摸到红球的概率

合集下载

《摸到红球的概率》教学设计

《摸到红球的概率》教学设计

案例一《一定能摸到红球吗》教学设计教学目标:一、知识与技能1、通过丰富的实例认识生活中的必然事件,不可能事件,不确定事件。

2、知道事件发生的可能性是有大小的。

二、过程与方法1、经历猜测、实验、收集和分析实验结果等过程。

2、初步体验有些事情的发生是不确事定的。

三、情感、态度与价值观在有趣的问题中体会确定事件和不确定事件,提高学生学习数学的兴趣,积累丰富听数学活动经验。

教学重点:正确区分确定事件和不确定事件。

教学难点:正确区分确定事件和不确定事件。

教学方法:实验法教学用具:若干个除颜色不同外的乒乓球、三个盒子、一枚硬币、一枚骰子、自由转盘(模型)教学过程:一、创设情境,引入课题1、生活中有哪些事情一定会发生,哪些事情不定不会发生,哪些事情可能会发生?2、自由转动转盘,转盘停止后,指针不定落在红色区域吗?(演示)3、随意扔出一枚硬币,硬币落地后朝上的面会是什么?一定是“国徽”吗?(演示)4、随意抛掷一枚“骰子”,当它停止旋转时,“1点”“2点”“3点”“4点”“5点”“6点”的面,哪一个面朝上呢?二、猜测验证,探索新知活动1:一定能摸到红球吗教师取三个盒子,正面(即冲着学生的面)有透明的材料做成,然后将盒子编号:1号、2号、3号,将5 个红球和5个白球放入1号盒子中;将10个白球放入2号盒子,再将10个白球放入2号盒子,再将10个红球放入3号盒子,注意这些球除颜色以外完全相同,放球的过程要完整地展示给出学生。

球放完以后,将盒子的背面(除正面外其余的面都是不透明的)冲着学生,将盒子中的球摇匀,从三个盒子中一定能摸到红球吗?(1)学生猜想(2)实验验证(3)教师归纳生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件;有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。

必然事件和不可能事件都是确定的,我们称它们是确定事件。

但是,也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件。

[精品教案]摸到红球的概率教案

[精品教案]摸到红球的概率教案

摸到红球的概率教案以下是为您推荐的摸到红球的概率教案,希望本篇文章对您学习有所帮助。

摸到红球的概率教学目标:1、通过摸球游戏,理解计算一类事件发生可能性的方法,体会概率的意义。

教学重点:1、求事件发生的概率2、理解概率的意义教学难点:求时间发生的概率教学方法:活动、讨论、归纳总结教学工具:课件准备活动:不透明盒子、红球若干、白球若干教学过程:先复习基本事件发生的概率:(1)掷一枚均匀的骰子,骰子停止转动后6点朝上。

(2)任意选择电视的某一频道,它正在播动画片(3)广州每年都会下雨。

(4)任意买一张电影票,座位号是偶数。

(5)当室外温度低于-10℃时,将一碗水放在室外水会结冰。

一、探索活动:盒子里装有三个白球和一个红球,他们除颜色外完全相同。

(1) 学生上讲台摸球。

问题:他最可能摸到什么颜色的球?一定回摸到红球吗?(2) 如果将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(白)、那么摸到每个球的可能性一样吗?让学生摸球,亲身体会事件发生的概率。

(3) 任意摸一个球,说出所有的可能的结果。

通过该活动让学生掌握下面的这个简单的计算概率的公式:P(摸到红球)= =活动2:盒子里装有三个白球,他们除颜色外完全相同。

让学生摸球。

问题:他会摸到什么颜色的球?一定会摸到白球吗?红球呢? 结论:必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0例1:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6), 6朝上的概率是多少?分析:任意掷一枚均匀的小立方体,所有可能出现的结果有6种: 1朝上,2朝上,3朝上,4朝上,5朝上,6朝上,每种结果出现的概率艘相等。

其中, 6朝上的结果只有1种,因此P(6朝上)=巩固练习:(1)在乒乓球猜测中,猜在左手的概率为?(2)从一副牌中任意抽出一张,p(抽到王)=p(抽到红桃)=P(抽到3的)=(4) 掷一枚均匀的骰子,(1)P(掷出2朝上)=__________(2)P(掷出奇数朝上)=__________(3)P(掷出不大于2的朝上)=_________(5) 任意翻一下日历,翻出1月6日的概率是_________翻出4月31日的概率是_____________内容二:做一做:用4个出了颜色外完全相同的球设计一个摸球游戏.(1) 使得摸到白球的概率是 ,摸到红球的概率也是 .(2) 摸到白球的概率为 ,摸到红球和黄球的概率都是 .让学生先独立思考.再通过小组活动的讨论后,个人自由发挥.你能有8个出颜色外完全相同的球分别设计满足如上条件的饿游戏吗?小结:掌握求简单事件发生的概率公式;理解事件发生的概率的意义,明白不是事件的概率大,就是一定会发生该事件的实况.作业:课本P108习题4.3 1、2。

《摸到红球的概率》教学设计

《摸到红球的概率》教学设计

北师大版七年级数学下册《摸到红球的概率》的教学设计宁夏回族自治区贺兰县如意湖中学陈国林(750200)一、教材分析1、学情分析:学生随机观念的形成和发展一个较为漫长的过程,教科书中对本章知识的定位是通过摸球游戏,了解计算一类事件发生可能性的方法,体会概率的意义.在以前的学习中学生虽然没有研究过有关随机事件,但学生这样的生活感受还是比较多的,具有了学习该部分内容的生活经验基础和相应的知识基础.这些既是学生学习的认知基础,也应是教学中力图加以挖掘之处.2、教学目标(1)、知识与技能:知道确定事件与不确定事件发生的可能性的大小可以用概率来表示;了解计算一类事件发生可能性的方法;(2)、过程与方法:感受和寻找生活中的随机现象,并经历猜测、试验、收集与分析试验结果等过程,初步体验客观世界随机现象的普遍性以及概率意义;(3)、情感态度与价值观:通过学习让学生感受到数学与现实世界的紧密联系,感受到数学的价值和数学学习的快乐,从而形成较好的数学观和良好的情感态度.3、重点、难点重点是了解计算一类事件发生可能性的方法,体验确定事件与不确定事件发生的可能性的大小以及概率意义;难点是计算一类事件发生可能性的方法.4、教学准备:课件、不透明盒子、红球若干、白球若干、小立方体等.二、教学过程设计(一)创设情境、引入问题1、问题情境:首先呈现一张近期的中国足球彩票兑奖公告(如图): 中国足球彩票“胜负玩法”第02042期于昨日开奖,本期投注总额200124676元.本期开奖结果:正确投注为234003030182.本期兑奖截止日为2010年6月30日,逾期作弃奖处理.你家里曾经买过彩票吗?中奖情况怎样?你想知道买彩票中每一种奖的可能性相同吗?在学生相应反应的基础上,教师提出彩票问题中实际上蕴涵着大量的数学问题,它跟今天所学的内容有关,“下面就请同学们跟我一起进入今天的数学世界吧”.2、简要介绍概率论产生的过程:(PowerPoint)概率论作为一门学科,据说是源于赌博游戏.相传1 7世纪中叶,法国贵族德梅尔在赌博中由于有急事必须中途停止赌博,但不知用什么样的比例才能合理分配赌资,于是写信请教法国当时最负盛名的数学家帕斯卡,帕斯卡和当时的第一流的数学家费马一起研究了这个问题,于是,一个新的数学分支——概率论登上了历史舞台.尽管它是从赌博开始,但它已成为人类知识中最重要的领域,其实用价值不可估量.本章我们只介绍概率论的基本概念,为以后的深入学习打下基础.(二)感受随机现象、提出问题1、通过生活实例,引起学生对于必然事件的思考.让我们回到现实生活中来,黄山是我国著名的风景名胜区,明代大旅行家徐霞客就曾发出赞叹:“五岳归来不看山,黄山归来不看岳.(呈现一幅精美的日出图片),并依次提出问题:(1)“请问看日出时,应面向何方?(2)“太阳从东方升起的可能性有多大?2、通过生活实例,引起学生对于不可能事件的思考.提出问题:在适当的温度湿度下经一定时间孵化,正常受精鸡蛋必然会孵出小鸡来,而石头可能孵出小鸡来吗? 石头孵出小鸡来的可能性有多大?3、通过生活实例,引起学生对于不确定事件以及随机事件的思考“生活中的事件除了一定会发生的和不可能发生的以外,有没有其他情况呢?”下面先请大家看两个很悲壮的事例(出现有关文字和图片).事例1:计划1986年首漂长江的四川青年尧茂书,提前于1985年6月20日北上长江源头姜古迪如冰川开漂,由于孤身行舟没有后勤救援,当他漂到金沙江通伽峡段时不幸遇难.问题:请问他在漂流之前,能预测成功或失败的可能性有多大吗?事例2:沙漠探险也极具危险性.地处罗布泊的楼兰古国早已被风沙吞没,而有关它的神秘传说越来越神奇.罗布泊到底是什么样子的呢?人们没有停止过对罗布泊的探索.在这艰辛的探索中有无数人洒下了血和泪,更有人付出了生命.然后介绍三个进行罗布泊探险的人物:彭加木、余纯顺、李东,其中彭加木和余纯顺不幸遇难,而李东成为徒步穿越罗布泊的第一人而成功申报了吉尼斯世界纪录.(附上进入罗布泊之前、罗布泊内部、走出罗布泊的三张照片)问题:请问他们在探险之前,能预测成功或失败的可能性有多大吗?从上面的例子中可以看出有些事情是不一定会发生的,下面请再看一个与我们相关的事例,你们的父母是最疼爱你们的人,你们上学离家时,他们也许会说:“路上当心点”.你们知道这是为什么吗?在学生畅所欲言的基础上,教师呈现公安部交通管理局公布的2003年全国道路交通事故统计数据(道路交通事故6 1.8万起,造成10万人死亡、48.9万人受伤:直接经济损失35.7亿元.在这一年里,平均每天有286人死于道路交通事故).作为佐证,进而引出——我们每个人都一定要遵守交通规则.(三)解决问题、建立模型活动1:取出除颜色外完全相同的一个白球和三个红球及一个足够大的鞋盒,4人组成合作小组,进行摸球游戏,任意摸出一球.探究:(1)你认为摸出的球可能是什么颜色?与同伴交流;(2)如果将每个球都编上号码,分别记为1号球(红球)、2号球(红球)、3号球(红球)、4号球(白球)、那么摸到每个球的可能性一样吗?(3)从盒中任意摸出一球,说出所有可能出现的结果.(4)摸到红球的可能性多大?明晰:通过讨论交流呈现概率的有关概念及初步的计算方法:通常用来表示摸到红球的可能性,也称为摸到红球的概率.活动2:猜球游戏——教师预先准备了一个小长方体盒子,仅能放下刚才的6个球,将3个红球放下面,3个白球放上面,放球的过程不让学生看见.请甲、乙两个学生蒙上眼睛来做摸球游戏,摸到红球甲胜,摸到白球则乙胜.在学生产生疑问的基础上,多请几对学生进行试验,然后让学生对实验结果产生的原因进行分析.探究:通过我们所举的事例以及动手做的实验得到的结果,请同学们总结一下生活中几种类型的事件发生的概率.结论:必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0﹤P(A)﹤1.(四)联系实际,应用结论1、说一说:举出生活中概率为1、0的事件;2、想一想:用同样的方式,你能表示活动1中摸到白球的概率吗?3、议一议:掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),每个数字朝上的概率各是多少?观察这些概率,你发现了什么?4、练一练:一副扑克牌(去掉大、小王),任意抽取其中一张,抽到方块的概率是多少?抽到黑桃的概率呢?(五)自主设计,拓展思维做一做:1、用4个除颜色外完全相同的球球设计一个摸球游戏,使得:(1)摸到白球的概率为,摸到红球的概率也是;(2)摸到白球的概率为,摸到红球和黄球的概率都是;.2、你能用8个除颜色外完全相同球分别设计满足以上条件的游戏吗?以上几个问题在学生分小组讨论以后,再请学生回答,全班交流.(六)反思问题、发展元认知1、在学习过程中哪些是你自己的独到见解?你在学习中最大的思维障碍是什么?你是借助什么方法解决的?新知识本身的知识结构是什么?今天这节课你学到了什么?谈谈你的体会.2、你能将必然事件、不可能事件和不确定事件发生的可能性用数轴的数来对应表示吗?(在教师引导下完成)(七)课后作业:1、课本后第1、2题.2、试一试:用10个球设计一个摸球游戏,使得摸到红球的概率是.三、板书设计课题摸到红球的概率1、2、(1)必然事件发生的概率为1,记作P(必然事件)=1;(2)不可能事件发生的概率为0,记作P(不可能事件)=0;(3)如果A为不确定事件,那么0﹤P(A)﹤1.3、反思、总结4、作业四、课后反思:。

条件概率例题

条件概率例题

20 道条件概率例题例题1袋中有 5 个红球和 3 个白球,从中不放回地依次摸出两个球。

已知第一次摸出红球,求第二次摸出红球的概率。

解:第一次摸出红球后,袋中还有 4 个红球和 3 个白球,所以第二次摸出红球的概率为4/7。

例题2一个盒子里有 6 个黑球和 4 个白球,从中随机取出两个球。

若已知第一个球是黑球,求第二个球也是黑球的概率。

解:第一个球是黑球后,盒子里还有 5 个黑球和 4 个白球,所以第二个球是黑球的概率为5/9。

例题3有三张卡片,分别写着数字1、2、3。

从中随机抽取一张,放回后再抽取一张。

已知第一次抽到数字2,求第二次抽到数字 3 的概率。

解:因为是有放回抽取,所以第一次抽到数字 2 后,第二次抽取时每张卡片被抽到的概率仍为1/3,所以第二次抽到数字 3 的概率为1/3。

例题4一批产品中有合格品和次品,合格品率为80%。

从中随机抽取一件产品,已知是合格品,求该产品是一等品的概率(设合格品中一等品率为60%)。

解:由条件概率公式,所求概率为合格品中的一等品率,即60%。

例题5箱子里有红色球和蓝色球,红色球占总数的40%。

从箱子里随机取出一个球,已知是红色球,求这个球上标有数字 5 的概率(设红色球中有30%标有数字5)。

解:根据条件概率公式,所求概率为红色球中标有数字 5 的比例,即30%。

例题6某班级男生占总人数的60%。

在男生中,喜欢数学的占70%。

从班级中随机抽取一名学生,已知是男生,求该学生喜欢数学的概率。

解:所求概率为男生中喜欢数学的比例,即70%。

例题7有两个盒子,盒子 A 中有 3 个红球和 2 个白球,盒子 B 中有 4 个红球和3 个白球。

从盒子 A 中随机取出一个球放入盒子B,然后从盒子 B 中随机取出一个球。

已知从盒子 B 中取出的是红球,求从盒子 A 中取出的也是红球的概率。

解:设从盒子 A 中取出红球为事件A,从盒子 B 中取出红球为事件B。

先求P(A) = 3/5,P(B|A) = (4 + 1)/(7 + 1) = 5/8。

九年级上册数学概率题

九年级上册数学概率题

九年级上册数学概率题题目一:一个袋子里装有 3 个红球和 2 个白球,从袋子中随机摸出一个球,求摸到红球的概率。

解析:袋子里一共有 3 个红球和2 个白球,总球数为 3 + 2 = 5 个。

摸到红球的概率= 红球的个数÷总球数= 3÷5 = 3/5。

题目二:同时掷两个质地均匀的骰子,求两个骰子点数之和为7 的概率。

解析:同时掷两个骰子,所有可能的结果有6×6 = 36 种。

点数之和为7 的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。

所以概率为6÷36 = 1/6。

题目三:在一个不透明的盒子里有 4 个黑球和若干个白球,它们除颜色外完全相同。

摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40 次,其中10 次摸到黑球,求盒子里白球的个数。

解析:设盒子里白球有x 个,则总球数为 4 + x 个。

因为共摸球40 次,10 次摸到黑球,所以摸到黑球的概率为10÷40 = 1/4。

而摸到黑球的概率又等于黑球个数÷总球数,即4÷(4 + x) = 1/4,解得x = 12。

题目四:从1、2、3 这三个数字中随机抽取两个数字,求这两个数字都是奇数的概率。

解析:从三个数字中随机抽取两个数字,所有可能的情况有(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2),共 6 种。

其中两个数字都是奇数的情况有(1,3)、(3,1),共 2 种。

所以概率为2÷6 = 1/3。

题目五:有五张卡片,上面分别写着数字1、2、3、4、5,将它们背面朝上放在桌上,随机抽取一张,求抽到的数字是质数的概率。

解析:1、2、3、4、5 中质数有2、3、5 三个。

所以抽到质数的概率为3÷5 = 3/5。

题目六:在一个口袋中有 4 个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求两次摸出的小球标号之和为5 的概率。

摸球问题题型及解法

摸球问题题型及解法

摸球问题题型及解法一、摸球问题的基本题型及解法1. 简单的概率计算题型- 题目:一个不透明的袋子里有3个红球和2个白球,从袋子中随机摸出一个球,求摸到红球的概率。

- 解析:- 首先明确概率的计算公式P(A)=(m)/(n),其中P(A)是事件A发生的概率,m是事件A发生的结果数,n是所有可能的结果数。

- 在这个问题中,所有可能的结果数n = 3+2 = 5(即袋子里球的总数),摸到红球这个事件发生的结果数m = 3(红球的个数)。

- 所以摸到红球的概率P=(3)/(5)=0.6。

2. 有放回摸球题型- 题目:一个盒子里有4个黑球和6个白球,每次摸出一个球后放回,连续摸3次,求摸到至少2个白球的概率。

- 解析:- 有放回摸球每次摸球的概率不变。

- 先计算摸到2个白球的概率:从3次摸球中选2次摸到白球的组合数C_3^2=(3!)/(2!(3 - 2)!)=3。

每次摸到白球的概率p_1=(6)/(4 + 6)=(6)/(10)=0.6,摸到黑球的概率p_2 = 1 - 0.6=0.4。

所以摸到2个白球的概率P_1 = C_3^2×0.6^2×0.4^3 -2=3×0.36×0.4 = 0.432。

- 再计算摸到3个白球的概率:P_2=0.6^3=0.216。

- 摸到至少2个白球的概率P = P_1+P_2=0.432 + 0.216 = 0.648。

3. 无放回摸球题型- 题目:口袋里有5个红球和3个蓝球,无放回地连续摸2个球,求摸到一红一蓝的概率。

- 解析:- 无放回摸球时,第一次摸球有8种可能,第二次摸球有7种可能。

- 分两种情况:先红后蓝和先蓝后红。

- 先红后蓝的概率:第一次摸到红球的概率p_1=(5)/(8),此时剩下7个球,其中蓝球有3个,第二次摸到蓝球的概率p_2=(3)/(7),这种情况的概率P_1=(5)/(8)×(3)/(7)=(15)/(56)。

摸球问题10个例题解析

摸球问题10个例题解析

摸球问题10个例题解析一、简单古典概型摸球问题。

例1:题目:一个盒子里装有3个红球和2个白球,从盒子中随机摸出一个球,求摸到红球的概率。

(人教版)解析:首先确定基本事件总数,盒子里一共有球3 + 2=5个。

然后确定事件“摸到红球”包含的基本事件数为3个。

根据古典概型概率公式P(A)=(m)/(n),其中n是基本事件总数,m是事件A 包含的基本事件数。

所以摸到红球的概率P = (3)/(5)。

例2:题目:在一个不透明的袋子里有4个黄球和6个蓝球,从中任意摸出一个球,求摸到蓝球的概率。

(人教版)解析:基本事件总数为球的总数4+6 = 10个。

事件“摸到蓝球”包含的基本事件数是6个。

由古典概型概率公式可得,摸到蓝球的概率P=(6)/(10)=(3)/(5)。

二、有放回摸球问题。

例3:题目:一个盒子中有2个黑球和3个白球,每次摸出一个球后放回,连续摸两次,求两次都摸到白球的概率。

(人教版)解析:每次摸球时,基本事件总数都是2 + 3=5个。

第一次摸到白球的概率为(3)/(5),因为是有放回摸球,第二次摸球时情况不变,摸到白球的概率仍然是(3)/(5)。

根据分步乘法计数原理,两次都摸到白球的概率P=(3)/(5)×(3)/(5)=(9)/(25)。

例4:题目:袋中有5个红球,3个绿球,有放回地摸球3次,求恰好摸到2次红球的概率。

(人教版)解析:每次摸球基本事件总数为5+3 = 8个。

每次摸到红球的概率为(5)/(8),摸到绿球的概率为(3)/(8)。

恰好摸到2次红球的情况有C_3^2=(3!)/(2!(3 2)!)=3种(即三次摸球中哪两次摸到红球的组合数)。

所以恰好摸到2次红球的概率P =C_3^2×((5)/(8))^2×(3)/(8)=3×(25)/(64)×(3)/(8)=(225)/(512)。

三、无放回摸球问题。

例5:题目:盒子里有5个不同颜色的球,其中3个红球,2个蓝球,无放回地先后摸出两个球,求第一次摸到红球,第二次摸到蓝球的概率。

2摸到红球的概率

2摸到红球的概率

解:P(“6”朝上)=
1 6
,不一定。
请选择一个你能完成的任务,并预祝你能出色的完 成任务:
用4个除颜色外完全相同的球设计一个摸球游戏,
使得摸到白球的概率为
1 2
,摸到红球的概率也

1 2

用8个除颜色外完全相同的球设计一个摸球游戏,
使得摸到白球的概率为
1 2
,摸到红球的概率也

1 2

用4个除颜色外完全相同的球设计一个摸球游戏,
本课小结 P(不可能事件)= 0

0 ‹ P(不确定事件A) ‹ 1

P(必然事件)= 1
如图,有一个均匀的正二十面体形状的色子,其
中 的 1 个 面 标 有 “ 1” , 2 个 面 标 有 “ 2” , 3 个 面 标 有
“3”, 4个面标有“4”, 5个面标有“5”,其余的面
标有“6”。将这个色子掷出后, 1
(1)
(1)P(停在白色方格)= 1 2
(2)P(停在白色方格)=
1 3
(2)
如图所示有10张卡片,分别写有0至9十个数字。将它们背 面朝上洗匀后,任意抽出一张。
1
(1)P(抽到数字9)= 10

(2)P(抽到两位数)= 0
(3)P(抽到的数大于6)=
P(抽到的数小于6)=
1
(4)P(抽到奇数)= 2
你是怎样得到正确结论的?
你能用同样的方法解释摸到白球的概率是
1 4
吗?
3 P(摸到红球)=
4
摸到红球可能出现的结果数 摸出一球所有可能出现的结果数
摸到红球的概率( probability)
我们把它总结成公式即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章概率
4.2摸到红球的概率
一、课标解读
1、课标原文:“在具体情境中了解概率的意义,计算简单事件发生的概率;通过实例进一步丰富对概率的认识,并能解决一些实际问题。


2、教参教学目标表述:“通过摸球游戏,了解计算一类事件发生可能性地方法,体会概率的意义”
3、教材的地位和作用:“摸到红球的概率”是北师大版数学七年级下册第四章《概率》第二节的内容。

通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。

本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。

一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。

学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。

4、学情分析:学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性。

对简单事件发生的可能性能够做出预测,并阐述自己的理由。

在七年级上学期中学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法,体会概率的意义奠定了知识技能基础。

5、学习目标确定:由上述4个教学依据,立足学生学习规律和实际,可将本节课的学习目标确定为:
(1)通过摸球试验,统计数据,分析试验结果,从而体会概率的意义。

(2)能正确规范表示一类不确定事件的概率。

(3)会计算一类不确定事件发生的概率。

(重点)
(4)能设计给定概率大小的简单模型。

(难点)
6、教学方法选择:由上述5个教学依据,立足新课程理念和师生实际,本节课可选择以下教学法和学法:
(1)教法:
A探究发现法:把教的过程变成学生发现问题,发现方法的过程,本课通过创设情景,参观房子,吸引学生的注意力,从而轻松过渡到小猫停留在黑砖上的几何概型,诱导学生通过观察,大胆猜想,主动探索,总结出求几何概型概率的方法。

B直观教学法:结合多媒体展示,引导学生在轻松、愉快中学习数学,并且积极调动学生观察、动手操作、动脑思考,多种感官参与,体现数学来源于生活,应用于生活的真谛。

(2)学法:确保学生的主体地位,老师充当指挥员,调动学生的积极性,明白如何思考、如何学习,我采取了以下一些方法:
A探究性学习:学生以实践者的身份去观察、猜想、体验,创新完成掌握知识的过程,调动起学生的主动性和学习的热情,体现学生学习的个性化、自主化。

B小组合作学习:引导学生分工合作共同完成学习任务,并在小组交流和讨论中学习,相互启发,相互交流,共同探索,解决问题的策略,提高思维水平。

二、教学过程设计
根据上述课标解读,按照聚焦落实学习目标并及时反馈学习效果的教学策略,呈现循序渐进的学习规律,具体教学环节设计如下表:
游戏规则如下:(
其它情况均相同的三个红球和一个白球。

小组内进行分工一人摇匀、一人摸球、一人记录、一人监督或小组内自定。

活动时


答案
1 从中抽到
任意一球的
可能性是否
可能性都一样。

三、板书设计
4.2 摸到红球的概率
一、概率的表示方法:
二、必然事件发生的概率为1,记作p(必然事件)=1;
不可能事件发生的概率为0,记作p(不可能事件)=0;
如果A为不确定事件,那么0<P(A)<1。

(设计意图:是我们要研究摸球试验的概率,展示概率的正确表示方法,并让学生注意概率表示方法的组成方式,并让学生总结出必然事件、不可能事件、不确定事件的概率范围。


教学反思:
第四章概率
第二节摸到红球的概率




朱登豪
金水区第三中学
2010年4月。

相关文档
最新文档