纳米复合材料精选PPT
合集下载
高分子纳米复合材料详解ppt课件

物理性能方面
热性能:由于纳米粒子尺寸小,表面能高,其熔点、 开始烧结温度和晶化温度比常规粉体低;例如纳米 银的熔点可低于373K;常规氧化铝烧结温度在 1973 ~ 2073K之间,而纳米氧化铝可在1423 ~ 1673K之间烧结,致密度可达99.0%以上。
电性能:粒子尺寸小于某一临界尺寸后,材料的电 阻会发生突变,例如金属会变为非导体。
水热合成法:高温高压下在水溶液或蒸汽等流体中合 成;
化学沉淀法:将沉淀剂加入金属盐溶液中,得到沉淀 后进行热处理,包括直接沉淀,共沉淀、均一沉淀等;
溶胶-凝胶(Sol-Gel)法:将金属有机醇盐或无机盐 溶液经水解,使溶质聚合成溶胶再凝胶固化,再经低 温干燥,磨细后再煅烧得到纳米粒子
微乳液和反相胶束法:微乳液和反相胶束是利用两种 互不相容的溶剂(有机溶剂和水溶液),通过选择表 面活性剂及控制相对含量,可将其水相液滴尺寸限制 在纳米级,不同微乳液滴相互碰撞发生物质交换,在 水核中发生化学反应,得到纳米粒子。
物 理 气 相 沉 积 法
电 子 束 加 热
等
离
子
和
激 蒸发容器的结
光 加
构简单,除金 属外,对SiC 同样有效
热
适合实验室规模 量产
流 动 液 面 真 空 蒸 发 法
通
制备碳化物,
电
Cr、Ti、V、Zr
加
发烟量大,高
热
熔点金属给出 非晶物质,Nb、
蒸
Ta、Mo
发
法
化学方法
化学气相沉积法(CVD):采用与PVD法相同的加热 源,将原料(金属氧化物、氢氧化物,金属醇盐等) 转化为气相,再通过化学反应,成核生长得到纳米粒 子;
小尺寸效应(材料周期性边界条件的破坏); 表面或界面效应(表面能和活性的增大); 量子尺寸效应(电子能级或能带结构的尺寸依
热性能:由于纳米粒子尺寸小,表面能高,其熔点、 开始烧结温度和晶化温度比常规粉体低;例如纳米 银的熔点可低于373K;常规氧化铝烧结温度在 1973 ~ 2073K之间,而纳米氧化铝可在1423 ~ 1673K之间烧结,致密度可达99.0%以上。
电性能:粒子尺寸小于某一临界尺寸后,材料的电 阻会发生突变,例如金属会变为非导体。
水热合成法:高温高压下在水溶液或蒸汽等流体中合 成;
化学沉淀法:将沉淀剂加入金属盐溶液中,得到沉淀 后进行热处理,包括直接沉淀,共沉淀、均一沉淀等;
溶胶-凝胶(Sol-Gel)法:将金属有机醇盐或无机盐 溶液经水解,使溶质聚合成溶胶再凝胶固化,再经低 温干燥,磨细后再煅烧得到纳米粒子
微乳液和反相胶束法:微乳液和反相胶束是利用两种 互不相容的溶剂(有机溶剂和水溶液),通过选择表 面活性剂及控制相对含量,可将其水相液滴尺寸限制 在纳米级,不同微乳液滴相互碰撞发生物质交换,在 水核中发生化学反应,得到纳米粒子。
物 理 气 相 沉 积 法
电 子 束 加 热
等
离
子
和
激 蒸发容器的结
光 加
构简单,除金 属外,对SiC 同样有效
热
适合实验室规模 量产
流 动 液 面 真 空 蒸 发 法
通
制备碳化物,
电
Cr、Ti、V、Zr
加
发烟量大,高
热
熔点金属给出 非晶物质,Nb、
蒸
Ta、Mo
发
法
化学方法
化学气相沉积法(CVD):采用与PVD法相同的加热 源,将原料(金属氧化物、氢氧化物,金属醇盐等) 转化为气相,再通过化学反应,成核生长得到纳米粒 子;
小尺寸效应(材料周期性边界条件的破坏); 表面或界面效应(表面能和活性的增大); 量子尺寸效应(电子能级或能带结构的尺寸依
高分子纳米复合材料课件.ppt

最重要的是界面组元。界面组元具有以下两个特点:首先是原
子密度相对较低,其次是邻近原子配位数有变化。因为界面在
纳米结构材料中所占的比例较高,以至于对材料性能产生较大
影响。
高分子纳米复合材料课件
五、纳米复合材料(nanocomposites)
1、纳米复合材料的分类
复合材料的复合方式可以分为四大类:
①、0-0型复合
利用宏观量子隧道效应,可以解释纳米镍粒子在低温下继续 保持超顺磁性的现象。这种纳米颗粒的宏观量子隧道效应和量子 尺寸效应,将会是未来微电子器件发展的基础,它们确定了微电 子器件进一步微型化的极限。
高分子纳米复合材料课件
三、纳米材料的制备方法
可分为物理法和化学法两大类。 1、物理方法 ①、真空冷凝法
例如,纳米颗粒具有高的光学非线性及特异的催化性能均属 此列。
高分子纳米复合材料课件
4、宏观量子隧道效应 微观粒子(电子、原子)具有穿越势垒的能力称之为隧道效
应。一些宏观的物理量,如纳米颗粒的磁化强度、量子相干器件 中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统 的势垒而产生性能变化,称为宏观量子隧道效应。
第一节 高分子纳米复合材料概述
一、纳米材料与纳米技术
1、纳米材料 是以纳米结构为基础的材料,或者以纳米结构为基本单元构
成的复合材料。 ①、纳米结构
以具有纳米尺度的物质单元为基础,按一定规律构筑或营造 的一种新结构体系,称为纳高分米子纳结米构复合体材料系课件。
②、纳米材料 纳米材料是在三维空间中至少有一维处于纳米尺度范 围的物质,或者由它们作为基本单元构成的复合材料。 从微观角度分类,纳米材料大致有以下两类:
衡合金固态分解、溶胶-凝胶法、气相沉积法、快速凝固法、晶晶 化法、深度塑性变形法等。
纳米复合塑料PPT课件

分类: 纳米微粒原位聚合法 聚合物基体原位聚合法 两相同步原位合成法
特点: 可一次聚合成型,适于各类单体及聚合方法,并保持纳米复 合材料良好的性能。多用于功能复合材料的制备。
19
纳米SiO2
通常粒径为20-60nm,化学纯度高,分散性好,比 表面积大。化学工业中成白炭黑,是目前世界上大规 模工业化生产的产量最高的纳米粉体材料。 将纳米SiO2加入到聚酯树脂、环氧树脂、乙烯基树 脂等可加工树脂材料中,能明显提高产品质量、方便 加工成型,提高生产效率、增加品种,扩大应用范围 等。 橡胶中加入纳米SiO2,产品强度、耐磨性、抗老化 性等得到很大提高。
15
层间插入法制备PCH的结构和分类
从材料微观形态的角度,可以将PCH材料分成以下三种类型
普通型
插层型
解离型
聚合物/粘土纳米复合材料可能的类型示意图
16
共混法
简介: 类似于聚合物的共混改性,将各种无机纳米微粒与聚合物直 接进行分散混合而得。可分为溶液共混法、悬浮或乳液共 混法、熔融共混法、机械共混法。
优点: 是制备纳米复合材料最简单、方便的方法,适合于各种形态 的纳米粒子。纳米材料可任意组合,粒子形态、尺寸可控 。
缺点: 无机纳米粒子易团聚,故控制粒子微区相尺寸及尺寸分布是 关键。解决方法:需对其进行表面处理,除采用分散剂、 偶联剂和表面功能改性剂等综合处理外,还可用超声波辅 助分散。
17
共混法
1,溶液共混 把基体树脂溶于溶剂,加入纳米粒子混合均匀后,除去溶剂或使之聚
合。 如:把PS溶于St中,加入纳米Al2O3,再使St聚合即得PS/ Al2O3纳米
复合材料。 2,乳液共混
先制成聚合物乳液,再与纳米粒子共混。 3,机械共混
特点: 可一次聚合成型,适于各类单体及聚合方法,并保持纳米复 合材料良好的性能。多用于功能复合材料的制备。
19
纳米SiO2
通常粒径为20-60nm,化学纯度高,分散性好,比 表面积大。化学工业中成白炭黑,是目前世界上大规 模工业化生产的产量最高的纳米粉体材料。 将纳米SiO2加入到聚酯树脂、环氧树脂、乙烯基树 脂等可加工树脂材料中,能明显提高产品质量、方便 加工成型,提高生产效率、增加品种,扩大应用范围 等。 橡胶中加入纳米SiO2,产品强度、耐磨性、抗老化 性等得到很大提高。
15
层间插入法制备PCH的结构和分类
从材料微观形态的角度,可以将PCH材料分成以下三种类型
普通型
插层型
解离型
聚合物/粘土纳米复合材料可能的类型示意图
16
共混法
简介: 类似于聚合物的共混改性,将各种无机纳米微粒与聚合物直 接进行分散混合而得。可分为溶液共混法、悬浮或乳液共 混法、熔融共混法、机械共混法。
优点: 是制备纳米复合材料最简单、方便的方法,适合于各种形态 的纳米粒子。纳米材料可任意组合,粒子形态、尺寸可控 。
缺点: 无机纳米粒子易团聚,故控制粒子微区相尺寸及尺寸分布是 关键。解决方法:需对其进行表面处理,除采用分散剂、 偶联剂和表面功能改性剂等综合处理外,还可用超声波辅 助分散。
17
共混法
1,溶液共混 把基体树脂溶于溶剂,加入纳米粒子混合均匀后,除去溶剂或使之聚
合。 如:把PS溶于St中,加入纳米Al2O3,再使St聚合即得PS/ Al2O3纳米
复合材料。 2,乳液共混
先制成聚合物乳液,再与纳米粒子共混。 3,机械共混
聚合物纳米复合材料-课件1

进化的复合材料-贝壳
17
复合材料的基本结构模式
复合材料由基体和增强剂两个组分构成: 基体:构成复合材料的连续相; 增强剂(增强相、增强体):复合材料中独立的形态分 布在整个基体中的分散相,这种分散相的性能优越,会使 材料的性能显著改善和增强。 增强剂(相)一般较基体硬,强度、模量较基体大, 或具有其它特性。可以是纤维状、颗粒状或弥散状。
- Melt Processing –(常规做法)
hp
New method(加入层状无机材料的悬浮液)
a novel compounding process using Na–montmorillonite water slurry for preparing novel nylon 6/Na–montmorillonite nanocomposites
用此技术已制备了丁苯橡胶/ 粘土、丁腈橡 胶/ 粘土、氯丁橡胶/ 粘土等纳米复合材料。
③聚合物插层法的有机溶液插层法
该法可分两步骤: 溶剂分子插层
通过有机溶剂降低蒙脱土片层间的表面极性,从而 增加与聚合物的相容性。 聚合物对插层溶剂分子的置换
有机改性的蒙脱土与聚合物溶液共混,聚合物大分 子在溶液中借助于溶剂而插层进入蒙脱土的片层间, 然后再挥发掉溶剂。
R(脂肪烃基):
粘土改性剂
①C12H25 →十二烷基三甲基氯化铵 ②C16H33 →十六烷基三甲基氯化铵 ③C18H37 →十八烷基三甲基氯化铵 此外,十二烷基二甲基苄基氯化铵、
十八烷基二甲基苄基氯化铵等。
其它的阳离子 还能与该离子 进行交换吗?
有机铵盐改性后的粘土在酸性介质中水解, 水中的质子很难将铵盐基团置换下来,这说明 由离子键所形成的复合物是比较稳定的。
《纳米复合材料》PPT课件

(1)热压烧结 热等静压(HIP)也属于热压烧结的一种。它是用金属箔代 替橡胶模具,用气体代替液体,使金属箔内的陶瓷基体 和纳米增强体混合粉末均匀受压。通常所用气体为氦气、 氩气等惰性气体,金属箔为低碳钢、镍、钼等。一热等静压烧结。 与一般热压烧结法相比,HIP法使混合物料受到各向同 性的压力,使显微结构均匀;另外HIP法施加压力高,在 较低温度下即可烧结。
(1)高强度、高韧性
陶瓷基纳米复合材料,特别是氧化物系陶瓷基纳米复合材料力学 性能的明显改善大致可归结如下: (1)纳米级弥散相抑制了氧化物基体晶粒生长和减轻了晶粒的异常长大, 起到细晶强化作用。 (2)在弥散相内或弥散相周围存在高的局部应力,这种应力是基体和弥 散相之间热膨胀失配而产生的,使冷却期间产生位错。纳米级粒子钉 扎或进入位错区使基体晶粒内形成亚晶界,使基体晶粒再细化而起增 强作用。 (3)纳米级粒子周围的局部拉伸应力引起穿晶断裂,并由于硬粒子对裂 纹尖端的反射作用而产生韧化。破坏模式从穿晶和晶间到单纯晶间断 裂,晶界相(通常约10%体积的无定形相)的改变和对高温力学性能影 响的减小,使高温力学性能获得明显改善。 (4)纳米级粒子在高温牵制位错运动,从而也能使高温力学性能获得明 显改善。
基体中的显微缺陷及晶须密集处同样存在较大内应力和孔 穴的积累而形成的疲劳裂纹。 疲劳裂纹的扩展是由于裂纹前沿所形成的微孔的连接而引 起的。当裂纹的扩展遇到SiC微粒或晶须时,裂纹扩展会停 止,而等待附近其他微孔的积累、连接,再引发裂纹形成 及扩展。 含有复合基体的SiCw增强纳米复合材料,其裂纹的形成及 扩展受基体韧化的影响,因而提高了其疲劳性能。
3 抗蠕变、抗疲劳性好
颗粒增强的纳米复合材料的最小蠕变速率要比基体合金低 2个数量级;在相同蠕变速率下,颗粒增强时可比未增强 基体的蠕变应力增加1倍左右,即纳米复合材料所承受的 应力提高了1倍。 晶须增强时又要比颗粒增强时抗蠕变性能更好。 一般纳米复合材料的应力指数n明显高于基体。基体的n约 为4—5,而纳米复合材料的n约为9—20。这反映了纳米 复合材料的蠕变速率对应力的敏感性大。 颗粒和晶须增强金属基纳米复合材料的疲劳强度和疲劳寿 命一般比基体金属高。纳米复合材料疲劳性能的提高可能 与其强度和刚度的提高有关。
功能高分子材料 第十章高分子纳米复合材料PPT课件

纳米研究的范围是1到100纳米, 0.1纳米是单个氢原子的尺寸,因此所 谓0.1纳米层面的“纳米技术”是不存 在的。
材料
2
2.纳米科技概念的提出与发展
最早提出纳米尺度上科学和技术问题
的是著名物理学家、诺贝尔奖获得者理
查德·费恩曼。纳米科技的迅速发展是
在80年代末、90年代初。80年代初发明
当代最受爱戴的科 了费恩曼所期望的纳米科技研究的重要
纳米材料结构的特殊性[如大的比表面以及一系列新的效 应(小尺寸效应、界面效应、量子效应和量子隧道效应)]决定 了纳米材料出现许多不同于传统材料的独特性能,进一步优 化了材料的电学、热学及光学性能。
研究方面:一是系统地研究纳米材料的性能、微结构和 谱学特征,通过和常规材料对比,找出纳米材料特殊的规律, 建立描述和表征纳米材料的新概念和新理论;二是发展新型 纳米材料。
学家之一。他不但 仪器——扫描隧道显微镜(STM)、原子
以其科学上的巨大 贡献而名留青史,
力显微镜(AFM)等微观表征和操纵技术,
而且因在“挑战者” 它们对纳米科技的发展起到了积极的促
号航天飞机事故调 查中的决定性作用 而名闻遐迩。他还
进作用。与此同时,纳米尺度上的多学 科交叉展现了巨大的生命力,迅速形成
子、构造纳米结构,同时为科学家提供
在纳米尺度下研究新现象、提出新理论
的微小实验室。
同时,与纳米材料和结构制备过程
相结合,以及与纳米器件性能检测相结
合的多种新型纳米检测技术的研究和开
发也受到广泛重视。如激光镊子技术可
用于操纵单个生物大分子。
07.11.2020
材料
9
07.11.2020
10.3 纳米科技前景的展望
是一个撬开原子能 为一个有广泛学科内容和潜在应用前景
材料
2
2.纳米科技概念的提出与发展
最早提出纳米尺度上科学和技术问题
的是著名物理学家、诺贝尔奖获得者理
查德·费恩曼。纳米科技的迅速发展是
在80年代末、90年代初。80年代初发明
当代最受爱戴的科 了费恩曼所期望的纳米科技研究的重要
纳米材料结构的特殊性[如大的比表面以及一系列新的效 应(小尺寸效应、界面效应、量子效应和量子隧道效应)]决定 了纳米材料出现许多不同于传统材料的独特性能,进一步优 化了材料的电学、热学及光学性能。
研究方面:一是系统地研究纳米材料的性能、微结构和 谱学特征,通过和常规材料对比,找出纳米材料特殊的规律, 建立描述和表征纳米材料的新概念和新理论;二是发展新型 纳米材料。
学家之一。他不但 仪器——扫描隧道显微镜(STM)、原子
以其科学上的巨大 贡献而名留青史,
力显微镜(AFM)等微观表征和操纵技术,
而且因在“挑战者” 它们对纳米科技的发展起到了积极的促
号航天飞机事故调 查中的决定性作用 而名闻遐迩。他还
进作用。与此同时,纳米尺度上的多学 科交叉展现了巨大的生命力,迅速形成
子、构造纳米结构,同时为科学家提供
在纳米尺度下研究新现象、提出新理论
的微小实验室。
同时,与纳米材料和结构制备过程
相结合,以及与纳米器件性能检测相结
合的多种新型纳米检测技术的研究和开
发也受到广泛重视。如激光镊子技术可
用于操纵单个生物大分子。
07.11.2020
材料
9
07.11.2020
10.3 纳米科技前景的展望
是一个撬开原子能 为一个有广泛学科内容和潜在应用前景
纳米复合材料 ppt课件

• 0-0复合:不同成分的不同相或不同种类的纳米粒子 复合而成的纳米复合材料。纳米粒子可以是金属与 金属、陶瓷与高分子、金属与高分子、陶瓷与陶瓷 、陶瓷与高分子等构成。
纳米TiN和纳米AlN复合制备的超硬材料,HRA达到91
2020/11/29
9
• 0-2复合:把纳米粒子分散到二维的薄膜材料中得到 的纳米复合薄膜材料。
• 零维在空间三继尺度均在纳米尺 度,如纳米颗粒、原子团簇等;
• 一维在三继空间有两维处于纳米 尺度,如纳米丝、纳米棒、纳米 管等;
• 二维在三维空间中有一维在纳米 尺度,如超薄膜、多层膜、超晶 格等。
2020/11/29
0维纳米Au颗粒
1维纳米Au线
6
• 纳米复合材料(Nano-composites)是由两种或两种以 上的固相至少在一维以纳米级大小(1~100nm)复合 而成的复合材料。
15
无机纳米复合材料制备 高能球磨法
• 将两种或两种以上无机粉末放入球磨机中,利用球 磨机的转动或振动,使硬球对原料进行强烈的撞击 、研磨和搅拌,粉末颗粒经压延,压合,碾碎,再 压合的反复过程,获得纳米复合粉末,烧结后得到 纳米复合材料。
2020/11/29 行星式高能球磨机
不锈钢磨球
16
• 高能球磨能合成两相或多相不相溶的均匀混合合金, 如 Cu-Fe、Cu-Cr、Cu-W等材料,还可用于制备 TiAl、NiAl等金属间化合物和超硬合金等。
复合材料
Composite Materials
纳米复合材料
Nano-Composite Materials
2020/11/29
2
主要内容
➢纳米复合材料的定义 ➢纳米复合材料的分类 ➢纳米复合材料的制备 ➢纳米复合材料的应用
纳米TiN和纳米AlN复合制备的超硬材料,HRA达到91
2020/11/29
9
• 0-2复合:把纳米粒子分散到二维的薄膜材料中得到 的纳米复合薄膜材料。
• 零维在空间三继尺度均在纳米尺 度,如纳米颗粒、原子团簇等;
• 一维在三继空间有两维处于纳米 尺度,如纳米丝、纳米棒、纳米 管等;
• 二维在三维空间中有一维在纳米 尺度,如超薄膜、多层膜、超晶 格等。
2020/11/29
0维纳米Au颗粒
1维纳米Au线
6
• 纳米复合材料(Nano-composites)是由两种或两种以 上的固相至少在一维以纳米级大小(1~100nm)复合 而成的复合材料。
15
无机纳米复合材料制备 高能球磨法
• 将两种或两种以上无机粉末放入球磨机中,利用球 磨机的转动或振动,使硬球对原料进行强烈的撞击 、研磨和搅拌,粉末颗粒经压延,压合,碾碎,再 压合的反复过程,获得纳米复合粉末,烧结后得到 纳米复合材料。
2020/11/29 行星式高能球磨机
不锈钢磨球
16
• 高能球磨能合成两相或多相不相溶的均匀混合合金, 如 Cu-Fe、Cu-Cr、Cu-W等材料,还可用于制备 TiAl、NiAl等金属间化合物和超硬合金等。
复合材料
Composite Materials
纳米复合材料
Nano-Composite Materials
2020/11/29
2
主要内容
➢纳米复合材料的定义 ➢纳米复合材料的分类 ➢纳米复合材料的制备 ➢纳米复合材料的应用
纳米及分子复合材料课件

合,则这两个组分可以分别透过外壁进入另一个微反
应器发生反应。
纳米及分子复合材料
2、纳米粉体的化学制备方法
由于它受到外壁的限制,因此生成纳米级微乳 液滴尺寸的纳米颗粒。通常所用的表面活性剂为非 离子型的烷基酚聚氧乙烯等或离子型的碱金属皂活 性剂。据报道,用醇盐化合物、油和水形成的微乳 液制备出无团聚的BaTiO3立方形纳米晶,其尺寸为 6~17nm。由于乳液中微液滴的大小决定BaTiO3的 尺寸,同时液滴的大小仅受表面活性剂分子的亲水 性部分的尺寸所控制。因此纳米晶颗粒粒径分布较 窄。这正是此方法的特点。
纳米及分子复合材料
(4)以热解碳作碳源 以甲醛和甲酚合成了改性的酚醛树脂,在电炉中、
惰性气氛下,将酚醛树脂缓慢加热使之分解。升温速率 不大于30C/min,最终温度为1000℃。停电降温,在 惰性气氛保护下随炉冷却,得到高反应活性的多孔热解 碳。以此种树脂热解碳和SiO2微粉为原料,用不同的加 热方式均得到了碳化硅纳米晶须。高分子化合物制备高 反应活性热解炭的关键在于高分子化合物热解过程中产 生一种具有高度择优取向的中间相,这种中间相只有在 液相中才能产生并生长。
纳米及分子复合材料
(1)以碳纳米管作碳源 Hongjie Dai用碳纳米管、Si和I2作原料,清
华大学用碳纳米管、SiO2、Si作原料分别合成了 碳化硅纳米晶须。此法的关键是使用碳纳米管作 原料,由于碳化硅纳米晶须是通过以碳纳米管为 核的气固反应(4)合成的,所以碳纳米管的形貌就 决定了碳化硅晶须的形貌。但由于碳纳米管的质 量和产率均不高,价格昂贵,本身工业化生产条 件不成熟,而用其制备碳化硅纳米晶须从经济角 度上讲更是得不偿失,所以用碳纳米管作碳源难 以批量化生产碳化硅纳纳米及米分子晶复合须材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料
Composite Materials
材料科学与工程学院 刘颖教授主讲
纳米复合材料
Nano-Composite Materials
2
主要内容
➢纳米复合材料的定义 ➢纳米复合材料的分类 ➢纳米复合材料的制备 ➢纳米复合材料的应用
3
• 高科技的飞速发展对高性能材料的要求越来越迫切 ,纳米技术为发展高性能新材料和对现有材料的性 能进行改善提供了一个新的途径。
21
放电等离子烧结
颗粒间的放电
纳米SiCx纤维的联结 22
感应烧结
a-Fe
a-Fe a-Fe a-Fe
纳米TiN和纳米AlN复合制备的超硬材料,HRA达到91
9
• 0-2复合:把纳米粒子分散到二维的薄膜材料中得到 的纳米复合薄膜材料。
• 可分为均匀弥散型和非均匀弥散型:均匀弥散型是 指纳米粒子在薄膜基体中均匀分散,非均匀弥散型 是指纳米粒子随机混乱地分散在薄膜基体中。
纳米薄膜
纳米薄膜太阳能电池
10
低密度多孔镍形貌
13
• 按基体类型分为金属基、陶瓷基和聚合物基纳米
复合材料。
金属基纳米
金属/金属纳米复合材料
复合材料
金属/陶瓷纳米复合材料
纳米复合材料
陶瓷基纳米 复合材料
聚合物基纳 米复合材料
陶瓷/陶瓷纳米复合材料 陶瓷/金属纳米复合材料 聚合物/聚合物纳米复合材料 聚合物/金属纳米复合材料 聚合物/陶瓷纳米复合材料
• 2-3复合:无机纳米片体与聚合物粉体或者聚合物 前驱物的复合,主要是插层纳米复合材料的合成。
纳米碳管增强复合材料示意图
12
• 近年来引人注目的气凝胶材料也称为介孔固体,同 样可以作为纳米复合材料的母体,通过物理或化学 方法将纳米粒子填充在介孔中(孔洞尺寸为纳米或亚 微米级),这种介孔复合体也是纳米复合材料。
20
非常规快速烧结
• 用纳米粉体制备纳米复合材料,最终显微结构中晶 粒仍要保持在纳米尺度是非常困难的。由于纳米粉 末的巨大活性,在烧结过程中晶界扩散非常快,极 易发生晶粒快速生长。采用非常规烧结工艺,如微 波烧结、放电等离子烧结、感应烧结和自蔓延燃烧 合成等,可在烧结过程中降低烧结温度,缩短烧结 时间,加快冷却速度等,有效抑制晶粒的长大。其 中采用是比较有效的技术。
• 高能球磨法还能制备纳米晶复合材料。晶粒细化是由 于粉末反复形变引起缺陷密度的增加,当缺陷密度达 到临界值时,粗晶内部破碎。这个过程不断重复,最 终形成纳米晶复合材料。
高能球磨制备的 Ti(C,N)粉末形貌, XRD分析显示f粉
末晶粒尺寸在 100nm以下
17
• 西安交通大学通过对Al-Ti系粉末进行高能球磨和压 制烧结,发现Al-Ti合金系高能球磨后,各组元晶粒 得到细化,并且Ti在Al中发生了强制超饱和固溶, 烧结时形成纳米晶Al3Ti/Al复合材料。
• 0-3复合:把纳米粒子分散 到常规三维固体材料中, 也即纳米-微米复合材料。
• 通过纳米粒子加入和均匀 分散在微米粒子基体中, 阻止基体粒子的晶粒长大 ,以获得具有微晶结构的 致密材料,使材料强度、 硬度、韧性等力学性能得 到显著提高。
纳米-微米复合材料结构示意图
11
• 1-3复合:主要是纳米碳管、纳米晶须与常规金属 粉体、陶瓷粉体和聚合物粉体的复合,对金属、陶 瓷和聚合物有特别明显的增强作用。
• Hwang等通过机械球磨Mg, Ti和C粉合成Mg-Ti-C纳 米复合材料,Mg晶粒尺寸在25~60nm之间, TiC颗粒 尺寸在30~70nm之间。Mg-Ti-C纳米复合材料具有高 的屈服强度和与Mg-Ti合金相似的高延展性。
18
非晶晶化法
• 在合金液的凝固中实现快速冷却,使熔体中原子的组 态将基本上保持不变,被“冻结” 形成长程无序的非 晶结构,再通过晶化热处理对原子进行“解冻”。控 制热处理温度和时间,使原子具有足够的能量和时间 进行扩散,得到纳米晶复合材料。
• 一维在三继空间有两维处于纳米 尺度,如纳米丝、纳米棒、纳米 管等;
• 二维在三维空间中有一维在纳米 尺度,如超薄膜、多层膜、超晶 格等。
0维纳米Au颗粒
1维纳米Au线
6
• 纳米复合材料(Nano-composites)是由两种或两种以 上的固相至少在一维以纳米级大小(1~100nm)复合 而成的复合材料。
14
纳米复合材料的制备
15
无机纳米复合材料制备 高能球磨法
• 将两种或两种以上无机粉末放入球磨机中,利用球 磨机的转动或振动,使硬球对原料进行强烈的撞击 、研磨和搅拌,粉末颗粒经压延,压合,碾碎,再 压合的反复过程,获得纳米复合粉末,烧结后得到 纳米复合材料。
行星式高能球磨机
不锈钢磨球
16
• 高能球磨能合成两相或多相不相溶的均匀混合合金, 如 Cu-Fe、Cu-Cr、Cu-W等材料,还可用于制备 TiAl、NiAl等金属间化合物和超硬合金等。
• 纳米复合材料与传统复合材料在结构和性能上有明 显区别,成为材料学、物理化学和聚合物化学和物 理等多门学科交叉的前沿领域,成为研究的热点。
纳米材料的典型 代表-纳米碳管
4
纳米复合材料的定义
5
• 纳米材料是指三维空间中至少有 一维处于纳米尺度范围内,或以 它们作为基本构成单元的材料。
• 零维在空间三继尺度均在纳米尺 度,如纳米颗粒、原子团簇等;
• 固相可以是非晶、晶态或兼而有之,而且可以是无 机、有机或二者都有。
Co-WC纳米复合硬 质合金微观形貌
Co-WC纳米复合硬 质合金材料
7
纳米复合材料的分类
8
• 按基体形状可把纳米复合材料大致分为0-0复合、02复合、0-3复合、1-3复合和2-3复合等主要形式。
• 0-0复合:不同成分的不同相或不同种类的纳米粒子 复合而成的纳米复合材料。纳米粒子可以是金属与 金属、陶瓷与高分子、金属与高分子、陶瓷与陶瓷 、陶瓷与高19
纳米晶双相复合NdFeB/α-Fe粉末的微观形貌
• 利用非晶晶化法可以制备出晶粒尺寸在20-30nm的纳 米晶双相复合NdFeB/α-Fe永磁粉末,其最大磁能积 可以达到126-132kJ/m3,将其与高分子树脂制成粘结 磁体的可广泛应用于计算机、打印机、空调、汽车 所用的微特电机及传感器等领域
Composite Materials
材料科学与工程学院 刘颖教授主讲
纳米复合材料
Nano-Composite Materials
2
主要内容
➢纳米复合材料的定义 ➢纳米复合材料的分类 ➢纳米复合材料的制备 ➢纳米复合材料的应用
3
• 高科技的飞速发展对高性能材料的要求越来越迫切 ,纳米技术为发展高性能新材料和对现有材料的性 能进行改善提供了一个新的途径。
21
放电等离子烧结
颗粒间的放电
纳米SiCx纤维的联结 22
感应烧结
a-Fe
a-Fe a-Fe a-Fe
纳米TiN和纳米AlN复合制备的超硬材料,HRA达到91
9
• 0-2复合:把纳米粒子分散到二维的薄膜材料中得到 的纳米复合薄膜材料。
• 可分为均匀弥散型和非均匀弥散型:均匀弥散型是 指纳米粒子在薄膜基体中均匀分散,非均匀弥散型 是指纳米粒子随机混乱地分散在薄膜基体中。
纳米薄膜
纳米薄膜太阳能电池
10
低密度多孔镍形貌
13
• 按基体类型分为金属基、陶瓷基和聚合物基纳米
复合材料。
金属基纳米
金属/金属纳米复合材料
复合材料
金属/陶瓷纳米复合材料
纳米复合材料
陶瓷基纳米 复合材料
聚合物基纳 米复合材料
陶瓷/陶瓷纳米复合材料 陶瓷/金属纳米复合材料 聚合物/聚合物纳米复合材料 聚合物/金属纳米复合材料 聚合物/陶瓷纳米复合材料
• 2-3复合:无机纳米片体与聚合物粉体或者聚合物 前驱物的复合,主要是插层纳米复合材料的合成。
纳米碳管增强复合材料示意图
12
• 近年来引人注目的气凝胶材料也称为介孔固体,同 样可以作为纳米复合材料的母体,通过物理或化学 方法将纳米粒子填充在介孔中(孔洞尺寸为纳米或亚 微米级),这种介孔复合体也是纳米复合材料。
20
非常规快速烧结
• 用纳米粉体制备纳米复合材料,最终显微结构中晶 粒仍要保持在纳米尺度是非常困难的。由于纳米粉 末的巨大活性,在烧结过程中晶界扩散非常快,极 易发生晶粒快速生长。采用非常规烧结工艺,如微 波烧结、放电等离子烧结、感应烧结和自蔓延燃烧 合成等,可在烧结过程中降低烧结温度,缩短烧结 时间,加快冷却速度等,有效抑制晶粒的长大。其 中采用是比较有效的技术。
• 高能球磨法还能制备纳米晶复合材料。晶粒细化是由 于粉末反复形变引起缺陷密度的增加,当缺陷密度达 到临界值时,粗晶内部破碎。这个过程不断重复,最 终形成纳米晶复合材料。
高能球磨制备的 Ti(C,N)粉末形貌, XRD分析显示f粉
末晶粒尺寸在 100nm以下
17
• 西安交通大学通过对Al-Ti系粉末进行高能球磨和压 制烧结,发现Al-Ti合金系高能球磨后,各组元晶粒 得到细化,并且Ti在Al中发生了强制超饱和固溶, 烧结时形成纳米晶Al3Ti/Al复合材料。
• 0-3复合:把纳米粒子分散 到常规三维固体材料中, 也即纳米-微米复合材料。
• 通过纳米粒子加入和均匀 分散在微米粒子基体中, 阻止基体粒子的晶粒长大 ,以获得具有微晶结构的 致密材料,使材料强度、 硬度、韧性等力学性能得 到显著提高。
纳米-微米复合材料结构示意图
11
• 1-3复合:主要是纳米碳管、纳米晶须与常规金属 粉体、陶瓷粉体和聚合物粉体的复合,对金属、陶 瓷和聚合物有特别明显的增强作用。
• Hwang等通过机械球磨Mg, Ti和C粉合成Mg-Ti-C纳 米复合材料,Mg晶粒尺寸在25~60nm之间, TiC颗粒 尺寸在30~70nm之间。Mg-Ti-C纳米复合材料具有高 的屈服强度和与Mg-Ti合金相似的高延展性。
18
非晶晶化法
• 在合金液的凝固中实现快速冷却,使熔体中原子的组 态将基本上保持不变,被“冻结” 形成长程无序的非 晶结构,再通过晶化热处理对原子进行“解冻”。控 制热处理温度和时间,使原子具有足够的能量和时间 进行扩散,得到纳米晶复合材料。
• 一维在三继空间有两维处于纳米 尺度,如纳米丝、纳米棒、纳米 管等;
• 二维在三维空间中有一维在纳米 尺度,如超薄膜、多层膜、超晶 格等。
0维纳米Au颗粒
1维纳米Au线
6
• 纳米复合材料(Nano-composites)是由两种或两种以 上的固相至少在一维以纳米级大小(1~100nm)复合 而成的复合材料。
14
纳米复合材料的制备
15
无机纳米复合材料制备 高能球磨法
• 将两种或两种以上无机粉末放入球磨机中,利用球 磨机的转动或振动,使硬球对原料进行强烈的撞击 、研磨和搅拌,粉末颗粒经压延,压合,碾碎,再 压合的反复过程,获得纳米复合粉末,烧结后得到 纳米复合材料。
行星式高能球磨机
不锈钢磨球
16
• 高能球磨能合成两相或多相不相溶的均匀混合合金, 如 Cu-Fe、Cu-Cr、Cu-W等材料,还可用于制备 TiAl、NiAl等金属间化合物和超硬合金等。
• 纳米复合材料与传统复合材料在结构和性能上有明 显区别,成为材料学、物理化学和聚合物化学和物 理等多门学科交叉的前沿领域,成为研究的热点。
纳米材料的典型 代表-纳米碳管
4
纳米复合材料的定义
5
• 纳米材料是指三维空间中至少有 一维处于纳米尺度范围内,或以 它们作为基本构成单元的材料。
• 零维在空间三继尺度均在纳米尺 度,如纳米颗粒、原子团簇等;
• 固相可以是非晶、晶态或兼而有之,而且可以是无 机、有机或二者都有。
Co-WC纳米复合硬 质合金微观形貌
Co-WC纳米复合硬 质合金材料
7
纳米复合材料的分类
8
• 按基体形状可把纳米复合材料大致分为0-0复合、02复合、0-3复合、1-3复合和2-3复合等主要形式。
• 0-0复合:不同成分的不同相或不同种类的纳米粒子 复合而成的纳米复合材料。纳米粒子可以是金属与 金属、陶瓷与高分子、金属与高分子、陶瓷与陶瓷 、陶瓷与高19
纳米晶双相复合NdFeB/α-Fe粉末的微观形貌
• 利用非晶晶化法可以制备出晶粒尺寸在20-30nm的纳 米晶双相复合NdFeB/α-Fe永磁粉末,其最大磁能积 可以达到126-132kJ/m3,将其与高分子树脂制成粘结 磁体的可广泛应用于计算机、打印机、空调、汽车 所用的微特电机及传感器等领域