生化各思考题讲解
生化实验思考题

⽣化实验思考题1. 氨基酸的纸层析分离1. 什么是纸层析技术是利⽤混合物中各组分物理化学性质差异,使其以不同速度移动的⼀种物理分离⽅法。
2. 什么是分配系数分配系数是指溶质在固定相中的浓度和溶质在流动相中的浓度的⽐值。
3. 层析技术的种类1 吸附层析2 分配层析3 离⼦交换层析4 凝胶过滤层析5 亲和层析6 ⽓象层析7 固相层析8 柱层析9 纸层析10 薄层层析11 ⾼效液相层析4. 影响Rf值的因素有哪些1 纸层析时纸层析时要在密闭仪器中加⼊平衡试剂使纸层析上吸附的溶剂达到饱和.2 滤纸要保持洁净,点样时要适量斑点不能过⼤.3 样品物分⼦结构和极性4 滤纸的厚薄和纤维松紧度不⼀样,结合的⽔量也不⼀样。
2. 酵母RNA的提取和分离1. 试验中为什么选择⼲酵母做实验材料?酵母中RNA含量较⾼(2.67%~10.0%),DNA含量少2. 提取RNA的⽅法有⼏种?稀碱法和浓盐法3. 加⼊酸性⼄醇的⽬的?在碱提取液中加⼊酸性⼄醇溶液可使解聚的核糖核酸沉淀,由此得到RNA的粗制品。
4. 如何鉴定RNA的组分?现象如何?RNA中含有核糖,碱基,磷酸各组分。
核糖与浓盐酸和苔⿊酚共热产⽣绿⾊;嘌呤碱与银铵络离⼦共热⽩⾊絮状嘌呤银化物沉淀;磷酸与钼酸铵试剂作⽤产⽣黄⾊的磷钼酸铵,加硫酸煮沸可使其⽔解,从⽔解液中可以测出上述组分的存在。
3. 球蛋⽩提取及含量测定1. 蛋⽩质沉淀⽅法有哪些?分可逆沉淀法和不可逆沉淀法两种。
其中可逆沉淀法有等电点沉淀,中性盐沉淀法,有机溶剂沉淀法;不可逆沉淀法有加热沉淀,重⾦属盐沉淀,⽣物碱沉淀。
2. 蛋⽩质含量测定的⽅法紫外分光光度计,可见光光度计,双缩脲法,福林酚法3. 分光光度计的使⽤及注意事项1 接电源,打开样品室暗箱盖,预热20min2 调节所需波长3 开盖放⿊⾊⽐⾊⽫,关盖,调T%为0%4 放空⽩对照,放样品液到⽐⾊⽫2/3到3/4处,⽤擦镜纸擦⼲表⾯,在对照组处调T为100%5 调节T%到ABS,分别测各样品分光光度值4. 盐析原理将⼤量盐加到蛋⽩质溶液中,⾼浓度的盐离⼦(如硫酸铵的SO4和NH4)有很强的⽔化⼒,可夺取蛋⽩质分⼦的⽔化层,使之“失⽔”,于是蛋⽩质胶粒凝结并沉淀析出.盐析时若溶液pH在蛋⽩质等电点则效果更好.由于各种蛋⽩质分⼦颗粒⼤⼩、亲⽔程度不同,故盐析所需的盐浓度也不⼀样,因此调节混合蛋⽩质溶液中的中性盐浓度可使各种蛋⽩质分段沉淀.4. 影响酶促反应速度的因素1. 影响酶促反应速度的因素有哪些?温度,pH,抑制剂,激活剂2. 唾液淀粉酶的抑制剂,激活剂分别是?激活剂:Cl-;抑制剂:Cu2+3. NaOH对v反应实验,做碘反应实验前为何加盐酸因为碘遇NaOH变NaI和NaIO3,⽽不能与淀粉发⽣反应,所以加⼊盐酸中和氢氧化钠。
生化各思考题讲解

生化各思考题讲解第七章、代谢调控1、什么是新陈代谢?新陈代谢简称代谢,是细胞中各种生物分子的合成、利用和降解反应的总和。
一般来说,新陈代谢包括了所有产生和储藏能量的反应,以及所有利用这些能量合成低分子量化合物的反应。
但不包括从小分子化合物合成蛋白质与核酸的过程。
生物新陈代谢过程可以分为合成代谢与分解代谢。
2、什么是代谢途径?代谢途径有哪些形式。
新陈代谢是逐步进行的,每种代谢都是由一连串反应组成的一个系列。
这些一连串有序反应组成的系列就叫做代谢途径。
在每一个代谢途径中,前一个反应的产物就是后一个反应的底物。
所有这些反应的底物、中间产物和产物统称为代谢中间产物,简称代谢物。
代谢途径具有线形、环形和螺旋形等形式。
有些代谢途径存在分支。
3、简述代谢途径的特点。
生物体内的新陈代谢在温和条件下进行:常温常压、有水的近中性环境。
由酶催化,酶的活性受到调控,精密的调控机制保证机体最经济地利用物质和能量。
代谢反应逐步进行,步骤繁多,彼此协调,有严格顺序性。
各代谢途径相互交接,形成物质与能量的网络化交流系统。
ATP是机体能量利用的共同形式,能量逐步释放或吸收。
5、三个关键的中间代谢物是什么?在代谢过程中关键的代谢中间产物有三种:6-磷酸葡萄糖、丙酮酸、乙酰CoA。
特别是乙酰CoA是各代谢之间的枢纽物质。
通过三种中间产物使细胞中四类主要有机物质:糖、脂类、蛋白质和核酸之间实现相互转变。
6、细胞对代谢的调节途径有哪些?调节酶的活性。
这种调节对现有的酶进行修饰,使酶的活性发生变化。
这种调节一般在数秒或数分钟内即可完成,效果快速而短暂,因此是一种快速调节。
调节酶的数量。
这是通过增加酶蛋白的合成或影响酶蛋白的讲解速度来调节,这种调节一般需要数小时才能完成,作用缓慢而持久,因此调节的速度比较慢。
调节底物的水平。
这种调节主要是底物从细胞中的一个区域运送到另一个区域,一般是通过膜的选择性通透进行调节的。
7、细胞对酶活性的调节有哪些方式?非共价的别构调节,包括反馈抑制,前馈激活,可逆的共价修饰和级联系统,以及酶原激活等。
生化实验思考题总结

生化实验思考题总结1.蛋白质定量测量的方法有哪些?简要说明其原理。
答:a.紫外吸收,在280nm处有最大吸收峰。
b.定氮法,利用蛋白质中氮元素含量为16%固定比例来测定。
c.分光光度计法,利用OD值和蛋白质浓度成正比的原理。
显色剂为考蓝。
d.双缩脲法。
也是利用显色反应。
e.Folin酚法。
2.如果凝胶过滤层析分离的蛋白质样品中含有多种蛋白质,在各蛋白质分子量已知的情况下,如何判断哪一种蛋白质时所想要的?答:现在假设有三种蛋白质a b c,分子质量a>b>c。
那么,a最先流出,在体积V1处有一个洗脱体积,对应的a的溶液浓度在V1处也最高,就会有一个OD值的峰值。
b c同理。
由不同的OD峰值,对应不同的洗脱体积,就可以筛选出想要的蛋白质。
如果想要b,那么在第二个吸收峰的时候,找到相应的洗脱体积,然后在其附近的所接到的溶液进行选取。
就会得到想要的蛋白质。
3.如果盐析后的样品不经脱盐处理便上样电泳,对其结果有何影响?答:如果没有去除清蛋白里面的盐分,则会使电泳速度下降。
原因在于溶液离子强度太大,蛋白质表面的电荷减少,所以导致电泳速度下降,甚至无法泳动。
4.对电泳所得的结果如何进行定量分析?答:将电泳完毕的样品(凝胶),按条带宽度的分布剪下,分别把每个小块样品用NaOH溶液漂洗,再将漂洗过的溶液进行OD值的测量。
5.使SDS-PAGE具有高分辨率的三个因素是什么?答:浓缩效应。
电荷效应。
分子筛效应。
6.实验所得的各点数据中,哪些易出现较大的误差?答:有两个点。
第一个,在三十秒的点,反应速度太快,时间如果掌握不准,容易出现误差。
另一个,在3min的点,反应速度很慢,斜率小,则倒数大,所以时间掌握不好,也容易出现大误差。
7.假如把碱性磷酸酶对底物的亲和力提高十倍,实验方案该如何修改?答:把底物和酶的浓度都降低。
8.请举出三种提取质粒的方法,并简要说明其中一种方法的原理。
答:碱裂解(要求原理,书上有);一步法(见书上46,47页有关TELT试剂的内容);SDS法;煮沸法。
生化课后思考题参考答案要点

聚丙烯酰胺凝胶电泳分析小麦幼苗过氧化物酶同工酶实验的思考题要点:1、关于电极缓冲液能否回收再用的问题:从电极缓冲液的作用及电泳后其变化去分析。
电极缓冲液作用主要有两点:“导体”及在浓缩效应中提供慢离子。
据此:不能混合回收使用。
因为电泳之后,前后槽的缓冲液的成分和pH值都发生了变化,尤其正极槽一侧掺入了Cl-,混合后的电极缓冲液中就有了Cl-,这将会破坏浓缩效应。
而在实际中:由于电极缓冲液使用量大,从经济效益和实验效果均衡考虑,一次电泳之后,负极槽一侧损失少量甘氨酸、pH值略有上升,但变化不大,若单独回收还用于负极,则应该可以保证浓缩效应所要求的慢离子的特点。
而正极一侧虽然掺入了Cl-,但若也单独回收还用于正极一侧,Cl-就不会影响浓缩效应。
这样,分槽回收分槽使用,再使用一两次应该是可以的。
或混合回收只用于正极槽,而负极槽使用新鲜配制的缓冲液,也是可以的。
当然,随着使用次数的增加变化大了效果当然就不能保证了,所以一般就是再使用一到两次。
2、40%蔗糖的作用由电泳槽回路的形成我们知道,负极的电极缓冲液与浓缩胶必须相连,这样样品槽完全浸没在缓冲液中,如何上样??而蔗糖的加入增加了样品的密度,方便上样,使样品不会对流扩散。
同时所形成的高渗透势环境对蛋白质的结构具有保护维持的作用。
所以电泳的样品缓冲液里都含有终浓度一般为20%的蔗糖或者甘油。
当然这两种物质的选择加入也不是随意的哦,这也是电泳发明过程中科研人员所曾经面临的一个难题,大家利用假期可以去寻古探幽,一定会得到很多极具启发性的发现的。
3、利用电泳技术获得好的实验结果的关键环节:凝胶浓度和交联度、缓冲体系、样品制备、电泳状态、检测手段。
2022生化思考题详细答案解析(医学本科生适用)

生物化学思考题1、叙述L-α氨基酸结构特征,比较各种结构异同并分析结构与性质的关系。
结构特点:氨基酸是较酸分子的a-氢原子被氨基取代直接形成的有机化合物,即当氨基酸的氨基与殁基连载同一个碳原子上,就成为a-氨基酸。
氨基酸中与竣基直接相连的碳原子上有个氨基,这个碳原子上连的集团或原子都不一样,称手性碳原子,当一束偏振光通过它们时,光的偏振方向将被旋转,根据旋转的方向分为左旋和右旋即D系和L系,L-a-氨基酸再被骗争光照射时,光的偏正方向为左旋。
R为侧链,连接-COOH的碳为a-碳原子为不对称碳原子(除了甘氨酸)不同的氨基酸其R基团结构各异。
根据测链结构可分为:①含煌链的为非极性脂肪族氨基酸,如丙氨酸;②含极性不带电荷的为极性中性氨基酸,如半胱氨酸;③含芳香基的为芳香族氨基酸,如酪氨酸;④含负性解离基团的为酸性氨基酸,如谷氨酸;⑤含正性解离基团的为碱性氨基酸,如精氨酸。
2、简述蛋白质一级结构、二级结构、三级结构、四级结构基本概念及各结构层次间的内在关系。
蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序,也是蛋白质最基本的结构。
主要化学键是肽键,二硫键也是一级结构的范畴。
蛋白质的二级结构是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。
主要化学键为氢犍。
蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折迭形成具有一定规律的三维空间结构,称为蛋白质的三级结构,蛋白质三级结构的稳定主要靠次级键,包括氢键、疏水键、盐键以及范德华力等。
具有二条或二条以上独立三级结构的多肽链组成的蛋臼质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构,其中,每个具有独立三级结构的多肽链单位称为亚基。
层次之间的关系:一级结构是空间构象的基础,决定高级结构;氨基酸的残基影响二级结构的形成,二级结构以一级结构为基础;在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的三级结构;具有三级结构的多肽链按一定空间排列方式结合在一起形成的聚集体结构称为蛋白质的四级结构。
生化课后题目及问题详解

2 蛋白质化学2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。
一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少?解答:〔1〕血红蛋白:55.8100100131000.426⨯⨯=铁的相对原子质量最低相对分子质量==铁的百分含量〔2〕酶:因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为:1.65%:2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。
()r 2131.11100159001.65M ⨯⨯=≈最低()r 3131.11100159002.48M ⨯⨯=≈最低3.指出下面pH 条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保持原点?〔1〕胃蛋白酶〔pI 1.0〕,在pH 5.0;〔2〕血清清蛋白〔pI 4.9〕,在pH 6.0;〔3〕α-脂蛋白〔pI 5.8〕,在pHpH 9.0;解答:〔1〕胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动;〔2〕血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动;〔3〕α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动;α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。
6.由如下信息求八肽的序列。
〔1〕酸水解得 Ala ,Arg ,Leu ,Met ,Phe ,Thr ,2Val 。
〔2〕Sanger 试剂处理得DNP-Ala 。
〔3〕胰蛋白酶处理得Ala ,Arg ,Thr 和 Leu ,Met ,Phe ,2Val 。
当以Sanger 试剂处理时分别得到DNP-Ala 和DNP-Val 。
〔4〕溴化氰处理得 Ala ,Arg ,高丝氨酸内酯,Thr ,2Val ,和 Leu ,Phe ,当用Sanger 试剂处理时,分别得DNP-Ala 和DNP-Leu 。
解答:由〔2〕推出N 末端为Ala ;由〔3〕推出Val 位于N 端第四,Arg 为第三,而Thr 为第二;溴化氰裂解,得出N 端第六位是Met ,由于第七位是Leu ,所以Phe 为第八;由〔4〕,第五为Val 。
生化试验思考题总结

生化实验思考题总结1.蛋白质定量测量的方法有哪些?简要说明其原理。
答:a.紫外吸收,在280nm处有最大吸收峰。
b.定氮法,利用蛋白质中氮元素含量为16%固定比例来测定。
c.分光光度计法,利用OD值和蛋白质浓度成正比的原理。
显色剂为考蓝。
d.双缩脲法。
也是利用显色反应。
e.Folin酚法。
2.如果凝胶过滤层析分离的蛋白质样品中含有多种蛋白质,在各蛋白质分子量已知的情况下,如何判断哪一种蛋白质时所想要的?答:现在假设有三种蛋白质a b c,分子质量a>b>c。
那么,a最先流出,在体积V1处有一个洗脱体积,对应的a的溶液浓度在V1处也最高,就会有一个OD值的峰值。
b c同理。
由不同的OD峰值,对应不同的洗脱体积,就可以筛选出想要的蛋白质。
如果想要b,那么在第二个吸收峰的时候,找到相应的洗脱体积,然后在其附近的所接到的溶液进行选取。
就会得到想要的蛋白质。
3.如果盐析后的样品不经脱盐处理便上样电泳,对其结果有何影响?答:如果没有去除清蛋白里面的盐分,则会使电泳速度下降。
原因在于溶液离子强度太大,蛋白质表面的电荷减少,所以导致电泳速度下降,甚至无法泳动。
4.对电泳所得的结果如何进行定量分析?答:将电泳完毕的样品(凝胶),按条带宽度的分布剪下,分别把每个小块样品用NaOH溶液漂洗,再将漂洗过的溶液进行OD值的测量。
5.使SDS-PAGE具有高分辨率的三个因素是什么?答:浓缩效应。
电荷效应。
分子筛效应。
6.实验所得的各点数据中,哪些易出现较大的误差?答:有两个点。
第一个,在三十秒的点,反应速度太快,时间如果掌握不准,容易出现误差。
另一个,在3min的点,反应速度很慢,斜率小,则倒数大,所以时间掌握不好,也容易出现大误差。
7.假如把碱性磷酸酶对底物的亲和力提高十倍,实验方案该如何修改?答:把底物和酶的浓度都降低。
8.请举出三种提取质粒的方法,并简要说明其中一种方法的原理。
答:碱裂解(要求原理,书上有);一步法(见书上46,47页有关TELT试剂的内容);SDS法;煮沸法。
本科生化思考题

本科生化思考题一、名词解释1.肽键平面2多肽链中肽键结构中C―N键具有部分双键性质不能自由旋转,即使肽键(CO―NH)中相关的6个原子处于―个平面称肽键平面。
2.结构域2蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。
3.模体3在一些蛋白质分子中,常发现几个(多为2~3个)具有二级结构的肽段相互靠近,形成具有特定功能的空间构象;或者仅是一个具有特定功能的很短的肽段。
这种结构称为模体。
常见的有锌指模体、螺旋-转角-螺旋模体等。
4.蛋白质分子的四级结构3两个或两个以上独立存在并具有三级结构的多肽链通过次级键结合在一起的特定构象称为蛋白质分子的四级结构。
5.蛋白质的等电点1蛋白质分子所带正负电荷相等时,溶液的pH值称为该蛋白质的等电点。
6.蛋白质的变性2在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。
7. Tm值1在DNA变性时,A260达到最大值一半时的温度,即DNA变性一半时的温度,称为解链温度。
8.酶的专一性3一种酶只能作用于一种或一类作用物,或一定的化学键,催化一定的化学反应并生成一定的产物,这种现象称为酶作用的专一性。
9. Km(米氏常数)3米曼二氏根据中间产物学说进行数学推导得出底物浓度与反应速度关系式v=Vmax[S]/(Km+[S]),称为米-曼氏方程,其中Km称为米氏常数。
它等于酶促反应速度达最大反应速度一半时的底物浓度值。
Km值可以表示酶与底物亲和力,是酶的特征性常数。
10.关键酶3又称限速酶、调节酶,是整条代谢途径中催化反应速率最慢,催化单向反应,其活性受底物、产物和多种代谢物或效应剂的调节。
11.酶的活性中心2在酶分子表面由空间位置比较靠近的几个氨基酸残基或某些功能基团集中在一起形成的能与底物特异性结合并催化底物转化为产物的特定空间区域叫酶的活性中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章、代谢调控1、什么是新陈代谢?新陈代谢简称代谢,是细胞中各种生物分子的合成、利用和降解反应的总和。
一般来说,新陈代谢包括了所有产生和储藏能量的反应,以及所有利用这些能量合成低分子量化合物的反应。
但不包括从小分子化合物合成蛋白质与核酸的过程。
生物新陈代谢过程可以分为合成代谢与分解代谢。
2、什么是代谢途径?代谢途径有哪些形式。
新陈代谢是逐步进行的,每种代谢都是由一连串反应组成的一个系列。
这些一连串有序反应组成的系列就叫做代谢途径。
在每一个代谢途径中,前一个反应的产物就是后一个反应的底物。
所有这些反应的底物、中间产物和产物统称为代谢中间产物,简称代谢物。
代谢途径具有线形、环形和螺旋形等形式。
有些代谢途径存在分支。
3、简述代谢途径的特点。
生物体内的新陈代谢在温和条件下进行:常温常压、有水的近中性环境。
由酶催化,酶的活性受到调控,精密的调控机制保证机体最经济地利用物质和能量。
代谢反应逐步进行,步骤繁多,彼此协调,有严格顺序性。
各代谢途径相互交接,形成物质与能量的网络化交流系统。
ATP是机体能量利用的共同形式,能量逐步释放或吸收。
5、三个关键的中间代谢物是什么?在代谢过程中关键的代谢中间产物有三种:6-磷酸葡萄糖、丙酮酸、乙酰CoA。
特别是乙酰CoA是各代谢之间的枢纽物质。
通过三种中间产物使细胞中四类主要有机物质:糖、脂类、蛋白质和核酸之间实现相互转变。
6、细胞对代谢的调节途径有哪些?调节酶的活性。
这种调节对现有的酶进行修饰,使酶的活性发生变化。
这种调节一般在数秒或数分钟内即可完成,效果快速而短暂,因此是一种快速调节。
调节酶的数量。
这是通过增加酶蛋白的合成或影响酶蛋白的讲解速度来调节,这种调节一般需要数小时才能完成,作用缓慢而持久,因此调节的速度比较慢。
调节底物的水平。
这种调节主要是底物从细胞中的一个区域运送到另一个区域,一般是通过膜的选择性通透进行调节的。
7、细胞对酶活性的调节有哪些方式?非共价的别构调节,包括反馈抑制,前馈激活,可逆的共价修饰和级联系统,以及酶原激活等。
8、细胞如何对酶的含量进行调节?酶含量的调节包括酶蛋白的合成和降解。
但酶蛋白的合成与降解所需时间比较长,持续时间也比较长,所以酶的含量的调节是一种比较慢的调节方式。
9、什么是单价反馈抑制和多价反馈抑制?对不发生分支的代谢反应中,只有一个终产物对线形反应序列开头的酶其反馈抑制作用,称为单价反馈抑制。
如果反应发生分支,就会产生两种或两种以上的终产物,而其中一种终产物的累积都会对序列反应前面的变构调节酶起抑制作用,即多价反馈抑制。
第八章、生物氧化与氧化磷酸化1、生物化学中,用什么方法可以求出反应的自由能变化?可以用两种方法求出反应的自由能变化。
通过反应的平衡常数K eq求ДG0’,或通过质量作用比Q求ДG。
通过标准还原电势ДE0’求ДG0’。
2、简述生物化学中的高能化合物。
水解时释放-20.9KJ/mol以上能量的化合物叫做高能化合物。
高能化合物包括磷酸肌酸、磷酸精氨酸、磷酸烯醇式丙酮酸、酰基CoA等。
(键型有P-O型、P-N型、硫酯键型、甲硫键型等)这些化合物中某个键水解时自由能变化是很大的负值,我们把这个化学键叫做高能键,用“~”表示。
生物化学中高能键与化学中的高能键有不同的含义。
化学中的高能键是指断裂时需要大量能量的键。
3、ATP为什么是生物体内最重要的高能化合物?因为ATP水解时的ДG0’处在高能化合物的中间位置。
ADP可以从具有更高磷酸基团转移势的化合物中接受磷酸基团和能量合成ATP。
ATP又可以把携带的能量和磷酸基团转移给具有较低磷酸基团转移势的化合物,本身生成ADP。
ATP的这种性质使它在细胞内的多数磷酸基团转移的反应中成为共同的中间体。
但是ATP只是能量的即时供体。
4、请说明ATP水解产生大量自由能的原因。
ATP水解能够产生大量能量的原因是因为ATP与它的水解产物的稳定性有很大差别,水解产物的自由能低于ATP的自由能。
ATP水解产生的ADP分子中,静电斥力降低,分子的稳定性增加。
ATP水解产生的HPO42-形成共振杂化体。
ATP水解产生的ADP3-立即离子化,释放出H+。
由于细胞质中的H+浓度为10-7mol/L,极低的H+浓度有利于ATP水解。
ATP的水解产物都比ATP本身更容易溶解。
5、何谓电子传递链?简述电子传递体复合物的排列顺序。
需氧细胞内,各种代谢物氧化分解后产生的电子通过一系列线粒体膜上的电子载体,最后传递给氧,生成水。
这一系列的电子载体在线粒体内膜上按照一定的顺序组成了从供氢体到氧之间传递电子的链条,叫做电子传递链。
电子传递链中的各种成分有严格的排列顺序。
排列顺序是由各个组分的还原电位决定的。
NADH 的还原电位最低,排列在链的最前方。
O 2的还原电位最高,排在链的末端。
其他的电子载体按照还原电位从低到高(或者说从负到正)在二者之间依次排列。
使得电子可以从还原电位较低的化合物流向较高的化合物。
6、线粒体内膜上有哪几种电子传递链?线粒体内膜上有两种电子传递链。
复合物I 、III 和IV 在传递电子的同时还能把质子泵到线粒体的膜间隙。
在这个通路中,第一个电子供体是NADH ,经过复合物III 和IV 的传递,最后一个电子受体是O 2。
这条传递电子的线路称为NADH 电子传递链,是主要的电子传递链。
琥珀酸把电子传递到复合物II 中的FAD ,还原后形成的FADH 2成为第一个电子供体,电子经过复合物III 和IV ,最后一个受体也时O 2。
这条传递电子的线路称为FADH 2电子传递链。
但是复合物II 本身不能将质子泵到膜间隙中。
7、简述氧化磷酸化作用。
电子在线粒体膜上传递能够产生跨线粒体膜的质子浓度梯度,储存在质子浓度梯度中的能量可以驱动ADP 和Pi 合成A TP 。
氧化作用伴随着磷酸化作用发生,叫做氧化磷酸化作用。
生物体内的大多数A TP 是从这个途径产生的。
8、ATP 生成有哪几种学说?简述ATP 生成的化学渗透学说。
化学偶联学说、结构偶联学说和化学渗透学说。
化学偶联学说指出:电子传递释放出的自由能和ATP 合成是与跨线粒体内膜的质子梯度相偶联的。
也就是,电子传递的自由能驱动H +从线粒体基质跨过内膜进入膜间隙,从而形成跨线粒体内膜的质子的跨膜浓度梯度和跨膜电位梯度,合称为质子电化学梯度。
质子电化学梯度中储存的自由能叫做质子移动力,驱使H +返回线粒体基质。
但由于线粒体内膜对H +的不通透性,H +只能通过内膜上专一的质子通道(F 0)返回。
这样,驱使H +返回基质的质子移动力为ATP 的合成提供了能量。
9、线粒体外产生的NADH 是如何进入线粒体氧化的?(过程描述不完整)NAD +和NADH 都不能自由通过线粒体内膜。
因此,线粒体体外产生的NADH 必须通过特殊的跨膜传递机制才能进入线粒体氧化,叫做穿梭系统。
磷酸甘油穿梭系统存在于哺乳动物的肌肉组织和神经细胞中。
有关的反应由α-磷酸甘油脱氢酶催化。
经这个途径进入线粒体的NADH 只能产生1.5分子的A TP 。
苹果酸-天冬氨酸穿梭系统在心脏、肝脏和肾脏中很活跃。
经这个途径进入线粒体的NADH 仍然可以产生2.5分子的A TP 。
10、什么是能荷?能荷的高低与代谢调节有什么关系?能荷表明了细胞中的能量状态。
能荷定义为:高能磷酸键在总的腺苷酸库中(即ATP 、ADP 和AMP 浓度之和)所占的比例。
表达式为能荷=[AMP][ADP][ATP]0.5[ADP][ATP]+++。
细胞中的高能荷抑制分解途径(产生A TP 的途径),激活合成途径(利用ATP 的途径)。
大多数细胞的能荷处于0.8~0.95。
第九章、碳水化合物代谢1、酵解和发酵的区别是什么?所谓酵解是葡萄糖转变成丙酮酸的过程,是有氧和无氧条件下都存在的代谢途径。
而发酵是指在无氧条件下,丙酮酸转变为乳酸(乳酸发酵)或乙醇(乙醇发酵)的过程。
2、为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。
糖代谢产生的碳骨架最终进入三羧酸循环氧化。
脂肪分解产生的甘油先转化为磷酸二羟丙酮,然后通过糖酵解进入三羧酸循环氧化;脂肪酸经β-氧化产生乙酰-CoA可进入三羧酸循环氧化。
蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合称必需氨基酸。
所以,三羧酸循环是三大物质代谢共同通路。
3、在体内葡萄糖是怎样转化为脂肪的?感觉这样说还不够。
糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料;有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料。
4、计算在有氧条件下,一分子葡萄糖在生物体内氧化成二氧化碳和水,可净产生多少分子的ATP?1分子葡萄糖经糖酵解途径分解为两分子丙酮酸净生成2分子A TP和2分子NADH(3或5分子A TP 此处感觉说的不充分);2分子丙酮酸转变成乙酰-CoA时生成2分子NADH(5分子ATP 注意此处就是在线粒体里,不必再穿梭);2分子乙酰-CoA经三羧酸循环(柠檬酸循环)生成20分子A TP。
共计生成30(原核生物)或32分子ATP(真核生物)。
5、糖酵解的中间产物在其他代谢中有何应用?还有吗?磷酸二羟丙酮可还原为α-磷酸甘油,后者可参与合成甘油三酯和甘油磷酸;3-磷酸甘油酸是丝氨酸的前体,因而也是甘氨酸和半胱氨酸的前体;磷酸烯醇式丙酮酸用于合成芳香族氨基酸的前体——分支酸。
它也可将ADP磷酸化为A TP?;丙酮酸可转变为丙氨酸,它也能转变成羟乙基用以合成异亮氨酸和缬氨酸。
两分子丙酮酸生成α-酮异戊酸,进而可以转变为亮氨酸。
6、糖异生和糖酵解途径的区别有哪些?糖异生和糖酵解是一对相反的代谢途径。
糖异生属于合成代谢途径,是消耗ATP的耗能过程;而糖酵解属于分解代谢途径,是生成A TP的储能过程。
糖异生过程不是糖酵解过程的简单逆转。
其中有三个糖酵解中不可逆的反应需要被绕过,包括:丙酮酸通过两步反应转变为磷酸烯醇式丙酮酸;1,6-二磷酸果糖生成6-磷酸果糖以及6-磷酸葡萄糖生成葡萄糖。
在调控方面,当机体处于高能荷状态时,糖酵解途径被抑制,糖异生被激活;而处于低能荷状态时则相反。
7、简述2,6-二磷酸果糖在糖代谢中的调节作用。
2,6-二磷酸果糖既是1-磷酸果糖激酶的变构激活剂,也可以作为1,6-二磷酸果糖磷酸酶的抑制剂。
2,6-二磷酸果糖的合成与降解由磷酸果糖激酶-2和2,6-二磷酸果糖磷酸酶催化。
该酶是双功能酶(PFK-2/FBPase-2)。
该酶磷酸化(蛋白激酶A催化磷酸化)后显示磷酸酶活性,水解2,6-二磷酸果糖,降低2,6-二磷酸果糖的浓度,导致磷酸果糖激酶被抑制,从而抑制了糖酵解,促进了糖异生。