白,胞浆区230aa酯 酶活性结构域,保守的 (I/V)HCxAGxxR(S/T)G基序,催化Src 成员C端调节性Y残基、CD3zeta链去 磷酸化
相关文档
最新文档