(完整word版)“隐圆”最值问题习题

合集下载

专题18 隐形圆及最值问题

专题18 隐形圆及最值问题

AB是 O 的直径,
ACB 90.
ABC 45 , AC 5 ,
ABC 45 ,
AB AC 5 5 2 , sin 45 2 2
MN最大
52 2

故答案为: 5 2 .
6.如图,在平面直角坐标系中,已知 C(3, 4) ,以点 C 为圆心的圆与 y 轴相切.点 A 、 B 在 x 轴上,且 OA OB .点 P 为 C 上的动点, APB 90 ,则 AB 长度的最大值为 .
1.如图,等边 ABC 的边长为 2, A 的半径为 1,D 是 BC 上的动点,DE 与 A 相切于 E , DE 的最小值是 ( )
A.1
B. 2
C. 3
D.2
【分析】连接 AE , AD ,作 AH BC 于 H ,因为 DE 与 A 相切于 E ,所以 AE DE , 可得 DE AD2 AE2 AD2 1 ,当 D 与 H 重合时, AD 最小,此时 DE 最小,求出 AH 的长,即可得出 DE 的最小值. 【解答】解:如图,连接 AE , AD ,作 AH BC 于 H ,
若平面上 A、B、C、D 四个点满足 ABC ADC , 则 A、B、C、D 四点共圆. 证明条件:1.四边形对角互补; 2.四边形外角等于内对角.
两条线段被一点分成(内分或外分)两段长的乘积相等,则这两条线段的四个端点共圆.
D
C
H
O
A
B
四边形 ABCD 的对角线 AC、BD 交于 H, 若 AH CH BH DH ,则 A、B、C、D 四点共圆.
作 AM⊥BP 于 M.当点 P 从点 C 运动到点 A 时,线段 BM 的中点 N 运动的路径长为(

A. 2 π 2

新高考数学人教版必修2课件第2章 习题课 与圆有关的最值问题

新高考数学人教版必修2课件第2章 习题课 与圆有关的最值问题

内容索引
一、与距离有关的最值问题 二、与面积相关的最值问题 三、利用数学式的几何意义解圆的最值问题
随堂演练
课时对点练
一、与距离有关的最值问题
1.圆外一点到圆上任意一点距离的最小值= d-r ,最大 值= d+r .
2.直线与圆相离,圆上任意一点到直线距离的最小值= d-r ,最大值= d+r .
解析 圆C:x2+y2-2y=0的圆心为C(0,1),半径r=1, 由圆的性质可知,四边形的面积S=2S△PBC, 又四边形PACB的最小面积是2, 则 S△PBC 的最小值为 S=1=12r|PB|min=12|PB|min, 则|PB|min=2,因为|PB|= |PC|2-r2= |PC|2-1,
解析 设点A(3,1),易知圆心C(2,2),半径r=2. 当弦过点A(3,1)且与CA垂直时为最短弦, |CA|= 2-32+2-12= 2. ∴半弦长= r2-|CA|2= 4-2= 2. ∴最短弦长为 2 2.
二、与面积相关的最值问题
例2 已知点O(0,0),A(0,2),点M是圆(x-3)2+(y+1)2=4上的动点,则
√C. (-∞,- 3]∪[ 3,+∞) D. [- 3, 3]
解析 将yx看作圆上动点(x,y)与原点 O(0,0)连线的斜率, 如图,可得 k≥ 3或 k≤- 3.
1234
4.已知圆C1:x2+y2+4x-4y=0,动点P在圆C2:x2+y2-4x-12=0上, 则△PC1C2面积的最大值为_4___5_. 解析 因为C1(-2,2),r1=2,C2(2,0),r2=4, 所以|C1C2|= -2-22+22=2 5, 当 PC2⊥C1C2 时,△PC1C2 的面积最大,其最大值为12×2 5×4=4 5.

2023年中考数学一轮复习专题利用隐形圆求圆的最值课件

2023年中考数学一轮复习专题利用隐形圆求圆的最值课件

8
方法总结:利用隐圆解决线圆最值问题时, 第一:变化中寻找不变,找到隐圆; 第二:“一线穿心”--过圆心向定线段作垂直 找到圆上目标最值点,求得最值。
坚持用每一天的进步书写人生的辉煌
9
变式训练2:如图,在矩形ABCD中,AB=3,BC=4, O为矩形ABCD的中心,以D为圆心,1为半径作⊙D, P为⊙D上的一个动点,连接AP、OP、AO,则△AOP 面积的最大,延长AO至C点,过点D作 DF⊥AC于点F,延长FD交⊙D于点P′, 连接AP′,OP′,要使△AOP面积最大, 则只需AO边上的高最大,此时P′满足条 件,即P′F为最大的高,
坚持用每一天的进步书写人生的辉煌
11
拓展:定弦定角型
如图1⊙O中,A、B为定点,则AB为定弦,点C为优弧上 任一点,在C点运动过程中则∠ACB的度数不变⇒逆运用⇒ 如图2、点A、B为定点,点C为线段AB外一点,且 ∠ACB=θ(θ为固定值)⇒点C在以AB为弦的圆上运动( 不与A、B重合)
是_______.
D
C
M A
AN
B
坚持用每一天的进步书写人生的辉煌
方法总结:利用隐圆解决点圆最值问题时, 第一:变化中寻找不变,找到隐圆; 第二:“一线穿心”--连接圆心和定点找到 圆上目标最值点,求得最值。
坚持用每一天的进步书写人生的辉煌
6
变式训练1: 如图,在Rt△ABC中,∠ABC=90°, ∠C=30°,AB=1,点D在AC边上运动,点E为AC的 中点,将△BCD沿BD翻折,点C的对应点为点F,则 在点D从C到A的运动过程中,线段EF的最小值为___.
1
上的一点,且AM= AD,N是AB边上3 的一动点,将△AMN沿MN
所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

隐形圆问题一、确定动点轨迹是圆【例题1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A,且OA=OB,∠APB=90°,l不过点C,则AB的最小值为【举一反三】1、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C长度的最小值是第1题第2题2、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是3、如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,则△ACB’面积的最大值是.4、如图,矩形ABCD中,AB=4,BC=8,P、Q分別是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是二、定边对直角知识回顾:直径所对的圆周角是直角构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:若AB是一条定线段,且∠APB-90°,则P点轨迹是以AB为直径的圆【例题1】已知正方形ABCD边长为2,E、F分别是BC、CD上的动点,且满足BE=CF,连接AE、BF,交点为P点,则PC的最小值为【举一反三】1、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是2、如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB =∠PBC,则线段CP长的最小值是3、如图,AB是半圆O的直径,点C在半圆O上,AB=5,AC=4.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为4、如图,在Rt△ABC中,∠BAC=90°,AC=12,AB=10,点D是AC上的一个动点,以AD为直径作圆O,连接BD交圆O于点E,则AE的最小值为5、如图,正方形ABCD的边长为4,动点E、F分別从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为【辅助圆+将军饮马】如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为【辅助圆+相切】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所対的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则P点轨迹是一个圆.当然,∠P度数也是特殊角,比如30°、45°、60°、120°,下面分别作对应的轨迹圆若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心.若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心.若∠P=120°,以AB为底,异侧为边构造顶角为120°的等腰三角形AOB,O即为圆心.【例题1】如图,等边△ABC边长为2,E、F分別是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为【举一反三】1、如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为2、在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是3、如图,AB是圆O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB 的角平分线交圆O于点D,∠BAC的平分线交CD于点E,当点C从点M运动到点N时,则C、E两点的运动路径长的比是。

专题03 隐圆(辅助圆)最值模型

专题03  隐圆(辅助圆)最值模型

专题03 隐圆类最值问题题型一 滑梯类1.如图,ABC ∆中,90C ∠=︒,10AC =,8BC =,线段DE 的两个端点D 、E 分别在边AC ,BC 上滑动,且6DE =,若点M 、N 分别是DE 、AB 的中点,则MN 的最小值为( )A .10B 3-C .6D .32.如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 .3.已知边长为a 的正方形ABCD ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 点D 在第一象限,点E 为正方形ABCD 的对称中心,连接OE ,则OE 的长的最大值是 .4.已知边长为a 的正三角形ABC ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是.5.如图,矩形ABCD中,20AD=,点E,F分别是AB,BC边上的两个动点,且10EF=,AB=,30点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH CH+的最小值为.题型二定点定长6.如图,在矩形ABCD中,4∆沿AB=,6AD=,E是AB边的中点,F是线段BC边上的动点,将EBF EF所在直线折叠得到△EB F',连接B D',则B D'的最小值是.7.如图,在边长为4的菱形ABCD中,60∠=︒,M是AD边的中点,点N是AB边上一动点,将AMN∆A沿MN所在的直线翻折得到△A MN',连接A C',则线段A C'长度的最小值是.8.如图,四边形ABCD中,AB AC AD∠=度.∠=︒,则CBDCAD==,若769.如图,在Rt ABCBC=,点F在边AC上,并且2CF=,点E为边BC上的AC=,8∠=︒,6C∆中,90动点,将CEF∆沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.1.5B.1.2C.2.4D.以上都不对10.如图,在平行四边形ABCD中,30BC=,CD=M是AD边的中点,N是AB边上BCD∠=︒,4的一动点,将AMN',连接A C',则A C'长度的最小值是.∆沿MN所在直线翻折得到△A MN题型三直角所对的是直径11.如图,在圆O中,半径OA弦10⊥,BC=,点Q是劣弧AC上的一个动点,连接BQ,作CP BQ垂足为P.在点Q移动的过程中,线段AP的最小值是()A.6B.7C.8D.912.如图,在ABCAB=,12BC=,D为AC边上的一个动点,连接BD,E为BD ∠=︒,8ABC∆中,90上的一个动点,连接AE,CE,当ABD BCE∠=∠时,线段AE的最小值是()A .3B .4C .5D .613.如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,连接PC ,则线段CP 长的最小值为 .14.如图,已知C 的半径为3,圆外一定点O 满足5OC =,点P 为C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=︒,l 不经过点C ,则AB 的最小值为 .15.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE DF =,连接CF 交BD 于G ,连接BE 交AG 于点H ,若正方形的边长为3,则线段DH 长度的最小值是 .题型四 定边对定角16.如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为 .第16题 第19题 17.在锐角三角形ABC 中,30A ∠=︒,2BC =,设BC 边上的高为h ,则h 的取值范围是 .18.在ABC ∆中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为 .19.如图,ABC ∆为等边三角形,2AB =.若P 为ABC ∆内一动点,且满足PAB ACP ∠=∠,则线段PB 长度的最小值为 .20.【问题情境】(1)点A 是O 外一点,点P 是O 上一动点.若O 的半径为2,且5OA =,则点P 到点A 的最短距离为 .【直接运用】(2)如图1,在Rt ABC ∆中,90ACB ∠=︒,2AC BC ==,以BC 为直径的半圆交AB 于D ,P 是弧CD 上的一个动点,连接AP ,则AP 的最小值是 .【构造运用】(3)如图2ABCD 的边长为6,点M 、N 分别从点B 、C 同时出发,以相同的速度沿边BC 、CD 方向向终点C 和D 运动,连接AM 和BN 交于点P ,则点P 到点C 的最短距离,并说明理由.【灵活运用】(4)如图3,O 的半径为4,弦4AB =,点C 为优弧AB 上一动点,AM AC ⊥交直线CB 于点M ,则ABM ∆的面积最大值是 .21.(1)如图1,已知ABC ∆中,30ABC ∠=︒,1AB AC ==,则ABC S ∆= .(2)如图2,在平面直角坐标系xOy 中,点A 在y 轴上运动,点B 在x 轴上运动,且4AB =,求AOB ∆面积的最大值.(3)如图3,O的半径为2,弦AB=C为优弧AmB上一动点,AM AC⊥交射线CB于点M,请问,ABM∆的周长存在最大值还是最小值?若存在,求出相应的最值;若不存在,说明理由.22.如图,在平面直角坐标系中,抛物线289=--的图象经过点(0,3)y ax ax aC,交x轴于点A、(B A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;∠=∠?若存在,求出点P的坐标;若不(2)抛物线的对称轴上是否存在点P,使BPC BAC存在,请说明理由.23.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于C 点,P为y 轴上的一个动点,已知(2,0)A -、(0,C -,且抛物线的对称轴是直线1x =.(1)求此二次函数的解析式;(2)连接PA 、PB ,P 点运动到何处时,使得60APB ∠=︒,请求出P 点坐标.24.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(3,0)A ,(1,0)B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.题型五 定角定高25.如图,在矩形ABCD 中,1AB =,AD =,E 为BC 边上一动点,F 、G 为AD 边上两个动点,45FEG ∠=︒,则线段FG 的长度最大值为 .26.辅助圆之定角定高求解探究(1)如图①,已知线段AB ,以AB 为斜边,在图中画出一个直角三角形;(2)如图②,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断AB 是否存在最小值,若存在,请求出AB 最小值;若不存在,请说明理由;(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,45A ∠=︒,90B D ∠=∠=︒,CB CD ==点E 、F 分别为AB 、AD 上的点,若保持CE CF ⊥,那么四边形AECF 的面积是否存在最大值,若存在,请求出面积的最大值,若不存在,请说明理由.27.问题研究(1)若等边ABC ∆边长为4,则ABC ∆的面积为 ;(2)如图1,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断ABC ∆的面积是否存在最小值.若存在,求出这个最小值;若不存在,请说明理由.问题解决(3)如图2,四边形ABCD 中,AB AD ==,45B ∠=︒,60C ∠=︒,135D ∠=︒,点E 、F 分别为边AB 、BC 上的动点,且EAF C ∠=∠,求四边形AECF 面积的最大值.28.(1)如图1,已知AC 、BC 为O 的两条弦,点D 为O 外一点,则ACB ∠ ADB ∠(请用“<”“ >”或“=”填空)(2)①如图2,若等边ABC ∆内接于O ,4AB =,CD 为O 的切线,则ABD ∆的面积为 . ②如图3,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高.若4CD =,试判断ABC ∆的面积是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.(3)如图4,正方形ABCD 的边长为4,点E 、F 分别为边AB 、BC 上的动点,且45EDF ∠=︒,求四边形DEBF 面积的最大值.29.问题探究(1)如图1.在ABC ∆中,8BC =,D 为BC 上一点,6AD =.则ABC ∆面积的最大值是 .(2)如图2,在ABC ∆中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC ∆的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.30.如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.AOB∆的两条外角平分线交于点P,P在反比例函数9yx=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求P∠的度数及点P的坐标;(2)求OCD∆的面积;(3)AOB∆的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.专题03 隐圆(辅助圆)最值模型题型一 滑梯类模型1.如图,ABC ∆中,90C ∠=︒,10AC =,8BC =,线段DE 的两个端点D 、E 分别在边AC ,BC 上滑动,且6DE =,若点M 、N 分别是DE 、AB 的中点,则MN 的最小值为( )A .10B 3-C .6D .3【解答】解:ABC ∆中,90C ∠=︒,10AC =,8BC =,AB ∴==,6DE =,点M 、N 分别是DE 、AB 的中点,12CN AB ∴==,132CM DE ==, 当C 、M 、N 在同一直线上时,取最小值,MN ∴3,故选:B .2.如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 1 .【解答】解:如图,取AD 的中点H ,连接CH ,OH ,矩形ABCD ,1AB =,2BC =,1CD AB ∴==,2AD BC ==,点H 是AD 的中点,1AH DH ∴==,CH ∴===90AOD ∠=︒,点H 是AD 的中点,112OH AD ∴==, 在OCH ∆中,CO OH CH <+,当点H 在OC 上时,CO OH CH =+,CO ∴的最大值为1OH CH +=,1.3.已知边长为a 的正方形ABCD ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 点D 在第一象限,点E 为正方形ABCD 的对称中心,连接OE ,则OE 的长的最大值是 a .【解答】解:取AB 中点F ,连OF ,EF ,有OE OF FC +,当O 、E 、F 共线时,OE 有最大值,最大值是OF EF +.四边形ABCD 为正方形,90BEA ∴∠=︒,且F 为AB 中点,1122EF OF AB a ∴===, OE ∴的最大值为1122OF EF a a a +=+=, 故答案为:a .4.已知边长为a 的正三角形ABC ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC 的长的最大值是 .【解答】解:取AB 中点D ,连OD ,DC ,有OC OD DC +,当O 、D 、C 共线时,OC 有最大值,最大值是OD CD +.ABC ∆为等边三角形,AB BC AC a ∴===,根据三角形的性质可知:12OD a =,CD ==.OC ∴.5.如图,矩形ABCD 中,20AB =,30AD =,点E ,F 分别是AB ,BC 边上的两个动点,且10EF =,点G 为EF 的中点,点H 为AD 边上一动点,连接CH 、GH ,则GH CH +的最小值为 45 .【解答】解:由已知,点G 在以B 圆心,5为半径的圆在与长方形重合的弧上运动. 作C 关于AD 的对称点C ',连接C B ',交AD 于H ,交以B 为圆心,以5为半径的圆于G 由两点之间线段最短,此时C B '50==,则GH CH +的最小值50545=-=,故答案为:45.题型二 定点定长模型6.如图,在矩形ABCD中,4∆沿AB=,6AD=,E是AB边的中点,F是线段BC边上的动点,将EBFEF所在直线折叠得到△EB F',连接B D',则B D'的最小值是2.【解答】解:如图所示点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,此时B D'的值最小,根据折叠的性质,EBF∆≅△EB F',∴'⊥',EB B F∴'=,EB EBAB=,E是AB边的中点,4∴='=,2AE EBAD=,6∴=DE2∴'=.B D7.如图,在边长为4的菱形ABCD中,60∆A∠=︒,M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到△A MN',连接A C',则线段A C'长度的最小值是2.【解答】解:如图所示:在N的运动过程中A'在以M为圆心,MA的长为半径的圆上,∴'是定值,A C'长度取最小值时,即A'在MC上时,MA过点M作MF DC⊥于点F,在边长为4的菱形ABCD 中,60A ∠=︒,M 为AD 中点,2MD ∴=,60FDM ∠=︒,30FMD ∴∠=︒,112FD MD ∴==,cos30FM DM ∴=⨯︒=,MC ∴=2A C MC MA ∴'=-'=.故答案为:2.8.如图,四边形ABCD 中,AB AC AD ==,若76CAD ∠=︒,则CBD ∠= 38 度.【解答】解:AB AC AD ==,∴点B ,C ,D 可以看成是以点A 为圆心,AB 为半径的圆上的三个点,CBD ∴∠是弧CD 对的圆周角,CAD ∠是弧CD 对的圆心角;76CAD ∠=︒,11763822CBD CAD ∴∠=∠=⨯︒=︒. 9.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是( )A .1.5B .1.2C .2.4D .以上都不对【解答】解:以F 为圆心,CF 为半径作F ,过点F 作FH AB ⊥于点H 交F 于点G ,则点P 到AB 的距离的最小值FH FP FH FG =-=-.由翻折的性质可知,2PF CF ==,∴点P 在F 上,6AC =,8BC =,10AB ∴=,由AHF ACB ∆∆∽, ∴AF FH AB BC =, ∴4108FH =, 3.2FH ∴=,∴点P 到AB 的距离的最小值 3.22 1.2FH FG =-=-=.故选:B .10.如图,在平行四边形ABCD 中,30BCD ∠=︒,4BC =,CD =M 是AD 边的中点,N 是AB 边上的一动点,将AMN ∆沿MN A MN ',连接A C ',则A C '长度的最小值是 5 .【解答】解:如图,连接MC ;过点M 作ME CD ⊥,交CD 的延长线于点E ;四边形ABCD 为平行四边形,//AD BC ∴,4AD BC ==,点M 为AD 的中点,30BCD ∠=︒,2DM MA ∴==,30MDE BCD ∠=∠=︒,112ME DM ∴==,DE ,CE CD DE ∴=+=222CM ME CE =+,7CM ∴=;由翻折变换的性质得:2MA MA '==,显然,当折线MA C '与线段MC 重合时,线段A C '的长度最短,此时725AC '=-=,故答案为5.题型三 直角所对的是直径11.如图,在圆O 中,半径OA 弦10BC =,点Q 是劣弧AC 上的一个动点,连接BQ ,作CP BQ ⊥,垂足为P .在点Q 移动的过程中,线段AP 的最小值是( )A .6B .7C .8D .9【解答】解:如图,连接AC ,取BC 的中点K ,连接PK ,AKAB 是直径,90ACB ∴∠=︒,12AC ∴=,5CK BK ==,13AK ∴==,CP BQ ⊥,152PK BC ∴==, PA AK PK -,1358PA ∴-=,PA ∴的最小值为8.故选:C .12.如图,在ABC ∆中,90ABC ∠=︒,8AB =,12BC =,D 为AC 边上的一个动点,连接BD ,E 为BD 上的一个动点,连接AE ,CE ,当ABD BCE ∠=∠时,线段AE 的最小值是( )A .3B .4C .5D .6【解答】解:如图,取BC 的中点T ,连接AT ,ET .90ABC ∠=︒,90ABD CBD ∴∠+∠=︒,ABD BCE ∠=∠,90CBD BCE ∴∠+∠=︒,90CEB ∴∠=︒,6CT TB ==,162ET BC ∴==,10AT ==, AE AT ET -,4AE ∴,AE ∴的最小值为4,故选:B .13.如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,连接PC ,则线段CP 长的最小值为 4 .【解答】解:90ABC ∠=︒,90ABP PBC ∴∠+∠=︒,PAB PBC ∠=∠,90BAP ABP ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的O 上,连接OC 交O 于点P ,此时PC 最小,在Rt BCO ∆中,90OBC ∠=︒,8BC =,6OB =,10OC ∴==,1064PC OC OP ∴=-=-=.PC ∴最小值为4.故答案为:4.14.如图,已知C 的半径为3,圆外一定点O 满足5OC =,点P 为C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=︒,l 不经过点C ,则AB 的最小值为 4 .【解答】解:如图,连接OP ,PC ,OC ,OP PC OC +,5OC =,3PC =,∴当点O ,P ,C 三点共线时,OP 最短,如图,OA OB =,90APB ∠=︒,2AB OP ∴=,当O ,P ,C 三点共线时,5OC =,3CP =,532OP ∴=-=,24AB OP ∴==,故答案为:4.15.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE DF =,连接CF 交BD 于G ,连接BE 交AG 于点H ,若正方形的边长为3,则线段DH 长度的最小值是 31)2- .【解答】解:在正方形ABCD 中,AB AD CD ==,BAD CDA ∠=∠,ADG CDG ∠=∠, 在ABE ∆和DCF ∆中,AB CDBAD CDA AE DF=⎧⎪∠=∠⎨⎪=⎩,()ABE DCF SAS ∴∆≅∆,12∴∠=∠,在ADG ∆和CDG ∆中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,()ADG CDG SAS ∴∆≅∆,23∴∠=∠,13∴∠=∠,390BAH BAD ∠+∠=∠=︒,190BAH ∴∠+∠=︒,1809090AHB ∴∠=︒-︒=︒,取AB 的中点O ,连接OH 、OD , 则1322OH AO AB ===,在Rt AOD ∆中,OD根据三角形的三边关系,OH DH OD +>,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值31)2OD OH =-=.故答案为:31)2.题型四 定边对定角模型16.如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为【解答】解:ABC ∆是等边三角形,AB AC BC ∴==,60CAB ACB ∠=∠=︒,在ABE ∆和CAF ∆中,AB AC BAC ACB AE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE CAF SAS ∴∆≅∆,ABE CAF ∴∠=∠,60BPF PAB ABP CAP BAP ∴∠=∠+∠=∠+∠=︒,120APB ∴∠=︒,如图,过点A ,点P ,点B 作O ,连接CO ,PO ,∴点P 在AB 上运动,AO OP OB ==,OAP OPA ∴∠=∠,OPB OBP ∠=∠,OAB OBA ∠=∠,360120AOB OAP OPA OPB OBP ∴∠=︒-∠-∠-∠-∠=︒,30OAB ∴∠=︒,90CAO ∴∠=︒,AC BC =,OA OB =,CO ∴垂直平分AB ,30ACO ∴∠=︒,cos AC ACO CO ∴∠==2CO AO =,CO ∴=AO ∴=,在CPO ∆中,CP CO OP -,∴当点P 在CO 上时,CP 有最小值,CP ∴的最小值=故答案为17.在锐角三角形ABC 中,30A ∠=︒,2BC =,设BC 边上的高为h ,则h 的取值范围是 23h <+ 【解答】解:如图,BC 为O 的弦,2OB OC ==,2BC =,OB OC BC ∴==,OBC ∴∆为等边三角形,60BOC ∴∠=︒,1302BAC BOC ∴∠=∠=︒, 作直径BD 、CE ,连接BE 、CD ,则90DCB EBC ∠=∠=︒,∴当点A 在DE 上(不含D 、E 点)时,ABC ∆为锐角三角形,在Rt BCD ∆中,30D BAC ∠=∠=︒,CD ∴==当A 点为DE 的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图, A 点为DE 的中点,∴AB AC =,AH BC ∴⊥,1BH CH ∴==,OH ∴==2AH OA OH ∴=+=+h ∴的范围为23h +.故答案为23h +.18.在ABC ∆中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为 【解答】解:如图所示.45ADB ∠=︒,2AB =,作ABD ∆的外接圆O (因求CD 最小值,故圆心O 在AB 的右侧),连接OC , 当O 、D 、C 三点共线时,CD 的值最小.90AOB ∴∠=︒,AOB ∴∆为等腰直角三角形,sin 45AO BO AB ∴==︒⨯=45OBA ∠=︒,90ABC ∠=︒,45OBE ∴∠=︒,作OE BC ⊥于点E ,OBE ∴∆为等腰直角三角形.sin451OE BE OB ∴==︒⋅=,312CE BC BE ∴=-=-=,在Rt OEC ∆中,OC ==当O 、D 、C 三点共线时,CD 最小为CD OC OD =-.19.如图,ABC ∆为等边三角形,2AB =.若P 为ABC ∆内一动点,且满足PAB ACP ∠=∠,则线段PB 长度的最小值为 .【解答】解:ABC ∆是等边三角形,60ABC BAC ∴∠=∠=︒,2AC AB ==,PAB ACP ∠=∠,60PAC ACP ∴∠+∠=︒,∴点P的运动轨迹是AC,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA PC=,OB AC⊥,则112AD CD AC===,30PAC ACP∠=∠=︒,1302ABD ABC∠=∠=︒,tan30PD AD AD∴=⋅︒==,BDPB BD PD∴=-==20.【问题情境】(1)点A是O外一点,点P是O上一动点.若O的半径为2,且5OA=,则点P到点A的最短距离为3.【直接运用】(2)如图1,在Rt ABC∆中,90ACB∠=︒,2AC BC==,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP AP的最小值是.【构造运用】(3)如图2,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.【灵活运用】(4)如图3,O的半径为4,弦4AB=,点C为优弧AB上一动点,AM AC⊥交直线CB于点M,则ABM∆的面积最大值是.【解答】解:(1)连接AP、OP,如图4所示:O 的半径为2,2OP ∴=,523OA OP ∴-=-=,PA OA OP ∴-,3PA ∴,∴当点P 在OA 上时,PA 最短,最小值为3,故答案为:3;(2)连接OA ,交半圆于P ',连接OP ,如图1所示:2AC BC ==,BC 为半圆的直径,112OP OC BC ∴===,90ACB ∠=︒,OA ∴==AP OA OP -, 51AP ∴-,∴当点P 在OA 上时,AP1-,1;(3)点P 到点C 的最短距离为3,理由如下:取AB 中点O ,连接OP 、OC 、PC ,如图2所示:点M 、N 分别从点B 、C 同时出发,以相同的速度沿边BC 、CD 方向向终点C 和D 运动, BM CN ∴=,四边形ABCD 是正方形,6AB BC ∴==,90ABM BCN ∠=∠=︒,在ABM ∆和BCN ∆中,BM CNABM BCN AB BC=⎧⎪∠=∠⎨⎪=⎩,()ABM BCN SAS ∴∆≅∆,BAM CBN ∴∠=∠,90CBN ABN ∠+∠=︒, 90BAM ABN ∴∠+∠=︒, 90APB ∴∠=︒, ∴点P 在以AB 为直径的O 上运动, 132OP OA OB AB ====,OC =又PC OC OP -, 353PC ∴-,PC ∴的最小值为3;(4)连接OA 、OB ,如图3所示: 4OA OB AB ===, AOB ∴∆是等边三角形, 60AOB ∴∠=︒, 11603022ACB AOB ∴∠=∠=⨯︒=︒,AM AC ⊥, 60M ∴∠=︒, ∴点M 在以120ADB ∠=︒的D 上, 4AB =,ABM S ∆最大,则点M 的距离最大, ∴当AM BM =时点M 到AB 的距离最大, ABM ∴∆是等边三角形,114422ABM S AB AB ∆∴==⨯=故答案为:21.(1)如图1,已知ABC ∆中,30ABC ∠=︒,1AB AC ==,则ABC S ∆= . (2)如图2,在平面直角坐标系xOy 中,点A 在y 轴上运动,点B 在x 轴上运动,且4AB =,求AOB ∆面积的最大值.(3)如图3,O 的半径为2,弦AB =C 为优弧AmB 上一动点,AM AC ⊥交射线CB 于点M ,请问,ABM ∆的周长存在最大值还是最小值?若存在,求出相应的最值;若不存在,说明理由.【解答】解:(1)如图1中,作AH BC ⊥于H .AB AC =,AH BC ⊥,BH CH ∴=,1AB =,30B ∠=︒,1122AH AB ∴==,2BC BH ==1122ABC S ∆∴==.(2)如图2中,取AB 的中点E ,连接OE ,作OH AB ⊥于H .90AOB ∠=︒,AE EB =,122OE AB ∴==,OH AB ⊥,OH OE ∴,即2OH ,OH ∴的最大值为2,AOB ∴∆的面积的最大值12442=⨯⨯=.(3)如图3中,连接OA ,OB ,作OH AB ⊥于H .OH AB ⊥,OA OB =,AH BH ∴==AOH BOH ∠=∠,sin AOH ∴∠,60AOH ∴∠=︒,2120AOB AOH ∠=∠=︒,1602ACB AOB ∴∠=∠=︒, MA AC ⊥,90MAC ∴∠=︒30M ∴∠=︒,如图31-中,ABM ∆中,AB =30AMB ∠=︒,ABM ∆的周长存在最大值,理由如下;作ABM ∆的外接圆,取优弧AB 的中点O ,连接OA ,OB ,以O 为圆心,OA 为半径作O ,延长AM 交O 于F ,连接BF .30AOB AMB ∠=∠=︒,1152AFB AOB ∴∠=∠=︒, 30AMB F MBF ∠=∠+∠=︒,F MBF ∴∠=∠,MF MB ∴=,MA MB MA MF AF ∴+=+=,∴当AF 的值最大时,MA MB +的值最大,此时MAB ∆的周长最大,延长AO 交O 于E ,连接BE 交ABM ∆的外接圆于D ,连接AD ,OD . 易知:90ABD AOD ∠=∠=︒,OD AE ∴⊥,OA OE =,DA DE ∴=,15E EAD ∴∠=∠=︒,151530ADB ∴∠=︒+︒=︒,2AD DE AB ∴===6BD =,6BE ∴=,AE ∴当AF 与AE 重合时,AF 的值最大,AF ∴的最大值为ABM ∴∆的周长的最大值为22.如图, 在平面直角坐标系中, 抛物线289y ax ax a =--的图象经过点(0,3)C ,交x 轴于点A 、(B A 点在B 点左侧) ,顶点为D .(1) 求抛物线的解析式及点A 、B 的坐标;(2)抛物线的对称轴上是否存在点P ,使BPC BAC ∠=∠?若存在, 求出点P 的坐标;若不存在, 请说明理由 .【解答】解: (1)把(0,3)C 代入289y ax ax a =--得93a -=,解得13a =-, ∴所以抛物线的解析式为182333y x x =-++. 令0y =得:1823033x x -++=,解得:11x =-,29x =, (1,0)A ∴-,(9,0)B .(2)分两种情况:①如图 2 ,以AB 为直径作M ,M 交抛物线的对称轴于(P BC 的下方) .42b x a=-=, ∴点P 的横坐标为 4 .由圆周角定理得CPB CAB ∠=∠,(1,0)A -,(9,0)B ,10AB ∴=.152MP AB ∴==. (4,5)P ∴-.②如图 3 所示: 以A B '为直径作M ',M '交抛物线的对称轴于P ',过点M '作M E P F '⊥',垂足为E ,连接P M ''.点A '与点A 关于BC 对称,10AB A B ∴='=,A A ∠=∠'.CP B CA B ∠'=∠',CP B A ∴∠'=∠.(1,6)A ',(9,0)B(5,3)M ∴'.1M E ∴'=.152M P A B ''='=,P E ∴'=∴点P '的坐标为(4,3).综上所述, 点P 的坐标为(4,5)P -或(4,3).23.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知(2,0)A -、(0,C -,且抛物线的对称轴是直线1x =.(1)求此二次函数的解析式;(2)连接PA 、PB ,P 点运动到何处时,使得60APB ∠=︒,请求出P 点坐标.【解答】解:(1)将A ,C 点坐标代入函数解析式,及对称轴,得42012a b c c b a⎧-+=⎪⎪=-⎨⎪⎪-=⎩,解得a b c ⎧=⎪⎪⎪⎪=⎨⎪⎪=-⎪⎪⎩,抛物线的解析式为2y x -,(2)以AB 为边作等边ABM ∆,作ABM ∆的外接圆O ',交y 轴负半轴于P ,作O E AB '⊥于E ,连接BO ',O P '.设(0,)P m . 易知:(1,3)O '-,23BO O P '='=,21(3)12m ∴++=,113m ∴=--或113-(舍弃), (0,311)P ∴--,根据对称性可知(0,311)P '+也符合条件.24.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(3,0)A ,(1,0)B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.【解答】解:(1)抛物线23y ax bx =++过点(3,0)A ,(1,0)B -,∴933030a b a b ++=⎧⎨-+=⎩ 解得:12a b =-⎧⎨=⎩, ∴这条抛物线对应的函数表达式为223y x x =-++.(2)解法一:如图,连接IO ,ID ,IA ,I 是ADG ∆的内心,IA ∴平分DAG ∠,ID 平分ADG ∠,12IAD DAG ∴∠=∠,12ADI ADG ∠=∠.90DAG ADG ∠+∠=︒,45IAD ADI ∴∠+∠=︒,135AID ∴∠=︒.在ADI ∆和AOI ∆中,AD AODAI OAI AI AI=⎧⎪∠=∠⎨⎪=⎩,()ADI AOI SAS ∴∆≅∆.135AID AIO ∴∠=∠=︒. OA 为定线段,OIA ∠恒等于135︒,∴点I 在以OA 为弦,所含的圆周角等于135︒的圆弧上,设该圆的圆心为E ,连接EO ,EA ,135OIA ∠=︒,90OEA ∴∠=︒.EO EA =,EOA ∴∆为等腰直角三角形.过点E 作EH OA ⊥于点H , 则1322AH OH OA ===.OE ∴=.∴圆心E 的坐标为3(2,3)2,E . 当点I 在线段CE 上时,CI 的值最小,CI 的最小值CE OE =-==.题型五 定角定高模型25.如图,在矩形ABCD 中,1AB =,AD =,E 为BC 边上一动点,F 、G 为AD 边上两个动点,45FEG ∠=︒,则线段FG 的长度最大值为 2 .【解答】解:如图,作EFG ∆的外接圆O ,连接OA ,OE ,OG ,过点O 作OH AD ⊥于H ,过点E 作EQ AD ⊥于Q ,连接AC .四边形ABCD 是矩形,90B ∴∠=︒,1AB CD ==,AD BC ==2AC ∴=,45FEG ∠=︒,290FOG FEG ∴∠=∠=︒,12EFG EOG ∠=∠, 290EOF FOG EOG EFG ∴∠=∠+∠=∠+︒,1112221cos cos(45)cos(90)2EF EF EF OF OE OEF EFG EOF ====∠︒-∠︒-∠, ∴当EF 最大,且EFG ∠最小时,OF 的值最大,则FG 的值最大, 1sin 2EQEQ EFG FQ AC ∠==, ∴当点E 与C 重合,F与A 重合时,“=”号成立,12cos(4530)AC OF OE ∴==-︒-︒FG ∴的最大值2==.故答案为2.26.辅助圆之定角定高求解探究(1)如图①,已知线段AB ,以AB 为斜边,在图中画出一个直角三角形;(2)如图②,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断AB 是否存在最小值,若存在,请求出AB 最小值;若不存在,请说明理由;(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,45A∠=︒,90B D ∠=∠=︒,CB CD ==点E 、F 分别为AB 、AD 上的点,若保持CE CF⊥,那么四边形AECF【解答】解:(1)如图①中,ABC ∆即为所求.(2)如图②中,作ABC ∆的外接圆O ,连接OA ,OB ,OC ,作OE AB ⊥于E .设2OA OC x ==.2120AOB ACB ∠=∠=︒,OA OB =,OE AB ⊥,AE EB ∴=,60AOE BOE ∠=∠=︒, 12OE OA x ∴==,AE =,OC OE CD +,34x ∴, 43x∴, x ∴的最小值为43,2AB =,AB ∴. (3)如图③中,连接AC ,延长BC 交AD 的延长线于G ,将CDF ∆顺时针旋转得到CBH ∆,作CEH ∆的外接圆O .90ADC ABC ∠=∠=︒,AC AC =,CD CB =,Rt ACD Rt ACB(HL)∴∆≅∆, ACD ACB S S ∆∆∴=,45DAB ∠=︒,135DCB ∴∠=︒, 45DCG ∴∠=︒, 90CDG ∠=︒,CD DG ∴==12CG ∴==,12AB GB ∴==+由(2)可知,当CEH ∆的外接圆的圆心O 在线段BC 上时,ECH ∆的面积最小,此时四边形AFCE 的面积最大,设OC OE r ==,易知2OB EB ==,r ∴=r ∴=,12(2EH ∴=,∴四边形AFCE 的面积的最大值112(1212(214422=⨯⨯+⨯⨯⨯. 27.问题研究(1)若等边ABC ∆边长为4,则ABC ∆的面积为(2)如图1,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断ABC ∆的面积是否存在最小值.若存在,求出这个最小值;若不存在,请说明理由. 问题解决(3)如图2,四边形ABCD 中,AB AD ==,45B ∠=︒,60C ∠=︒,135D ∠=︒,点E 、F 分别为边AB 、BC 上的动点,且EAF C ∠=∠,求四边形AECF 面积的最大值.【解答】解:(1)过点C 作CD AB ⊥于D ,等边ABC ∆边长为4,114222AD BD AB ∴===⨯=, 在Rt ACD ∆中,由勾股定理得22AC AD CD =+,即22242CD =+,解得:CD =,11422ABC S AB CD ∆∴=-=⨯⨯故答案为:(2)CD 为AB 边上的高,若4CD =,设AB c =,AC b =,BC a =,过A 作AE BC ⊥于E ,111sin60222ABC S AB CD AE BC BC AC ∆∴=⨯=⨯=⨯⨯︒,4c ∴=,又sin 60AE AC =⋅︒=,1cos602CE AC b =⋅︒=, 12BE BC EC a b =-=-,在Rt ABE ∆中,由勾股定理得222AB AE BE =+,即2221)()2c a b =+-, 2222c a b ab ab ab ab ∴=+--=,仅当a b =时取等号,即ABC ∆为等边三角形时, 283c c ∴,833c∴,11422ABC S AB CD ∆∴=⋅==最小 (3)45B ∠=︒,60C ∠=︒,135ADC ∠=︒,3603604560135120BAD B C D ∴∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,将ABE ∆逆时针旋转120︒得ADG ∆, 45ADG B ∠=∠=︒,AE AG =, 45135180ADG ADC ∴∠+∠=︒+︒=︒, C ∴、D 、G 三点共线,60EAF C ∠=∠=︒,12060BAE FAD EAF ∠+∠=︒-∠=︒, 60GAD FAD BAE FAD ∴∠+∠=∠+∠=︒,在EAF ∆和GAF ∆中,AE AGEAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ()EAF GAF SAS ∴∆≅∆, EF GF ∴=,ABE ADF AGF AECF ABCD ABCD S S S S S S ∆∆∆=--=-四边形四边形四边形,∴当AGF S ∆最小时,AECF S 四边形最大,过A 作AH CG ⊥于H ,4AD =45ADH ∠=',sin454AH DH AD ∴==⋅︒=, 60FAG ∠=︒,11sin 6022AGF S AF AG AG AH GF ∆∴=--︒⋅=-, 由(2)知AG AF =时,AFG ∆面积最小,由点F 在CD 上运动,达不到AFG ∆是等边三角形,当向D 运动时,AFG ∆面积逐渐减小,∴点F 到点D 时,AFG ∆面积最小,此时ABE AFG AFE ∆≅∆≅∆,45ABE AFE AFG HAF ∴∠=∠=∠=∠=︒,6BAE FAE AG O ∠=∠=∠=︒,AB AF AD ===在_AH 上取点M 使30HGM ∠=︒, 604515HAG FAG FAH ∠=∠-∠=︒-︒=︒,9075AGH GAH '∴∠=-∠=︒,75(9030)15AGM AGH MGH HAG ∴∠=∠-∠=︒-︒-︒=︒=∠,设GH x =,2MG x =,由勾股定理MH =,24AH AM MH x ∴=+=+=,4(2x ∴=-,44(212GF ∴=+=-,14(12242AEF AGF S S ∆∆==⨯⨯-=-12EF GF ==-1354590EFC ADC ADE ∠=∠-∠=︒-︒=︒,60C ∠=︒,2111tan (1248222CEF S EF FC EF EF FEC ∆∴=⋅=⋅⋅∠=⨯-=,244824AEF CEF AECF S S S ∆∆∴=+=-=四边形.∴四边形AECF 面积的最大值为24.28.(1)如图1,已知AC 、BC 为O 的两条弦,点D 为O 外一点,则ACB ∠ > ADB ∠(请用“<”“ >”或“=”填空)(2)①如图2,若等边ABC ∆内接于O ,4AB =,CD 为O 的切线,则ABD ∆的面积为 . ②如图3,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高.若4CD =,试判断ABC ∆的面积是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.(3)如图4,正方形ABCD 的边长为4,点E 、F 分别为边AB 、BC 上的动点,且45EDF ∠=︒,求四边形DEBF 面积的最大值.【解答】解:(1)如图1,设AD 与O 交于E ,连接BE , 则C AEB ∠=∠,AEB D ∠>∠,ACB ADB ∴∠>∠;故答案为:>;(2)①如图2,连接CO 并延长交AB 于E , ABC ∆是等边三角形, AC CB ∴=,∴AC BC =,CE AB ∴⊥,2AE BE ==,CE ∴=CD 为O 的切线,CE CD ∴⊥, //CD AB ∴,ABD ∴∆的面积11422AB CE =⋅=⨯=故答案为:②如图3中,作ABC ∆的外接圆O ,连接OA ,OB ,OC ,作OE AB ⊥于E .设2OA OC x ==. 2120AOB ACB ∠=∠=︒,OA OB =,OE AB ⊥,AE EB ∴=,60AOE BOE ∠=∠=︒, 12OE OA x ∴==,AE =,OC OE CD +, 34x ∴, 43x∴, x ∴的最小值为43,2AB =,AB ∴; ABC ∴∆的面积的最小值142=⨯; (3)四边形DEBF 面积ADE CDF ABCD S S S ∆∆=--正方形,∴当ADE CDF S S ∆∆+DEBF 的面积有最大值,如图4,将DAE ∆逆时针旋转90︒得到DCM ∆, 180FCM FCD DCM ∴∠=∠+∠=︒,AE CM =,F ∴、C 、M 三点共线, DE DM ∴=,90EDM ∠=︒,90EDF FDM ∴∠+∠=︒, 45EDF ∠=︒,45FDM EDF ∴∠=∠=︒,在DEF ∆和DMF ∆中,DE DMEDF MDF DF DF =⎧⎪∠=∠⎨⎪=⎩, ()DEF DMF SAS ∴∆≅∆,EF MF ∴=,EF CF AE ∴=+;DEF ∆的面积DFM =∆的面积122ADE DCF S S EF CD EF ∆∆=+=⨯=,DEF ∴∆面积2EF =.EF AE CF =+,4AE BE AB +==,4BF CF BC +==, 8EF BE BF AB BC ∴++=+=, 8BE BF EF ∴+=-,22222(8)6416BE BF BE BF EF EF EF ∴⋅++=-=+-,且222BE FB EF +=, 328BE BF EF ∴⋅=-,2()0BE BF -, 222BE BF BE BF ∴+⋅, 26416EF EF ∴-2(8)128EF ∴+,828EF ∴-,或828EF --(舍去),EF ∴的最小值为8-,DEF ∴∆面积的最小值为,∴四边形DEBF 面积的最大值441632=⨯-=-29.问题探究(1)如图1.在ABC ∆中,8BC =,D 为BC 上一点,6AD =.则ABC ∆面积的最大值是 24 . (2)如图2,在ABC ∆中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC ∆的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,12AB =,6BC =,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.【解答】解:(1)当AD BC ⊥时,ABC ∆面积的最大,则ABC ∆面积的最大值是11862422BC AD ⋅=⨯⨯=,故答案为:24;(2)如图2中,连接OA ,OB ,OC ,作OE BC ⊥于E .设2OA OC x ==,2120COB CAB ∠=∠=︒,OC OB =,OE CB ⊥, CE EB ∴=,60COE BOE ∠=∠=︒,12OE OB x ∴==,BE ,OA OE AG +,33x ∴, 1x ∴,x ∴的最小值为1,2BC =,BC ∴的最小值为(3)如图3中,连接AF ,EF ,延长BC 交AE 的延长线于G ,90D ∠=︒,6AD DE ==,45DAE AED ∴∠=∠=︒,12CD AB ==,6CE CF ∴==,45CEF CFE ∴∠=∠=︒, 90AEF ∴∠=︒,EF BF ∴=,将EFM ∆顺时针旋转得到FBH ∆,作FHN ∆的外接圆O 交AB 于N , 连接ON ,90AEF ABF ∠=∠=︒,AF AF =,EF BF =,Rt AEF Rt ABF(HL)∴∆≅∆, AEF ABF S S ∆∆∴=,。

专题4 阿波罗尼斯圆与隐性圆问题-2017-2018学年江苏高一下学期数学期末复习备考(必修2) Word版含解析

专题4 阿波罗尼斯圆与隐性圆问题-2017-2018学年江苏高一下学期数学期末复习备考(必修2) Word版含解析

专题4 阿波罗尼斯圆与隐性圆问题-2017-2018学年江苏高一下学期数学期末复习备考(必修2)一、 填空题1.如果圆(x -2a )2+(y -3a -3)2=4上总存在两个点到原点的距离为1,则实数a 的取值范围是________. 解析:原问题可转化为:圆(x -2a )2+(y -a -3)2=4和圆x 2+y 2=1相交,可得两圆圆心之间的距离d ==,由两圆相交可得2-1<<2+1,解得-56<a <0.2.(2017·南通二模)在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围是________.又BC 2=4(4-OP 2),OP ∈2,则BC ∈ [4,4]=[-,+].法二:设BC 的中点为M (x ,y ),因为OB 2=OM 2+BM 2=OM 2+AM 2,有4=x 2+y 2+(x -1)2+(y -1)2,化简得21+(y -21)2=23,所以点M 的轨迹是以21为圆心,22为半径的圆,所以AM 的取值范围是2,所以BC 的取值范围是[-,+].3.已知x ,y 满足0≤x ≤,则x -3y -2的取值范围是________.解析:由已知得x 2+y 2≤4(x ≥0),则点(x ,y )在以(0,0)为圆心,2为半径的右半圆内,x -3y -2=2表示点(x ,y )和点(3,2)连线的斜率,设切线方程为y -2=k (x -3),即kx -y +2-3k =0,则k2+1|2-3k|=2,解得k =0或k=512,故x -3y -2的取值范围是512.4.在平面直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:x 2+y 2=16,点M (1,0),动点P ,Q 分别在圆C 1和圆C 2上,满足MP ⊥MQ ,则线段PQ 的取值范围是________.解析:设P (x 1,y 1),Q (x 2,y 2),则x22+y22=16x12+y12=4,设PQ 的中点N (x ,y ),即N 2y1+y2,则x 2+y 2=x1x2+y1y2=5+21(x 1x 2+y 1y 2),由MP ⊥MQ ,得x 1x 2+y 1y 2=x 1+x 2-1=2x -1,所以x 2+y 2=5+x -21,即21+y 2=419.因为PQ =2MN ,MN ∈2+1,所以PQ ∈[-1,+1]5.已知圆O :x 2+y 2=1.若圆O 上存在两点A ,B ,直线y =2上存在点M ,满足λ=(λ>0),则λ的取值范围是________.6. (2017·江苏高考)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若·≤20,则点P 的横坐标的取值范围是________.解析:设P (x ,y ),由·≤20,易得2x -y +5≤0,由x2+y2=502x -y +5=0,可得A :y =-5x =-5或B :y =7x =1,由2x -y+5≤0得P 点在圆左边弧上,结合限制条件-5≤x ≤5,可得点P 横坐标的取值范围为[-5,1].7.已知变量a ,θ∈R ,则(a -2cos θ)2+(a -5-2sin θ)2的最小值为________.解析:(a ,a -5)在直线x -y -5=0上,点(2cos θ,2sin θ)在圆x 2+y 2=4上,圆心到直线x -y -5=0距离的为5,则圆上点到直线距离最小值为3,故所求为9.8.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P (2,0),则|++|的最大值________.9.已知直线l :x +3y +1=0,圆C :x 2+y 2-2ax -2ay =1-2a 2(a >0),过原点的直线l 1与直线l 垂直,l 1与圆C 交于M ,N 两点,则当△CMN 的面积最大时,圆心C 的坐标为________.解析:圆C :(x -a )2+(y -a )2=1,直线l 1:3x -y =0,当CM ⊥CN 时,△CMN 的面积最大,此时C 到l 1的距离为22,则10|3a -a|=22,a =25,圆心C (25,25).二、解答题10.过A (4,0)的直线l 交抛物线D :y 2=4x 于M 、N 两点.是否存在垂直于x 轴的直线m 被以MA 为直径的圆E 所截得的弦长为定值?如果存在,求出m 的方程;如果不存在,说明理由.解析:假设存在直线m :x =a 满足题意,设M (x 1,y 1),则M (2x1+4,2y1),过M 作直线x =a 的垂线,垂足为E ,设直线m 与圆M 的一个交点为G .可得EG 2=MG 2-ME 2,即EG 2=MA 2-ME 2=1--a x1+4 =41y 12+4x1+42+a (x 1+4)-a 2=x 1-4x 1+a (x 1+4)-a 2=(a -3)x 1+4a -a 2.当a =3时,EG 2=3,此时直线m 被以AP 为直径的圆M 所截得的弦长恒为定值2.因此存在直线m :x =3满足题意.11.如图,在平面直角坐标系xOy 中,已知F 1(-4,0),F 2(4,0),A (0,8),直线y =t (0<t <8)与线段AF 1,AF 2分别交于点P 、Q 过点Q 作直线QR ∥AF 1交F 1F 2于点R ,记△PRF 1的外接圆为圆C .(1)求证:圆心C 在定直线7x +4y +8=0上;(2)圆C 是否恒过异于点F 1的一个定点?若过,求出该点的坐标;若不过,请说明理由.解析:(1)法一:易得直线AF 1:y =2x +8;AF 2:y =-2x +8,所以可得P ,t t -8,Q ,t 8-t ,再由QR ∥AF 1,得R (4-t,0),则线段F 1R 的中垂线方程为x =-2t ,线段PF 1的中垂线方程为y =-21x +85t -16,由2t 得△PRF 1的外接圆的圆心坐标为-27t ,经验证,该圆心在定直线7x +4y +8=0上.所以圆心坐标为(-2t ,87t -2),经验证,该圆心在定直线7x +4y +8=0上.②由①可得圆C 的方程为x 2+y 2+tx +(4-47t )y +4t -16=0, 该方程可整理为(x 2+y 2+2y -16)+t (x -47y +4)=0, 则由y +4=07 解得1332或y =0x =-4,所以圆C 恒过异于点F 1的一个定点,该点坐标为1332.12.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .·是否为定值?如果是,求出其定值;如果不是,请说明理由.解析:因为AQ ⊥BP ,所以·=0,所以·=(+)·=·+·=·.当直线l 与x 轴垂直时,得P (-2,-25).则=(0,-25),又=(1,2),所以·=·=-5.当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).由x +2y +7=0,x +2,解得P 1+2k -5k.所以=1+2k -5k .所以·=·=1+2k -5-1+2k 10k =-5.综上所述,·是定值,且·=-5.。

八种隐圆类最值问题,圆来如此简单(原卷版)

八种隐圆类最值问题,圆来如此简单(原卷版)

八种隐圆类最值问题,圆来如此简单在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。

正所谓:有“圆”千里来相会,无“圆”对面不相逢。

“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏圆”。

一旦“圆”形毕露,则答案手到擒来!知识点梳理题型一定点定长得圆2023年湖北省鄂州市中考数学真题2023·邵阳市中考真题2023·广西南宁市二模2022·辽宁抚顺·中考真题2022·长春·中考真题题型二直角的对边是直径2023·菏泽市中考真题2022·通辽·中考真题2023·汕头市金平区一模2023·广州市天河区三模2022·成都市成华区二诊题型三对角互补得圆2023年·广元市一模题型四定弦定角得圆2023·成都市新都区二模2023·成都市金牛区二模2023·达州·中考真题题型五四点共圆题型六相切时取到最值2023·随州市中考真题2022·江苏无锡·中考真题2022扬州中考真题题型七定角定高面积最小、周长最小问题题型八米勒角(最大张角)模型徐州中考知识点梳理一、定点定长得圆在几何图形中,通过折叠、旋转,滑梯模型得到动点的轨迹为绕定点等于定长的圆,从而画出动点轨迹,并进行计算二、直角的对边是直径前世:在⊙O中,AB为直径,则始终有AB所对的∠C=90°今生:若有AB是固定线段,且总有∠ACB=90°,则C在以AB为直径径的圆上.(此类型本来属于定弦定角,但是因为比较特殊,故单独分为一类)xB三、对角互补前世:在⊙O 上任意四点A ,B ,C ,D 所围成的四边形对角互补 今生:若四边形ABCD 对角互补,则A ,B ,C ,D 四点共圆四、定弦定角模型定角模型是直角模型的一种变形形式,其依据是已知定角,则根据“同弧所对的圆周角相等”得到动点的轨迹为圆弧,再画出对应图形进行计算.前世:在⊙O 中,若弦AB 长度固定则弦AB 所对的圆周角都相等(注意:弦AB 在劣弧AB 上也有圆周角,需要根据题目灵活运用)今生:若有一固定线段AB 及线段AB 所对的∠C 大小固定,根据圆的知识可知C 点并不是唯一固定的点,C 在⊙O 的优弧ACB 上均可(至于是优弧还是劣弧取决于∠C 的大小,小于90°,则C 在优弧上运动;等于90°,则C 在半圆上运动;大于90°则C 在劣弧运动)五、四点共圆模型前世:在⊙O 中,ABCD 是圆的内接四边形,则有∠1=∠2,∠3=∠4,△BPC~△APD(同理△BPA~△CPD) 今生:若四边形ABCD 中有∠1=∠2(通常情况下∠5=∠6对顶角相等,故不需要∠3=∠4,实际应用中长用∠1=∠2,∠5=∠6)则ABCD 四点(某些不能直接使用四点共圆的地区,可以通过证明两次三角形相似也可),选填题可以直接使用六、定角定高(探照灯模型)什么叫定角定高,如右图,直线BC 外一点A ,A 到直线BC 距离为定值(定高),∠BAC 为定角。

专题复习三(与圆有关的最值问题)

专题复习三(与圆有关的最值问题)

问题2:利用几何意义求与圆有关的最值
例:已知实数x, y满足方程x 2 y 2 4 x 1 0 求下列各式的最大值与 最小值: y (1) ; x (2) y x;
涉及与圆有关的最值问 题, 利用数形结合与几何意 义求解 y b 形如u 转化为直线斜率 xa 形如t ax by 转化为直线截距
专题复习三
与圆有关的最值问题
问题1:定点、定直线到圆的最大(小)距离
定点与圆上的点的距离 的最大值与最小值
y D P A
O

定直线与圆上点的距离 的最大值与最小值yCຫໍສະໝຸດ DC P BE
A
x
B
x
O
|AB|最短、|AC|最长
|AB|最短、|AC|最 长
问题1:练习题
1.直线y x 1上的点到圆x 2 y 2 4 x 2 y 4 0 的最近距离是__________ __ 变式:圆x 2 y 2 4 x 2 y 4 0上到直线y x 1 距离最近的点的坐标是 __________ __ 2.圆x 2 y 2 4 x 4 y 10 0上的点到直线 x y 14 0 的最大距离与最小距离 的差是 __________ _ 3.点M在圆C1 : x 2 y 2 6 x 2 y 1 0上,点N 在圆C2 : x 2 y 2 2 x 4 y 1 0上,求 MN 的最大值.
(3) x 2 y 2; y 1 ( 4) ; x4 含有x 2与y 2的 转化为两点间距离 (5) x 2 10x y 2 14 y;
问题2:基础训练
1 1. 已知x, y满足( x 1) y , 分别求x 2 y 2、 4 y x y、 的最值. x 2.若x, y满足( x 1) 2 ( y 2) 2 4, 求S 2 x y的最大值与最小值 . y 1 2 2 3.实数x, y满足x y 4 x 2 y 0, 求 和x y的取值范围 . x 1 4.实数x, y满足x 2 y 2 4 x 6 y 12 0, 求下列式子的最值: y (1) ; (2) x 2 y 2 ; (3) x y; (4) x y. x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
M
C D A
E
F
D C
B
A
B
D
C
F A
“隐圆”最值问题
重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题
【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________.
分析:在构造圆的前提下 考虑90°如何使用。

直角对直径所以以AB 为直径画圆。

使用垂径定理即可得到3-20c x ≤<3
【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________.
分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值
【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点,
M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________.
分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。

接下来考虑重点M 的用途即可。

中点的用法可尝试下倍长和中位线。

此题使用中位线。

答案是
3722
c x ≤≤
【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC 2,AD = 1,F 是BE 的中点,若将△ADE 绕点A
旋转一周,则线段AF 4242
22
AC -+≤≤ 分析:同例题
【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角
坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC
长的最大值是()
A.2 B.1 C.3D.3
分析:取AB中点M连接OM、CM。

因为OM=1,3,所以
3
【练1】如图,在矩形ABCD中,AB = 2,BC3,两顶点A、B分别在平面
直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC
长的最大值为_______3___.
分析:取AB中点M,方法同例题
【练2】如图,E、F是正方形ABCD的边AD上两个动点,
满足AE = DF,连接CF交BD于点G,连接BE交AG于点H,若正方形的边
长为2,则线段DH长度的最小值是51____.
分析:取AB中点M,方法同例题
【例4】如图,∠XOY = 45°,一把直角三角尺ABC的两个顶点A、B分别在
OX、OY上移动,其中AB = 10,那么点O到AB的距离的最大值为__________.
分析:构造△ABO的外接圆。

点O可以在圆上任意动,利用垂径定理即可得到
+
O到AB的最大距离为:552
【练1】已知线段AB = 4,在线段AB上取一点P,在AB的同侧作等边△APC和等边△BPD,则线段CD的最小值为____2______.
分析:可构造一个以CD为斜边的水平的直角三角形,快速得到当AP=BP时最小,CD最小
【练2】如果满足∠ABC = 60°,AC = 12,BC = k的△ABC恰有一个,那么k的取值范围是
A
D
C
B
O
y x
N
M
B
Q
C
P
A
____012k <≤______.
分析:画出△ABC 的外接圆,观察动点B 在弧上面的运动即可
【例5】已知A (2,0),B (4,0)是x 轴上的两点,点C 是y 轴上的动点,当∠ACB 最大时,则点C 的坐标为__________.
分析:画出△ABC 的外接圆M 。

要保证∠ACB 最大,即圆周角最大,只要圆心角最大即可。

所以在等腰△MAB 中只要半径最小即可,半径什么时候最小呢?只要圆与Y 轴相切即可所以得答案为:(0,2)±
【练】当你站在博物馆的展厅中时,你知道站在何处观赏最理想吗? 如图,设墙壁上的展品最高点P 距底面2.5米,最低点Q 距底面 2米,观察者的眼睛E 距底面1.6米,当视角∠PEQ 最大时,站 在此处观赏最理想,则此时E 到墙壁的距离为( B )
A .1米
B .0.6米
C .0.5米
D .0.4米
分析:只要△PQE 的外接圆与人眼所在的水平线相切即可,通过垂径定理可得答案是B
【提升】
1.如图,Rt △ABC 中,∠C = 90°,∠ABC = 30°,AB = 6, 点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA = DE ,则AD 的取值范围是( )
A .2 < AD < 3
B .2 ≤ AD < 3
C .2 ≤ A
D ≤ 3 D .1 ≤ AD < 2 2.(2012·济南)如图,矩形ABCD 中,AB = 2,AD = 1,当A 、B 两点 分别在x 轴正半轴和y 轴正半轴上移动时,矩形ABCD 的形状不变,则 OD 的最大值为( )
A 2+ 1
B 5
C 145
D .5
2
3.(2013-2014·黄陂区九上期中·10)在△ABC 中,∠ACB = 90°,∠ABC = 30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0° < θ < 180° ),得 到△MNC ,P 、Q 分别是AC 、MN 的中点,AC = 2t ,连接PQ ,则旋转时 PQ 长度的最大值是( )
A .6
B .3t
C 6
D .3t
4.已知点A 、B 的坐标分别是(0,1)、(0,3),点C 是x 轴正半轴上一动点,当∠ACB 最大时,点C 的坐标为__________.。

相关文档
最新文档