三角函数反三角函数公式大全
三角-反三角函数公式大全

2
)=
1
cos
sinA
A
=
1
sin
A
cos
A
和差化积
sina+sinb=2sin
abab
aba
cos
sina-sinb=2cossin
2222
b
a
cosa+cosb = 2cos
bab
aba
cosa-cosb = -2sinsin
cos
2222
b
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
a]
b
1+sin(a) =(sin
a
2
+cos
a
2
2
)
1-sin(a) = (sin
a-cosa)
2
22
其他非重点三角函数
1
csc(a) =
sin
双曲函数
a
1
sec(a) =
cos
a
sinh(a)=
a
e
-
2
-a
e
cosh(a)=
a
e
2
-a
e
tg h(a)=
sinh(
cosh(
a)
a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosα
tan(2kπ+α)= tanαcot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinαcos(π+α)=-cosα
三角函数-反三角函数-积分公式-求导公式

1、两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 2、倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A3、半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aa cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) =a sin 1 sec(a) =acos 17、(a +b )的三次方,(a -b )的三次方公式(a+b)^3=a^3+3a^2b+3ab^2+b^3(a-b)^3=a^3-3a^2b+3ab^2-b^3a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)8、反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x ∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x ∈〔0,π〕,arccos(cosx)=xx ∈(—π/2,π/2),arctan(tanx)=xx ∈(0,π),arccot(cotx)=xx 〉0,arctanx=π/2-arctan1/x,arccotx 类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)9、三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(ar csinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)10、基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。
三角函数和反三角函数公式

一.三角函数公式1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2(90度) - a) = cos(a)cos(π/2(90度) - a) = sin(a)sin(π/2 (90度)+ a) = cos(a)cos(π/2 (90度)+ a) = - sin(a)sin(π(180度)- a) = sin(a)cos(π(180度) - a) = - cos(a)sin(π(180度)+ a) = - sin(a)cos(π(180度)+ a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(b)cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)6.半角公式sin2(a/2) = [1 - cos(a)] / 2cos2(a/2) = [1 + cos(a)] / 2tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)二.反三角函数公式反三角函数其他公式:cos(arcsinx)=√(1-x^2)arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=xarcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) +1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)arctan x = x - x^3/3 + x^5/5 -……举例当x∈[-π/2,π/2] 有arcsin(sinx)=xx∈[0,π],arccos(cosx)=xx∈(-π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx>0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy)) 例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2(注:文档可能无法思考全面,请浏览后下载,供参考。
角函数反三角函数公式大全

角函数反三角函数公式大全角函数是数学中的一种常见函数,它描述了角的变化与函数值之间的关系。
而反三角函数则是角函数的逆函数。
在三角函数和反三角函数之间有很多重要的公式和关系。
以下是一些常用的角函数和反三角函数公式的介绍:1. 正弦函数(sine function):正弦函数是一个周期性函数,可以表示为:f(x) = sin(x)。
正弦函数的一些重要公式包括:- 周期性:sin(x + 2π) = sin(x)。
- 奇偶性:sin(-x) = -sin(x)。
- 值域:-1 ≤ sin(x) ≤ 1- 三角恒等式:sin^2(x) + cos^2(x) = 12. 余弦函数(cosine function):余弦函数也是一个周期性函数,可以表示为:f(x) = cos(x)。
余弦函数的一些重要公式包括:- 周期性:cos(x + 2π) = cos(x)。
- 奇偶性:cos(-x) = cos(x)。
- 值域:-1 ≤ cos(x) ≤ 1- 三角恒等式:sin^2(x) + cos^2(x) = 13. 正切函数(tangent function):正切函数是正弦函数和余弦函数的比值,可以表示为:f(x) = tan(x) = sin(x) / cos(x)。
正切函数的一些重要公式包括:- 周期性:tan(x + π) = tan(x)。
- 奇偶性:tan(-x) = -tan(x)。
- 无穷性:tan(π/2) = ∞,tan(-π/2) = -∞。
- 三角恒等式:tan(x) = sin(x) / cos(x)。
4. 反正弦函数(arcsine function):反正弦函数是正弦函数的反函数,可以表示为:f(x) = arcsin(x)。
反正弦函数的一些重要公式包括:- 值域:-π/2 ≤ arcsin(x) ≤ π/2- 奇偶性:arcsin(-x) = -arcsin(x)。
- 反函数恒等式:arcsin(sin(x)) = x。
三角函数反三角函数公式大全

正切函数 ;余切函数 ;
正割函数 ;余割函数
三角函数奇偶、周期性
, , 奇函数; 偶函数;
, 周期 ; 周期 ; , 周期
常用三角函数公式:
反三角函数:
:定义域 ,值域 ; :定义域 ,值域 ;
:定义域 ,值域 ; :定义域 ,值域
式中n为任意整数.
sin( +a) = cosacos( +a) = -sinasin(π-a) = sinacos(π-a) = -cosa
sin(π+a) = -sinacos(π+a) = -cosatgA=tanA =
万能公式
sina= cosa= tana=
其它公式
a•sina+b•cosa= ×sin(a+c) [其中tanc= ]
和差化积
sina+sinb=2sin cos sina-sinb=2cos sin
cosa+cosb = 2cos cos cosa-cosb = -2sin sin
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsinB
tan(-α)= -tanαcot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinαcos(π-α)= -cosα
tan(π-α)= -tanαcot(π-α)= -cotα
三角-反三角函数公式大全

三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式s in(-a) = -sina c os(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a + cosa= 22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =a sin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -a a cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos (2kπ+α)= cosαtan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinα cos (π+α)= -cosαtan (π+α)= tanα cot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosαtan (-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinα cos (π-α)= -cosαtan (π-α)= -tanα cot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosαtan (2π-α)= -tanα cot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B 是边a 和边c 的夹角正切定理 [(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]} 正切函数sin tan cos x x x =;余切函数cos cot sin x x x=; 正割函数1sec cos x x =;余割函数1csc sin x x = 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|三角形中的一些结论(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)????(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1????(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC????(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1反三角函数: a r c s i n a r c c o s 2x x π+= a r c t a n a r c c o t 2x x π+= arcsin x :定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π; arctan x :定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n 为任意整数. arc sin x =arc cos x = arc tan x = arc cot x =。
三角函数-反三角函数公式大全

三角函数-反三角函数公式大全tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A正切函数sin tan cos x x x =;余切函数cos cot sin xx x =; 正割函数1sec cos x x =;余割函数1csc sin x x= 三角函数奇偶、周期性sin x ,tan x ,cot x 奇函数;cos x 偶函数;sin x,cos x 周期2π;sin()t ωϕ+ 周期2πω;tan x ,cot x 周期π常用三角函数公式:22cos sin 1x x += 22cos sin cos2x x x -=2s i n c o ssx x x = 21cos 22sin x x -= 21c o s 22c o sx x +=22211tan sec cos x x x+== 22211cotcsc sin x x x +==1sin sin [cos()cos()]2x y x y x y =-+-- 1c o sc o s[c o s ()c o s ()]2x y x y x y =++-1sin cos [sin()sin()]2x y x y x y =++-反三角函数:a r c s i na r c c o s 2x x π+=a r c t a na r c c o t2x x π+=arcsin x:定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π;arctan x:定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n为任意整数.arc sin x = arc cos x = arc tan x = arc cot x =。
三角函数与反三角函数公式大全

三角函数与反三角函数公式大全三角函数和反三角函数是高中数学中的重要内容,也是数学和物理学中广泛应用的数学工具。
下面我们将介绍一些常用的三角函数和反三角函数的公式。
1. 正弦函数(sin)和余弦函数(cos)的关系:sin^2x + cos^2x = 12. 正切函数(tan)与正弦函数(sin)和余弦函数(cos)的关系:tanx = sinx / cosx3. 余切函数(cot)和正弦函数(sin)和余弦函数(cos)的关系:cotx = cosx / sinx4. 正弦函数(sin)和余弦函数(cos)的周期性:sin(x + 2π) = sinxcos(x + 2π) = cosx5. 正弦函数(sin)和余弦函数(cos)的奇偶性:sin(-x) = -sinxcos(-x) = cosx6. 正切函数(tan)和余切函数(cot)的奇偶性:tan(-x) = -tanxcot(-x) = -cotx7. 正弦函数(sin)和余弦函数(cos)的对称性:sin(π - x) = sinxcos(π - x) = -cosx8. 正切函数(tan)和余切函数(cot)的对称性:tan(π - x) = -tanxcot(π - x) = -cotx9. 正弦函数(sin)和余弦函数(cos)的双角和差公式:sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsiny10. 正切函数(tan)和余切函数(cot)的双角和差公式:tan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)cot(x ± y) = (cotxcoty ∓1) / (coty ± cotx)11. 正弦函数(sin)和余弦函数(cos)的和差化积公式:sinx + siny = 2sin[(x + y) / 2]cos[(x - y) / 2]sinx - siny = 2sin[(x - y) / 2]cos[(x + y) / 2]cosx + cosy = 2cos[(x + y) / 2]cos[(x - y) / 2]cosx - cosy = -2sin[(x + y) / 2]sin[(x - y) / 2] 12. 正切函数(tan)和余切函数(cot)的和差化积公式:tanx + tany = (tanx + tany) / (1 - tanxtany)tanx - tany = (tanx - tany) / (1 + tanxtany)cotx + coty = (cotx + coty) / (cotxcoty - 1)cotx - coty = (cotx - coty) / (cotxcoty + 1)13. 正弦函数(sin)和余弦函数(cos)的倍角公式:sin2x = 2sinxcosxcos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x14. 正弦函数(sin)和余弦函数(cos)的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]15. 反正弦函数(arcsin)和反余弦函数(arccos)的范围:-π/2 ≤ arcsinx ≤ π/20 ≤ arccosx ≤ π16. 反正弦函数(arcsin)和反余弦函数(arccos)的负值关系:arcsin(-x) = -arcsinxarccos(-x) = π - arccosx17. 反正弦函数(arcsin)和反余弦函数(arccos)的和、差关系:arcsin(x) ± arccos(x) = π/2这些公式是三角函数和反三角函数的基本关系,掌握它们对于理解和解决三角函数相关的问题非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =
tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB
tanA +-
cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA
cotB 1
cotAcotB -+
倍角公式 tan2A =
A
tan 12tanA
2
- Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3
π
-a) 半角公式 sin(
2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+-
cot(
2A )=A A cos 1cos 1-+ tan(2
A )=A A sin cos 1-=A A
cos 1sin +
和差化积 sina+sinb=2sin
2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos
2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2
b
a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB
积化和差 sinasinb = -
21[cos(a+b)-cos(a-b)] cosacosb = 2
1
[cos(a+b)+cos(a-b)]
sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2
1
[sin(a+b)-sin(a-b)] 诱导公式
s in(-a) = -sina c os(-a) = cosa sin(
2π-a) = cosa cos(2
π
-a) = sina sin(
2π+a) = cosa cos(2
π
+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a
a
cos sin
万能公式
sina=
2)2(tan 12tan
2a a + cosa= 22)2(tan 1)2(tan 1a a +- tana=2
)2
(tan 12tan
2a
a
- 其它公式
a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=
a
b ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=
b
a ] 1+sin(a) =(sin
2a +cos 2a )2 1-sin(a) = (sin
2a -cos 2
a )2 其他非重点三角函数 csc(a) =
a
sin 1 sec(a) =a cos 1
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα
tan (π+α)= tanα cot (π+α)= cotα 公式三:
任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:
2π±α及23π±α与α的三角函数值之间的关系:
sin (
2π+α)= cosα cos (2π
+α)= -sinα tan (
2π+α)= -cotα cot (2
π
+α)= -tanα sin (
2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π
-α)= tanα sin (
23π+α)= -cosα cos (23π+α)= sinα tan (
23π+α)= -cotα cot (23π+α)= -tanα sin (
23π-α)= -cosα cos (23π-α)= -sinα tan (
23π-α)= cotα cot (2
3π-α)= tanα (以上k ∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin
)
cos(2)
Bsin in arcsin[(As t 2
2
ϕθϕθω⋅++++AB B A
正切函数sin tan cos x x x =
;余切函数cos cot sin x
x x =; 正割函数1sec cos x x =
;余割函数1
csc sin x x
= 三角函数奇偶、周期性
sin x ,tan x ,cot x 奇函数;cos x 偶函数; sin x ,cos x 周期2π;sin()t ωϕ+ 周期
2π
ω
;tan x ,cot x 周期π
常用三角函数公式:
22cos sin 1x x += 22cos sin cos2x x x -= 2sin cos sin 2x x x = 21cos 22sin x x -= 21cos 22cos x x += 22211tan sec cos x x x +=
= 22
2
11cot csc sin x x x
+== 1sin sin [cos()cos()]2x y x y x y =-+-- 1
cos cos [cos()cos()]2x y x y x y =++-
1
sin cos [sin()sin()]2
x y x y x y =++-
反三角函数: arcsin arccos 2
x x π
+=
arctan arccot 2
x x π
+=
arcsin x :定义域[1,1]-,值域[,]22
ππ
-
;arccos x :定义域[1,1]-,值域[0,]π; arctan x :定义域(,)-∞+∞,值域(,)22
ππ
-
;arccot x :定义域(,)-∞+∞,值域(0,)π
式中n为任意整数.
arc sin x = arc cos x = arc tan x = arc cot x =。