高中数学函数与方程练习

合集下载

高中数学试题含答案-课时规范练12 函数与方程

高中数学试题含答案-课时规范练12 函数与方程

课时规范练12 函数与方程基础巩固组1.(2020云南玉溪一中二模)函数f (x )=2x +3x 的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)2.函数f (x )=sin(πcos x )在区间[0,2π]上的零点个数是( )A.3B.4C.5D.63.设f (x )=3x +3x-8,用二分法求方程3x +3x-8=0在x ∈(1,2)内的近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在( ) A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定4.已知x 0是f (x )=12x +1x的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A.f (x 1)<0,f (x 2)<0B.f (x 1)>0,f (x 2)>0C.f (x 1)>0,f (x 2)<0D.f (x 1)<0,f (x 2)>05.已知函数f (x )={|2x -1|,x <2,3x -1,x ≥2,若方程f (x )-a=0有三个不同的实数根,则实数a 的取值范围是( )A.(1,3)B.(0,3)C.(0,2)D.(0,1)6.(多选)(2020山东济南历城二中模拟四,9)已知f (x )是定义域为R 的偶函数,在(-∞,0)上单调递减,且f (-3)·f (6)<0,那么下列结论中正确的是( ) A.f (x )可能有三个零点B.f (3)·f (-4)≥0C.f (-4)<f (6)D.f (0)<f (-6)7.(多选)已知函数f (x )={-x 2-2x ,x ≤0,|log 2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A.x 1+x 2=-1 B.x 3x 4=1 C.1<x 4<2D.0<x 1x 2x 3x 4<1 8.(多选)(2020山东济宁三模,12)已知直线y=-x+2分别与函数y=e x 和y=ln x 的图像交于点A (x 1,y 1),B (x 2,y 2),则下列结论正确的是( ) A.x 1+x 2=2B.e x 1+e x 2>2eC.x 1ln x 2+x 2ln x 1<0D.x 1x 2>√e29.若函数f (x )=log 2x+x-k (k ∈Z )在区间(2,3)上有零点,则k= .10.已知函数f (x )={log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是 .11.函数f (x )={|x 2+2x -1|,x ≤0,2x -1+a ,x >0有两个不同的零点,则实数a 的取值范围为 .综合提升组12.(2020湖北恩施高中月考,理11)已知单调函数f (x )的定义域为(0,+∞),对于定义域内任意x ,f ([f (x )-log 2x ])=3,则函数g (x )=f (x )+x-7的零点所在的区间为( ) A.(1,2) B.(2,3) C.(3,4)D.(4,5)13.已知函数f (x )=|2x -2|+b 的两个零点分别为x 1,x 2(x 1>x 2),则下列结论正确的是( ) A.1<x 1<2,x 1+x 2<2 B.1<x 1<2,x 1+x 2<1 C.x 1>1,x 1+x 2<2D.x 1>1,x 1+x 2<114.(2020安徽安庆二模,理12)函数f (x )=|ln x|-ax 恰有两个零点x 1,x 2,且x 1<x 2,则x 1所在区间为( ) A.0,1e 3B.1e 3,1e 2C.1e 2,1eD.1e,115.(2020天津和平区一模,15)已知函数f (x )={1-|x +1|,x ∈[-2,0],2f (x -2),x ∈(0,+∞),则3log f (3)256= ;若方程f (x )=x+a 在区间[-2,4]有三个不等实根,则实数1a的取值范围为 .创新应用组16.(2020河南实验中学4月模拟,12)已知函数f (x )={-x 2+2x ,x ≥0,x 2-2x ,x <0,若关于x 的不等式[f (x )]2+af (x )<0恰有1个整数解,则实数a 的最大值为( ) A.2B.3C.5D.817.已知函数f (x )=x 2-2x+a (e x-1+e -x+1)有唯一零点,则a=( ) A.-12 B.13C.12D.1参考答案课时规范练12 函数与方程1.B 易知f (x )=2x +3x 在R 上单调递增,且f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B .2.C 令f (x )=0,得πcos x=k π(k ∈Z ),即cos x=k (k ∈Z ),故k=0,1,-1.若k=0,则x=π2或x=3π2;若k=1,则x=0或x=2π;若k=-1,则x=π,故零点个数为5.故选C .3.B 由f (1.25)<0,f (1.5)>0可得方程f (x )=0的根落在区间(1.25,1.5)内.故选B .4.C 在同一平面直角坐标系内作出函数y=12x ,y=-1x的图像(图略),由图像可知,当x ∈(-∞,x 0)时,12x>-1x ,当x ∈(x 0,0)时,12x <-1x,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,故选C .5.D 画出函数f (x )的图像如图所示,观察图像可知,若方程f (x )-a=0有三个不同的实数根,则函数y=f (x )的图像与直线y=a 有三个不同的交点,此时需满足0<a<1,故选D .6.AC 因为f (x )是偶函数,又f (-3)f (6)<0,所以f (3)f (6)<0.又f (x )在(0,+∞)上单调递增,所以函数f (x )在(0,+∞)上有一个零点,且f (3)<0,f (6)>0.所以函数f (x )在(-∞,0)∪(0,+∞)上有两个零点.但是f (0)的值没有确定,所以函数f (x )可能有三个零点,所以A 选项正确;又f (-4)=f (4),4∈(3,6),所以f (-4)的符号不确定,所以B 选项不正确;C 选项显然正确;由于f (0)的值没有确定,所以f (0)与f (-6)的大小关系不确定,所以D 选项不正确.7.BCD 画出函数f (x )的大致图像如图,由图像得出x 1+x 2=-2,-log 2x 3=log 2x 4,则x 3x 4=1,故A 错误,B 正确;由图可知1<x 4<2,故C 正确;因为-2<x 1<-1,x 1x 2=x 1(-2-x 1)=-x 12-2x 1=-(x 1+1)2+1∈(0,1),所以x 1x 2x 3x 4=x 1x 2∈(0,1),故D 正确.故选BCD .8.ABC 因为函数y=e x 与y=ln x 互为反函数,它们的图像关于直线y=x 对称,直线y=-x+2与直线y=x 垂直,且交点为(1,1),则点(1,1)为A (x 1,y 1),B (x 2,y 2)的中点,所以x 1+x 2=2,故选项A 正确;e x 1+e x 2≥2√e x 1e x 2=2√e x 1+x 2=2√e 2=2e,由题意x 1≠x 2,所以e x 1≠e x 2,所以e x 1+e x 2>2e,故选项B 正确;因为点(1,1)为A (x 1,y 1),B (x 2,y 2)的中点,不妨设x 1<1<x 2,所以x 1ln x 2+x 2ln x 1<x 2ln x 2+x 2ln x 1=x 2(ln x 2+ln x 1)=x 2ln(x 1x 2)<x 2lnx 1+x 222=x 2ln 1=0,故选项C 正确;因为x 1+x 2>2√x 1x 2,则x 1x 2<x 1+x 222=1,所以x 1x 2>√e2错误,故选项D 错误,故选ABC .9.4 由题意可得f (2)f (3)<0,即(log 22+2-k )(log 23+3-k )<0,整理得(3-k )(log 23+3-k )<0,解得3<k<3+log 23,而4<3+log 23<5,因为k ∈Z ,故k=4.10.(0,1) 因为函数g (x )=f (x )-m 有3个零点,所以f (x )-m=0有3个根,所以y=f (x )的图像与直线y=m 有3个交点.画出函数y=f (x )的图像,由抛物线顶点为(-1,1),可知实数m 的取值范围是(0,1).11.-∞,-12 由于当x ≤0,f (x )=|x 2+2x-1|时图像与x 轴只有1个交点,即只有1个零点,故由题意只需方程2x-1+a=0有1个正根即可,变形为2x-1=-a ,结合图形知-a>12,解得a<-12.12.C 因为f (x )在(0,+∞)上为单调函数,且f ([f (x )-log 2x ])=3,设t=f (x )-log 2x ,则f (x )=log 2x+t ,又由f (t )=3,所以f (t )=log 2t+t=3,得t=2,所以f (x )=log 2x+2,所以g (x )=log 2x+x-5.因为g (3)<0,g (4)>0,所以零点所在的区间为(3,4).故选C .13.A 函数f (x )=|2x -2|+b 有两个零点,即y=|2x -2|与y=-b 的图像有两个交点,交点的横坐标就是x 1,x 2(x 1>x 2),在同一坐标系中画出y=|2x -2|与y=-b 的图像,可知1<x 1<2,当y=-b=2时,x 1=2,两个函数图像只有一个交点,当y=-b<2时,由图可知x 1+x 2<2.14.D 当a<0时,f (x )>0恒成立,不符合题意,当a=0时,f (x )=|ln x|只有一个零点为1,也不符合题意,当a>0时,作函数g (x )=|ln x|与h (x )=ax 图像,易知g (x )与h (x )图像在区间(0,1)上必有一个交点,则在区间(1,+∞)上有且仅有一个公共点,当x ∈(1,+∞)时,f (x )=ln x-ax ,f'(x )=1-axx,f (x )在0,1a上单调递增,在1a ,+∞上单调递减,所以f (x )max =f1a =ln 1a-1,则只需ln 1a-1=0,故a=1e,当x ∈(0,1)时,f (x )=-ln x-1ex ,易知f 1e=1-1e2>0,f (1)=-1e<0,可知x 1∈1e,1,故选D . 15.81-∞,-12∪{1} ∵f (x )={1-|x +1|,x ∈[-2,0],2f (x -2),x ∈(0,+∞),∴f (3)=2f (1)=4f (-1)=4×(1-|-1+1|)=4. ∴log f (3)256=lo g 2228=82=4,3log f (3)256=34=81. 若x ∈[0,2],则-2≤x-2≤0,∴f (x )=2f (x-2)=2(1-|x-2+1|)=2-2|x-1|,0≤x ≤2. 若x ∈(2,4],则0<x-2≤2,∴f (x )=2f (x-2)=2(2-2|x-2-1|)=4-4|x-3|,2<x ≤4. ∴f (1)=2,f (2)=0,f (3)=4.设y=f (x )和y=x+a ,则方程f (x )=x+a 在区间[-2,4]内有3个不等实根,等价为函数y=f (x )和y=x+a 在区间[-2,4]内有3个不同的零点.作出函数f (x )和y=x+a 的图像,如图所示,当直线经过点A (2,0)时,两个图像有2个交点,此时直线为y=x-2,当直线经过点O (0,0)时,两个图像有4个交点,此时直线为y=x ,当直线经过点B (3,4)和C (1,2)时,两个图像有3个交点,此时直线为y=x+1,∴要使方程f (x )=x+a 在区间[-2,4]内有3个不等实根,则a=1或-2<a<0.故实数1a的取值范围为{1}∪-∞,-12.16.D 作函数f (x )图像,如图所示,由[f(x)]2+af(x)<0,得f(x)[f(x)+a]<0,当a>0时,-a<f(x)<0,由于关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,因此其整数解为3,又f(3)=-9+6=-3,所以-a<-3<0,-a≥f(4)=-8,则3<a≤8.当a=0时,[f(x)]2<0,则a=0不满足题意;当a<0时,0<f(x)<-a,当0<-a≤1时,0<f(x)<-a,没有整数解,当-a>1时,0<f(x)<-a,至少有两个整数解,综上,实数a的最大值为8,故选D.17.C(方法1)∵f(x)=x2-2x+a(e x-1+e-x+1),∴f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+e x-1)=x2-2x+a(e x-1+e-x+1),∴f(2-x)=f(x),即直线x=1为f(x)图像的对称轴.∵f(x)有唯一零点,∴f(x)的零点只能为1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=12.(方法2)函数的零点满足x2-2x=-a(e x-1+e-x+1)=-a e x-1+1e x-1,设g(x)=e x-1+1e x-1,令t=e x-1>0,则y=t+1t在(0,1)单调递减,在[1,+∞)单调递增,即g(x)=e x-1+1e x-1在(-∞,1)上单调递减,在[1,+∞)上单调递增,所以当x=1时,y min=2,设h(x)=x2-2x,当x=1时,h(x)min=-1,若-a>0,函数h(x)与-ag(x)有两个交点,不合题意.当-a<0时,-ag(x)的最大值为-2a,当-2a=h(x)min=-1,两个函数有一个交点,解得a=12.。

高中数学练习题及答案

高中数学练习题及答案

高中数学练习题及答案高中数学练习题及答案高中数学是学生们学习过程中的一大挑战。

掌握数学的基本概念和解题技巧对于学生们来说是至关重要的。

然而,要真正掌握数学,仅仅依靠理论知识是不够的。

实践和练习是提高数学能力的关键。

本文将介绍一些高中数学练习题及其答案,帮助学生们更好地巩固和应用所学的知识。

一、代数题1. 解方程:2x + 5 = 17答案:x = 62. 化简表达式:(3x + 2y)²答案:9x² + 12xy + 4y²3. 因式分解:x² + 6x + 9答案:(x + 3)²二、几何题1. 计算三角形面积:已知三角形的底边长为8cm,高为6cm,求其面积。

答案:三角形的面积为24平方厘米。

2. 判断三角形形状:已知三条边长分别为3cm、4cm和5cm,判断该三角形是什么形状?答案:该三角形是直角三角形。

3. 计算圆的面积:已知圆的半径为5cm,求其面积。

答案:圆的面积为25π平方厘米。

三、函数题1. 求函数的定义域:已知函数f(x) = √(2x - 1),求f(x)的定义域。

答案:2x - 1 ≥ 0,即x ≥ 1/2。

所以f(x)的定义域为[x ≥ 1/2)。

2. 求函数的值域:已知函数g(x) = x² + 3x + 2,求g(x)的值域。

答案:首先,g(x)是一个二次函数,开口向上,所以最小值为函数的顶点。

顶点的横坐标为-x/2a,即x = -3/2。

代入函数得到g(-3/2) = 1/4。

所以g(x)的值域为[g(x) ≥ 1/4)。

四、概率题1. 计算概率:从一副扑克牌中随机抽取一张牌,求抽到红心的概率。

答案:一副扑克牌中有52张牌,其中红心有13张。

所以抽到红心的概率为13/52,即1/4。

2. 计算条件概率:在一副扑克牌中,已知抽到的牌是红心,求下一张牌是梅花的概率。

答案:由于已知抽到的牌是红心,所以剩下的牌中只有26张梅花牌。

高一数学竞赛:函数与方程

高一数学竞赛:函数与方程

高一数学竞赛:函数与方程模块一:易错试题精选【例1】若,a b c <<则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间()A (),a b 和(),b c 内()B (),a -∞和(),a b 内()C (),b c 和(),c +∞内()D (),a -∞和(),c +∞内【例2】若函数()⎩⎨⎧>≤+=0,ln 0,1x x x x x f ,函数()1y f f x ⎡⎤=+⎣⎦的零点个数是___________.【例3】已知函数()x f 是定义在R 上的奇函数,且当()+∞∈,0x 时,()x x f x2017log 2017+=,则函数()x f 的零点个数是A .1B .2C .3D .4【例4】奇函数f (x )、偶函数g (x )的图象分别如图1、2所示,方程f (g (x ))=0、g (f (x ))=0的实根个数分别为a 、b ,则a +b 等于()A.14B.10C.7D.3【例5】设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为A .4B .5C .6D .7【例6】函数322,2()log (2),2x x f x x x ⎧-≤⎪=⎨->⎪⎩,若函数()2–41()g x a f x x =-++有6个不同的零点,则a 的取值范围为()A.()0,2 B.(]0,2 C.(]0,1 D.()0,1【例7】设函数()4310{log 0x x f x x x +≤=>,,,若关于x 的方程()()()2230f x a f x -++=恰好有六个不同的实数解,则实数a 的取值范围为()A.()22-B.322⎛⎤- ⎥⎝⎦, C.3,2⎡⎫+∞⎪⎢⎣⎭D.()2,-+∞【例8】已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x m =有四个不同的解a b c d ,,,,且a b c d <<<,则的()21a b c c d++取值范围为()A.(]1,1- B.[)1,1- C.(1,)-+∞ D.(,1)-∞【例9】已知定义在R 上的函数()f x 满足(4044)4()f x f x -=-,若函数220192022x y x +=-与()y f x =的图象有m 个交点(,)(1,2,3)i i x y i m =L ,则1()miii x y =+=∑()(注111221()()()()mim m i x y xy x y x y =+=++++++∑L )A.2022mB.2019mC.2021mD.2024m模块二:培优试题精选【例1】已知定义在R 上的函数()f x 满足()()2f x f x +=,当[]1,1x ∈-时,()2f x x =,函数()()log 1,12,1a x x x g x x ⎧->=⎨≤⎩,若函数()()()h x f x g x =-在区间[]5,5-上恰有8个零点,则a 的取值范围为()A .(2,4)B .(2,5)C .(1,5)D .(1,4)【例2】关于x 的方程()242200x m x m ++++=有两个正根()1212,x x x x <,下列结论错误的是()A .102x <<B .226x <<C .1212x x x x +的取值范围是{01}xx <<∣D .2212x x +的取值范围是{440}xx <<∣【例3】设函数21,0()ln ,0ax ax x f x x x ⎧++≤⎪=⎨>⎪⎩,若函数()y f x a =+在R 上有4个不同的零点,则实数a 的取值范围是()A .4,3⎛⎫-+∞ ⎪⎝⎭B .(),0∞-C .[)1,0-D .4,13⎛⎤-- ⎥⎝⎦【例4】已知函数()()()2,0,2ln ,0,x x f x g x x x x x ⎧==-⎨>⎩,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围是()A .1m >B .1mC .1m <D .1m【例5】已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是()A .2个B .3个C .4个D .6个【例6】已知函数()f x 是定义在R 上的奇函数,当0x >时,()()211,0212,22x x f x f x x ⎧--<≤⎪=⎨->⎪⎩,则函数()()1g x xf x =-在[)6,-+∞上的所有零点之和为()A .8B .32C .0D .18【例7】已知函数23e ,0()2,0x x x f x x x x ⎧-≤=⎨->⎩,()()2g x f x kx x =--有两个零点,则k 的可能取值为()A .2-B .1-C .0D .1【例8】设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1]x ∈-时,2()1f x x =-+,则下列结论正确的是()A .7324f ⎛⎫=-⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上为减函数D .方程()lg 0f x x +=仅有6个实数解【例9】已知函数()()211x xf x x x =->-,()()2log 11x g x x x x =->-的零点分别为α,β,给出以下结论正确的是()A .αββα=+B .22log ααββ+=+C .4αβ+>D .1αβ->-【例10】设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为___________.【例11】设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.【例12】已知偶函数()f x 满足()()33f x f x +=-,且当[0,3]x ∈时,()221f x x x =-++,若关于x 的方程()()230f x tf x --=在[150,150]-上有300个解,则实数t 的取值范围是_____.【例13】已知函数()f x 定义城为(]0,12,恒有(4)4()f x f x +=,(]0,4x ∈时2()22x f x -=-;若函数2()()()g x f x t f x =+⋅有4个零点,则t 的取值范围为________.【例14】已知函数212,2()2ln(1),2x x x f x x x ⎧-+<≤⎪=⎨⎪->⎩,当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,函数1()()4g x f f x m ⎛⎫=+- ⎝⎭有6个不同的零点,求m 的取值范围___________.【例15】已知函数2|2|,0,()|log |,0,x x f x x x +≤⎧=⎨>⎩若关于x 的方程()0f x k -=有4个不相等的实数根a ,b ,c ,d ,则+++a b c d 的取值范围是___________,abcd 的取值范围是___________.【例16】已知函数()1ln ,1121,1x f x x x x ⎧⎛⎫-<-⎪ ⎪=+⎝⎭⎨⎪+-⎩,则函数()f x 的零点是__________;若函数()()()g x f f x a =-,且函数()g x 有三个不同的零点,则实数a 的取值范围是__________.【例17】已知函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则(1)实数m 的取值范围为_________;(2)+++a b c d 的取值范围是_________.【例18】已知函数()()2ln ,068,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,则函数()f x 的各个零点之和为______;若方程1f x mx ⎛⎫+= ⎪⎝⎭恰有四个实根,则实数m 的取值范围为______.模块三:全国高中数学联赛试题精选【例1】(全国竞赛题)已知定义在+R 上的函数)(x f 为⎩⎨⎧--=x x x f 41log )(39,90,>≤<x x ,设c b a ,,是三个互不相同的实数,满足)()()(c f b f a f ==,求abc 的取值范围。

高中数学一元二次函数方程和不等式经典大题例题

高中数学一元二次函数方程和不等式经典大题例题

(每日一练)高中数学一元二次函数方程和不等式经典大题例题单选题1、某次全程马拉松比赛中,选手甲前半程以速度a匀速跑,后半程以速度b匀速跑;选手乙前一半时间以速度a匀速跑,后一半时间以速度b匀速跑(注:速度单位m s⁄),若a≠b,则()A.甲先到达终点B.乙先到达终点C.甲乙同时到达终点D.无法确定谁先到达终点答案:B解析:设马拉松全程为x,得到甲用的时间为12(xa+xb),乙用的时间为xa+b2=2xa+b,做差比较大小可得答案.设马拉松全程为x,所以甲用的时间为12(xa+xb),乙用的时间为xa+b2=2xa+b,因为a≠b,所以12(xa+xb)−2xa+b=bx(a+b)+ax(a+b)−4abx2ab(a+b)=(a−b)2xab(a+b)>0,所以12(xa+xb)>2xa+b,则乙先到达终点.故选:B.小提示:比较大小的方法有:(1)根据单调性比较大小;(2)作差法比较大小;(3)作商法比较大小;(4)中间量法比较大小.2、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba+2b =2−a a+2b=2a+2b−1≥3,当且仅当a =b =1时等号成立;故选:D3、下列命题中,是真命题的是( )A .如果a >b ,那么ac >bcB .如果a >b ,那么ac 2>bc 2C .如果a >b ,那么ac >bc D .如果a >b ,c <d ,那么a −c >b −d 答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、当0<x <2时,x(2−x)的最大值为( ) A .0B .1C .2D .4 答案:B分析:利用基本不等式直接求解.∵0<x <2,∴2−x >0,又x +(2−x)=2 ∴x(2−x)≤[x+(2−x)]24=1,当且仅当x =2−x ,即x =1时等号成立,所以x(2−x)的最大值为1 故选:B5、若不等式ax 2+bx −2<0的解集为{x|−2<x <1},则a +b =( ) A .−2B .0C .1D .2 答案:D分析:根据一元二次不等式与一元二次方程的关系以及韦达定理列方程组,可解出答案. 不等式ax 2+bx −2<0的解集为{x|−2<x <1},则方程ax 2+bx −2=0根为−2、1, 则{−ba =−2+1−2a =−2×1 ,解得a =1,b =1,∴a +b =2, 故选:D6、对∀x ∈R ,不等式(a −2)x 2+2(a −2)x −4<0恒成立,则a 的取值范围是( ) A .−2<a ≤2B .−2≤a ≤2C .a <−2或a ≥2D .a ≤−2或a ≥2 答案:A分析:对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围. 不等式(a −2)x 2+2(a −2)x −4<0对一切x ∈R 恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意; 当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0 ,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2]. 故选:A.7、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x +600x−30)元(试剂的总产量为x 单位,50≤x ≤200),则要使生产每单位试剂的成本最低,试剂总产量应为( ) A .60单位B .70单位C .80单位D .90单位 答案:D分析:设生产每单位试剂的成本为y ,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y ,然后利用基本不等式求解最值即可. 解:设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元,职工的工资总额为7500+20x 元,后续保养总费用为x (x +600x−30)元,则y =50x+7500+20x+x 2−30x+600x=x +8100x+40≥2√x ⋅8100x+40=220,当且仅当x =8100x,即x =90时取等号,满足50≤x ≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.8、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A9、已知正实数a,b 满足4a+b+1b+1=1,则a +2b 的最小值为( )A .6B .8C .10D .12 答案:B分析:令a +2b =a +b +b +1−1,用a +b +b +1分别乘4a+b +1b+1=1两边再用均值不等式求解即可. 因为4a+b+1b+1=1,且a,b 为正实数所以a +b +b +1=(a +b +b +1)(4a+b +1b+1)=4+a+bb+1+4(b+1)a+b+1≥5+2√a+b b+1×4(b+1)a+b=9,当且仅当a+b b+1=4(b+1)a+b即a =b +2时等号成立.所以a +2b +1≥9,a +2b ≥8.10、权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当a x=b y时等号成立.根据权方和不等式,函数f(x)=2x+91−2x(0<x <12)的最小值为( ) A .16B .25C .36D .49 答案:B分析:将给定函数式表示成已知不等式的左边形式,再利用该不等式求解作答.因a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当ax =by 时等号成立,又0<x <12,即1−2x >0, 于是得f(x)=222x+321−2x≥(2+3)22x+(1−2x)=25,当且仅当22x=31−2x,即x =15时取“=”,所以函数f(x)=2x +91−2x (0<x <12)的最小值为25. 故选:B 填空题11、正实数x,y 满足:2x +y =1,则2x +1y 的最小值为_____. 答案:9解析:根据题意,可得2x +1y =(2x +1y )(2x +y )=5+2y x+2x y,然后再利用基本不等式,即可求解.2x+1y =(2x +1y )(2x +y )=5+2y x+2x y≥5+2√2yx ⋅2x y≥5+2√4=9,当且仅当x =y =13 时取等号.所以答案是:9.小提示:本题主要考查利用基本不等式求最值,属于基础题.12、已知三个不等式:①ab >0,②ca >db ,③bc >ad ,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab>0ca>db⇒{ab>0bc−adab>0⇒bc>ad;{ab>0bc>ad⇒ca>db;{ca>dbbc>ad⇒{bc−adab>0bc>ad⇒ab>0.故可组成3个真命题.所以答案是:3.13、已知关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3<x<4},则c2+5a+b的取值范围为________________.答案:[4√5,+∞)分析:由一元二次不等式的解集与一元二次方程根的关系,应用韦达定理把b,c用a表示,化待求式为一元函数,再利用基本不等式得结论.由不等式解集知a<0,由根与系数的关系知{−ba=3+4=7, ca=3×4=12,∴b=−7a,c=12a,则c2+5a+b =144a2+5−6a=−24a+5−6a≥2√(−24a)×5−6a=4√5,当且仅当−24a=5−6a ,即a=−√512时取等号.所以答案是:[4√5,+∞).小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.15、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______.答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x +y 的最小值为2. 所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 16、设a >0,b >0,给出下列不等式:①a 2+1>a ; ②(a +1a )(b +1b )≥4; ③(a +b )(1a +1b )≥4; ④a 2+9>6a .其中恒成立的是________(填序号). 答案:①②③分析:利用做差法判断①,利用基本不等式判断②③,特殊值代入判断④即可得出结论.由于a 2+1-a =(a −12)2+34>0,故①恒成立;由于(a +1a )(b +1b )=ab +1ab +ba +ab ≥2√ab ⋅1ab +2√ba ⋅ab=4,当且仅当{ab =1ab b a=a b即a =b =1时等号成立,故②恒成立; 由于(a +b )(1a +1b )=2+b a +a b ≥2+2√b a ×a b =4.当且仅当a b =ba , 那么a =b =1时等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.所以答案是:①②③.小提示:本题主要考查了利用做差法和基本不等式以及特殊值代入的方法,判断不等式是否成立的问题.属于较易题.17、 设x ∈R ,使不等式3x 2+x −2<0成立的x 的取值范围为__________. 答案:(−1,23)分析:通过因式分解,解不等式. 3x 2+x −2<0, 即(x +1)(3x −2)<0,即−1<x <23,故x 的取值范围是(−1,23).小提示:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合. 18、不等式2x−7x−1≤1的解集是________. 答案:(1,6]分析:把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集. 不等式2x−7x−1≤1得x−6x−1≤0 ,故{(x −1)(x −6)≤0x −1≠0⇒1<x ≤6 ,所以答案是:(1,6].19、已知a ∈Z 关于x 的一元二次不等式x 2−8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是________(写出任何一个满足条件的值即可).答案:13,14,15(写出任何一个值即可)分析:根据题意,先表示出关于x的一元二次不等式x2−8x+a≤0的解集,再结合数轴分析即可得到a的值. 因为关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以Δ=64−4a>0,即a<16,由x2−8x+a=0,解得x=4±√16−a,故关于x的一元二次不等式x2−8x+a≤0的解集为[4−√16−a,4+√16−a],因关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以1≤√16−a<2,即12<x≤15,又因a∈Z,所以a=13,14或15都满足.所以答案是:13,14,15(写出任何一个值即可).>0的解集为______________.20、不等式x+3x−1答案:{x|x<−3或x>1}分析:由题可得(x−1)(x+3)>0,进而即得.>0,得(x−1)(x+3)>0,由x+3x−1所以x<−3或x>1,故不等式得解集为{x|x<−3或x>1}.所以答案是:{x|x<−3或x>1}.解答题<0,k≠021、已知关于x的不等式2kx2+kx−38(1)若k =18,求不等式的解集; (2)若不等式的解集为R ,求k 的取值范围.答案:(1)(−32,1);(2)(−3,0) 分析:(1)将k =18代入不等式,根据一元二次不等式的解法即可求解.(2)根据关于x 的不等式2kx 2+kx −38<0的解集为R .又因为k ≠0 ,利用判别式法求解. (1)将k =18代入不等式,可得14x 2+18x −38<0,即2x 2+x −3<0 所以−32和1是方程2x 2+x −3=0的两个实数根, 所以不等式的解集为{x |−32 <x <1}即不等式的解集为(−32,1). (2)因为关于x 的不等式2kx 2+kx −38<0的解集为R .因为k ≠0所以{2k <0,Δ=k 2+3k <0,解得−3<k <0, 故k 的取值范围为(−3,0).22、(1)已知a >b,c <d ,求证:a −c >b −d ;(2)已知a >b,ab >0,求证:1a <1b ;(3)已知a >b >0,0<c <d ,求证:a c >b d . 答案:(1)证明见解析;(2)证明见解析;(3)证明见解析.分析:(1)根据c <d 不等号左右两边同时乘以一个负数,不等号方向改变得到 −c >−d , 再用同向可加性法则即可得出结果.(2)根据正数的倒数大于0可得1ab>0,再用同向同正可乘性得出结果.(3)因为0<c<d,根据(2)的结论,得1c >1d>0,再用同向同正可乘性得出结果.证明:(1)因为a>b,c<d,所以a>b,−c>−d. 则a−c>b−d.(2)因为ab>0,所以1ab>0.又因为a>b,所以a⋅1ab >b⋅1ab,即1b >1a,因此1a<1b.(3)因为0<c<d,根据(2)的结论,得1 c >1d>0.又因为a>b>0,则a⋅1c >b⋅1d,即ac >bd.小提示:本题考查不等式的基本性质与不等关系,是基础题.。

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。

高中数学一元二次函数方程和不等式专项训练

高中数学一元二次函数方程和不等式专项训练

(每日一练)高中数学一元二次函数方程和不等式专项训练单选题1、若“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,则实数m的取值范围是()A.m≥1B.m≥2C.m≥3D.m≥4答案:C分析:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.根据“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,可得﹣2m≤﹣2,3≤m,m>0.解出即可得出.解:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.∵“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,∴﹣2m≤﹣2,3≤m,(两个等号不同时取)m>0.解得m≥3.则实数m的取值范围是[3,+∞).故选:C.的最小值为()2、已知x>2,则x+4x−2A.6B.4C.3D.2答案:A分析:利用基本不等式可得答案.∵x>2,∴x−2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6, 当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6,故选:A .3、若实数x >32,y >13,不等式4x 2t (3y−1)+9y 2t (2x−3)≥2恒成立,则正实数t 的最大值为( ) A .4B .16C .72D .8答案:D分析:令3y −1=a,2x −3=b ,则(b+3)2a +(a+1)2b ≥2t ,由权方和不等式和基本不等式得(b+3)2a +(a+1)2b ≥16,即可求解t ≤8.由4x 2t (3y−1)+9y 2t (2x−3)≥2得4x 2(3y−1)+9y 2(2x−3)≥2t 因为x >32,y >13,则3y −1>0,2x −3>0令3y −1=a,2x −3=b则4x 2(3y−1)+9y 2(2x−3)≥2t 化为(b+3)2a +(a+1)2b ≥2t 恒成立, 由权方和不等式得(b+3)2a +(a+1)2b ≥(a+b+4)2a+b =(a +b )+16a+b +8≥2√16+8=16 当且仅当{b+3a =a+1b a +b =4 ,得a =53,b =73即x =73,y =109时等号成立. 所以16≥2t ⇒t ≤8故选:D4、若关于x 的不等式|x −1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,1)C .(3,+∞)D .[3,+∞)答案:D分析:根据充分条件列不等式,由此求得a 的取值范围.|x −1|<a 成立的充分条件是0<x <4,则a >0,|x −1|<a ⇒1−a <x <1+a ,所以{1−a ≤01+a ≥4⇒a ≥3. 故选:D5、已知0<x <2,则y =x√4−x 2的最大值为( )A .2B .4C .5D .6答案:A分析:由基本不等式求解即可因为0<x <2,所以可得4−x 2>0,则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号,y =x√4−x 2的最大值为2.故选:A .6、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可.若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤2√a2+c2b×2b=2√2(a2+c2)=12√a2+2ac+c22(a2+c2)=12√12+aca2+c2≤12√12+2√a2×c2=12,当且仅当a 2+c2b=2b,且a=c取等,即a=b=c取等号,即则ab+bca2+2b2+c2的最大值为12,故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.7、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.8、设a<b<0,则下列不等式中不一定正确的是()A.2a >2bB.ac<bc C.|a|>-b D.√−a>√−b答案:B分析:利用不等式的性质对四个选项一一验证:对于A,利用不等式的可乘性进行证明;对于B,利用不等式的可乘性进行判断;对于C,直接证明;对于D,由开方性质进行证明.对于A,因为a<b<0,所以2ab >0,对a<b同乘以2ab,则有2a>2b,故A成立;对于B,当c>0时选项B成立,其余情况不成立,则选项B不成立;对于C,|a|=-a>-b,则选项C成立;对于D,由-a>-b>0,可得√−a>√−b,则选项D成立.故选:B9、设实数x满足x>0,函数y=2+3x+4x+1的最小值为()A.4√3−1B.4√3+2C.4√2+1D.6答案:A解析:将函数变形为y=3(x+1)+4x+1−1,再根据基本不等式求解即可得答案. 解:由题意x>0,所以x+1>0,所以y=2+3x+4x+1=2+3(x+1)−3+4x+1=3(x +1)+4x+1−1≥2√3(x +1)⋅4x+1−1=4√3−1,当且仅当3(x +1)=4x+1,即x =2√33−1>0时等号成立, 所以函数y =2+3x +4x+1的最小值为4√3−1.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10、不等式1+x 1−x ≥0的解集为( )A .{x|x ≥1或x ≤−1}B .{x ∣−1≤x ≤1}C .{x|x ≥1或x <−1}D .{x|−1≤x <1}答案:D分析:不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,由此求得不等式的解集. 不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,解得−1≤x <1,故不等式的解集为{x|−1≤x <1},故选:D .填空题11、已知x,y ∈(0,+∞),a ∈R ,若(x −y +sin 2α+1)(x +3y −2sin 2α)=2,则3x +y 的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.12、设x1、x2、x3、y1、y2、y3是六个互不相等的实数,则在以下六个式子中:x1y1+x2y2+x3y3,x1y1+ x2y3+x3y2,x1y2+x2y3+x3y1,x1y2+x2y1+x3y3,x1y3+x2y2+x3y1,x1y3+x2y1+x3y2,能同时取到150的代数式最多有________个.答案:2分析:由作差法比较大小后判断不妨设x1<x2<x3,y1<y2<y3,记x1y1+x2y2+x3y3为①式,x1y1+x2y3+x3y2为②式,以此类推,由①−②=x2y2+x3y3−x2y3−x3y2=(x2−x3)(y2−y3)>0,故①>②,②−③=x1y1+x3y2−x1y2−x3y1=(x1−x3)(y1−y2)>0,故②>③,①−④=x1y1+x2y2−x1y2−x2y1=(x1−x2)(y1−y2)>0,故①>④,同理得,①>⑤,②>⑥,③>⑤,④>③,④>⑥,⑥>⑤,综上可知①>②>③>⑤,①>④>③>⑤,且②>⑥>⑤,④>⑥>⑤,最多有②④或③⑥两项可同时取150,令x1y1+x2y3+x3y2=x1y2+x2y1+x3y3=150,得其一组解为{x1=−1x2=0x3=1,{y1=2y2=152y3=302所以答案是:213、已知a,b∈R,若对任意x≤0,不等式(ax+2)(x2+2bx−1)≤0恒成立,则a+b的最小值为___________.答案:√3分析:考虑两个函数g(x)=ax+2,f(x)=x2+2bx−1,由此确定a>0,x<0时,f(x),g(x)有相同的零点,得出a,b的关系,检验此时f(x)也满足题意,然后计算出a+b(用a表示),然后由基本不等式得最小值.设g(x)=ax+2,f(x)=x2+2bx−1,f(x)图象是开口向上的抛物线,因此由x≤0时,f(x)g(x)≤0恒成立得a>0,g(x)=0时,x=−2a ,x<−2a时,g(x)<0,−2a<x≤0时,g(x)>0,因此x<−2a 时,f(x)>0,−2a<x≤0时,f(x)<0,f(−2a)=0,所以4a2−4ba−1=0①,−b>−2a②,由①得b=1a −a4,代入②得a4−1a>−2a,因为a>0,此式显然成立.a +b =1a +3a 4≥2√1a ×3a 4=√3,当且仅当1a =3a 4,即a =2√33时等号成立, 所以a +b 的最小值是√3.所以答案是:√3.小提示:关键点点睛:本题考查不等式恒成立问题,考查基本不等式求最值.解题关键是引入两个函数f(x)和g(x),把三次函数转化为二次函数与一次函数,降低了难度.由两个函数的关系得出参数a,b 的关系,从而可求得a +b 的最小值.14、若函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为____.答案:92分析:根据二次函数的性质,结合定义域和值域均为[1,b ](b >1),列出相应方程组,求出a ,b 的值即可. 解:由函数f (x )=12x 2−x +a ,可得对称轴为x =1,故函数在[1,b ]上是增函数.∵函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1), ∴ {f (1)=1f (b )=b ,即{12−1+a =112b 2−b +a =b . 解得a =32,b =1或b =3.∵ b >1,∴ b =3.∴ a +b =32+3=92. 所以答案是:92. 15、已知M =x 2−3x ,N =−3x 2+x −3,则M ,N 的大小关系是________.答案:M >N分析:利用作差法直接比大小.M −N =(x 2−3x )−(−3x 2+x −3)=4x 2−4x +3=(2x −1)2+2>0∴M>N,所以答案是:M>N.16、若实数a>b,则下列说法正确的是__________.(1)a+c>b+c;(2)ac<bc;(3)1a <1b;(4)a2>b2答案:(1)分析:根据不等式的性质以及特殊值验证法,对四个说法逐一分析,由此确定正确的说法. 根据不等式的性质(1)正确;(2)中如果c≥0时不成立,故错误;(3)若a=1,b=−1时,1a <1b不成立,故错误;(4)若a=1,b=−1,a2>b2不成立,故错误.故答案为:(1)小提示:本小题主要考查不等式的性质,属于基础题.17、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m ,则宽为32xm ,依题意可得,试验区的总面积S =(x −0.5×4)(32x−0.5×2)=34−x −64x≤34−2√x ⋅64x=18,当且仅当x =64x即x =8时等号成立,所以每块试验区的面积的最大值为183=6m 2. 所以答案是:618、若不等式x 2−2>mx 对满足|m |≤1的一切实数m 都成立,则x 的取值范围是___________ 答案:x <−2或x >2分析:令f (m )=mx −x 2+2,依题意可得−1≤m ≤1时f (m )<0恒成立,则{f (1)<0f (−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x 2−2>mx ,所以mx −x 2+2<0令f (m )=mx −x 2+2,即f (m )<0在|m |≤1恒成立,即−1≤m ≤1时f (m )<0恒成立,所以{f (1)<0f (−1)<0,即{x −x 2+2<0−x −x 2+2<0,解x −x 2+2<0得x >2或x <−1;解−x −x 2+2<0得x >1或x <−2,所以原不等式组的解集为x ∈(−∞,−2)∪(2,+∞) 所以答案是:(−∞,−2)∪(2,+∞)19、已知x >54,则函数y =4x +14x−5的最小值为_______. 答案:7分析:由x >54,得4x −5>0,构造导数关系,利用基本不等式即可得到.法一:∵x >54,∴4x −5>0,y =4x +14x−5=(4x −5)+14x−5+5≥2+5=7,当且仅当4x −5=14x−5,即x =32时等号成立,所以答案是:7.法二:∵x >54,令y ′=4−4(4x−5)2=0得x =1或x =32,当54<x <32时y′<0函数单调递减,当x >32时y′>0函数单调递增,所以当x =32时函数取得最小值为:4×32+14×32−5=7,所以答案是:7.【点晴】此题考基本不等式,属于简单题.20、已知a,b,c 均为正实数,且aba+2b⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c 均为正实数,所以由题可得:0<a+2b ab ≤3,0<b+2c bc≤4,0<c+2a ac ≤5,即0<1b +2a ≤3,0<1c +2b ≤4,0<1a +2c ≤5,三式相加得:0<3(1a +1b +1c )≤12,所以0<1a +1b +1c ≤4 所以1a +1b +1c 的最大值为4 所以答案是:4 解答题21、设a ∈R ,关于x 的二次不等式ax 2−2x −2a >0的解集为A ,集合B ={x |1<x <2 },满足A ∩B ≠∅,求实数a 的取值范围. 答案:(−∞,−2)∪(2,+∞)分析:由题意a ≠0,求出方程ax 2−2x −2a =0的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案.解:由题意a≠0,令ax2−2x−2a=0,解得两根为x1=1a −√2+1a2,x2=1a+√2+1a2,由此可知x1<0,x2>0,当a>0时,解集A={x|x<x1}∪{x|x>x2},因为x1<0,x2>1,所以A∩B≠∅的充要条件是x2<2,即1a+√2+1a2<2,解得a>2;当a<0时,解集A={x|x1<x<x2},因为x1<0,x2<2,所以A∩B≠∅的充要条件是x2>1,即1a+√2+1a2>1,解得a<−2;综上,实数a的取值范围为(−∞,−2)∪(2,+∞).22、设p:实数x满足x2-4ax+3a2<0,a∈R;q:实数x满足x2-x-6≤0或x2+2x-8>0.若a<0且p是q的充分不必要条件,求实数a的取值范围.答案:(-∞,-4]∪[−23,0)分析:根据一元二次不等式的解法,求得p:A=(3a,a),q:B=(-∞,-4)∪[-2,+∞),又由p是q的充分不必要条件,得到A是B的真子集,列出关于a的不等式,即可求解.由题意,命题p,得x2-4ax+3a2 =(x-3a)(x-a)<0,当a<0时,3a<x<a.由题意,命题q:得x2-x-6≤0或x2+2x-8>0,则-2≤x≤3或x<-4或x>2,即x<-4或x≥-2.设p:A=(3a,a),q:B=(-∞,-4)∪[-2,+∞),又由p是q的充分不必要条件,可知A是B的真子集,∴a≤-4或3a≥-2,即a≤-4或a≥−23,又∵a<0,∴a≤-4或-2≤a<0,3,0).即实数a的取值范围为(-∞,-4]∪[−23小提示:本题主要考查了一元二次不等式的解法,以及利用充分不必要条件求解参数问题,其中解答中利用一元二次不等式的解法,求得集合命题p,q中实数a的取值范围是解答的关键,同时注意充分不必要条件的转化及应用,着重考查了推理与运算能力,属于基础题.。

高中数学一元二次函数方程和不等式真题

高中数学一元二次函数方程和不等式真题

(每日一练)高中数学一元二次函数方程和不等式真题单选题1、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A2、已知x >0,y >0,且x +y =2,则下列结论中正确的是( ) A .2x+2y 有最小值4B .xy 有最小值1C .2x +2y 有最大值4D .√x +√y 有最小值4 答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C 错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A3、若正实数a,b,满足a+b=1,则b3a +3b的最小值为()A.2B.2√6C.5D.4√3答案:C分析:化简b3a +3b=b3a+3a+3bb=b3a+3ab+3,然后利用基本不等式求解即可根据题意,若正实数a,b,满足a+b=1,则b3a +3b=b3a+3a+3bb=b3a+3ab+3≥2√b3a⋅3ab+3=5,当且仅当b=3a=34时等号成立,即b3a +3b的最小值为5;故选:C小提示:此题考查基本不等式的应用,属于基础题4、设a>b>1,y1=b+1a+1,y2=ba,y3=b−1a−1,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1答案:C分析:利用作差法先比较y1,y2,再比较y2,y3即可得出y1,y2,y3的大小关系.解:由a>b>1,有y1﹣y2=b+1a+1−ba=ab+a−ab−b(a+1)a=a−b(a+1)a>0,即y1>y2,由a>b>1,有y2﹣y3=ba −b−1a−1=ab−b−ab+aa(a−1)=a−ba(a−1)>0,即y2>y3,所以y1>y2>y3,故选:C.5、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.6、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y=(x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.7、若(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,则实数a的取值范围为()A.(−∞,4]B.[1,4]C.(1,4)D.(1,4]答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x的范围,再根据条件的充分不必要关系求参数a的取值范围.由(x−a)2<4,可得:a−2<x<a+2;由1+12−x =3−x2−x≤0,则{(x−2)(x−3)≤02−x≠0,可得2<x≤3;∵(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,∴{a−2≤2a+2>3,可得1<a≤4.故选:D.8、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.9、y =x +4x (x ≥1)的最小值为( )A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.10、若a >0,b >0,则下面结论正确的有( ) A .2(a 2+b 2)≤(a +b)2B .若1a+4b=2,则 a +b ≥92C .若ab +b 2=2,则a +b ≥4D .若a +b =1,则ab 有最大值12答案:B分析:对于选项ABD 利用基本不等式化简整理求解即可判断,对于选项C 取特值即可判断即可. 对于选项A :若a >0,b >0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B填空题11、a>b>c,n∈N∗,且1a−b +1b−c≥na−c恒成立,则n的最大值为__.答案:4分析:将不等式变形分离出n,不等式恒成立即n大于等于右边的最小值;由于a−c=a−b+b−c,凑出两个正数的积是常数,利用基本不等式求最值.解:由于1+1≥n恒成立,且a>c即n ≤a−c a−b+a−c b−c恒成立只要n ≤a−c a−b +a−cb−c 的最小值即可 ∵ a−ca−b +a−cb−c =a−b+b−c a−b+a−b+b−c b−c=2+b −c a −b +a −bb −c∵a >b >c∴a −b >0,b −c >0,故(a−ca−b +a−cb−c )≥4,因此n ≤4 所以答案是:4.12、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值.设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z =x +2y 的最小值是32.所以答案是:32.13、若正数a ,b 满足1a+1b=1,则4a−1+16b−1的最小值为__.答案:16分析:由条件可得1b−1=ab ,1a−1=ba ,代入所求式子,再由基本不等式即可求得最小值,注意等号成立的条件. 解:因为正数a ,b 满足1a +1b =1, 则有1a =1−1b =b−1b,则有1b−1=ab,1 b =1−1a=a−1a,即有1a−1=ba,则有4a−1+16b−1=4ba+16ab≥2√4ba⋅16abb=16,当且仅当4ba =16ab即有b=2a,又1a+1b=1,即有a=32,b=3,取得最小值,且为16.所以答案是:16.14、命题p:∀x∈R,x2+ax+a≥0,若命题p为真命题,则实数a的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x∈R,要使得x2+ax+a≥0,则Δ=a2−4a≤0,解得0≤a≤4.若命题p为真命题,则实数a的取值范围为[0,4].所以答案是:[0,4].15、已知a,b,c均为正实数,且aba+2b ⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c均为正实数,所以由题可得:0<a+2bab ≤3,0<b+2cbc≤4,0<c+2aac≤5,即0<1b+2a≤3,0<1c+2b≤4,0<1a +2c≤5,三式相加得:0<3(1a+1b+1c)≤12,所以0<1a+1b+1c≤4所以1a +1b+1c的最大值为4所以答案是:416、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________. 答案:2√6分析:由题知x 1+x 2=6a,x 1x 2=3a 2,进而根据基本不等式求解即可. 解:因为关于x 的不等式−x 2+6ax −3a 2≥0(a >0)的解集为[x 1,x 2], 所以x 1,x 2是方程−x 2+6ax −3a 2=0(a >0)的实数根, 所以x 1+x 2=6a,x 1x 2=3a 2, 因为a >0,所以x 1+x 2+3ax 1x 2=6a +1a ≥2√6,当且仅当6a =1a ,即a =√66时等号成立, 所以x 1+x 2+3ax1x 2的最小值是2√6所以答案是:2√617、已知a >b >0,那么当代数式a 2+4b (a−b )取最小值时,点P (a,b )的坐标为______答案:(2,1)分析:根据题意有b(a −b)≤(b+a−b 2)2,当且仅当b =a −b ,即a =2b 时取等号,所以a 2+4b (a−b )≥a 2+16a 2≥16,结合a >b >0以及两个不等式等号成立的条件可求出a,b 的值,从而可求得答案 解:由a >b >0,得a −b >0,所以b(a −b)≤(b+a−b 2)2=a 24,当且仅当b =a −b ,即a =2b 时取等号,所以a 2+4b (a−b )≥a 2+16a 2≥16,其中第一个不等式等号成立的条件为a =2b ,第二个不等式等号成立的条件为a 2=16a 2,所以当a 2+4b (a−b )取最小值时,{a 2=16a 2a =2b a >b >0,解得{a =2b =1所以点P (a,b )的坐标为(2,1), 所以答案是:(2,1)小提示:关键点点睛:此题考查基本不等式的应用,解题的关键是多次使用基本不等式,但不要忽视每次取等号的条件,考查计算能力,属于中档题18、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示)答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论. 2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3 解得{m =−12n =52 ,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3, −2≤−12(x +y )≤12, 5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8, 所以答案是:[3,8].19、 设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为__________.答案:92.分析:把分子展开化为(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy,再利用基本不等式求最值.由x +2y =4,得x +2y =4≥2√2xy ,得xy ≤2(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy ≥2+52=92,等号当且仅当x=2y,即x=2,y=1时成立.故所求的最小值为92.小提示:使用基本不等式求最值时一定要验证等号是否能够成立.20、已知∀a∈[0,2]时,不等式ax2+(a+1)x+1−32a<0恒成立,则x的取值范围为__________.答案:(−2,−1)分析:由题意构造函数关于a的函数f(a)=(x2+x−32)a+x+1,则可得{f(0)<0f(2)<0,从而可求出x的取值范围.由题意,因为当a∈[0,2],不等式ax2+(a+1)x+1−32a<0恒成立,可转化为关于a的函数f(a)=(x2+x−32)a+x+1,则f(a)<0对任意a∈[0,2]恒成立,则满足{f(0)=x+1<0f(2)=2x2+2x−3+x+1<0,解得−2<x<−1,即x的取值范围为(−2,−1).所以答案是:(−2,−1)解答题21、已知关于x的不等式ax2−x+1−a≤0.(1)当a∈R时,解关于x的不等式;(2)当a∈[2,3]时,不等式ax2−x+1−a≤0恒成立,求x的取值范围.答案:(1)答案见解析;(2)[−12,1].分析:(1)不等式ax2−x+1−a≤0可化为(x−1)(ax+a−1)≤0,然后分a=0,a<0,0<a<12,a =12,a >12五种情况求解不等式; (2)不等式ax 2−x +1−a ≤0对a ∈[2,3]恒成立,把a 看成自变量,构造函数f (a )=(x 2−1)a +(−x +1),则可得{f (2)≤0f (3)≤0,解不等式组可求出x 的取值范围 解:(1)不等式ax 2−x +1−a ≤0可化为(x −1)(ax +a −1)≤0,当a =0时,不等式化为x −1≥0,解得x ≥1,当a <0时,不等式化为(x −1)(x −1−a a )≥0, 解得x ≤1−a a ,或x ≥1;当a >0时,不等式化为(x −1)(x −1−a a )≤0; ①0<a <12时,1−a a >1,解不等式得1≤x ≤1−a a , ②a =12时,1−a a =1,解不等式得x =1, ③a >12时,1−a a <1,解不等式得1−a a ≤x ≤1.综上,当a =0时,不等式的解集为{x|x ≥1},当a <0时,不等式的解集为{x |x ≤1−a a或x ≥1}, 0<a <12时,不等式的解集为{x|1≤x ≤1−a a }, a =12时,不等式的解集为{x|x =1},a >12时,不等式的解集为{x|1−a a ≤x ≤1}.(2)由题意不等式ax 2−x +1−a ≤0对a ∈[2,3]恒成立,可设f (a )=(x 2−1)a +(−x +1),a ∈[2,3],则f (a )是关于a 的一次函数,要使题意成立只需:{f (2)≤0f (3)≤0 ⇒{2x 2−x −1≤03x 2−x −2≤0, 解得:−12≤x ≤1,所以x 的取值范围是[−12,1].22、设y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=2x −x 2.(1)求当x <0时,f (x )的解析式;(2)请问是否存在这样的正数a ,b ,当x ∈[a,b ]时,g (x )=f (x ),且g (x )的值域为[1b ,1a ]?若存在,求出a ,b 的值;若不存在,请说明理由.答案:(1)当x <0时,f (x )=x 2+2x (2)a =1,b =1+√52分析:(1)根据函数的奇偶性f (x )=−f (−x ),求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为a ,b (0<a <b )是方程−x 2+2x =1x 的两个根的问题,进而解方程即可得答案.(1)当x <0时,−x >0,于是f (−x )=2(−x )−(−x )2=−2x −x 2.因为y =f (x )是定义在R 上的奇函数,所以f (x )=−f (−x )=−(−2x −x 2)=2x +x 2,即f (x )=2x +x 2(x <0).(2)假设存在正实数a 、b ,当x ∈[a,b ]时,g(x)=f(x)且g(x)的值域为[1b ,1a ], 根据题意,g (x )=−x 2+2x (x >0),因为g (x )=−x 2+2x =−(x −1)2+1≤1 ,则0<1a ≤1,得a ≥1.又函数g (x )在[1,+∞)上是减函数,所以{g(a)=1a g(b)=1b ,由此得到:a,b (1≤a <b )是方程−x 2+2x =1x的两个根, 解方程求得a =1,b =1+√52所以,存在正实数a =1,b =1+√52,当x ∈[a,b ]时,g(x)=f(x)且g(x)的值域为[1b ,1a ]。

高中数学题库

高中数学题库

高中数学题库高中数学题库一、函数与方程1. 已知函数f(x)在区间[1,2]上连续,且对任意x∈[1,2],有f(x^2-3x+2)=x^3-6x^2+11x-6,请写出函数f(x)的表达式。

2. 解方程组:{ 2x + 3y = 7{ 4x - 5y = -93. 已知复数z满足|z-3+2i|=5,求z的实部与虚部之和。

二、数列与级数1. 设数列{an}是等差数列,已知a1=3,d=2,求a100的值。

2. 求级数的和:S = 2 + 4 + 6 + 8 + ... + 10003. 已知等差数列{an}的首项为a,公差为d,且满足an^2 + an + 1 = 0,求公差d的值。

三、三角函数与解析几何1. 在锐角三角形ABC中,已知a=8,b=15,c=17,求角A的角度大小。

2. 求方程sin(x) + 2cos(x) = 2在区间[0, 2π]上的解。

3. 平面直角坐标系中,点A(-2, 4)和B(3, 1)为直角三角形ABC的两个顶点,求直角三角形ABC的面积。

四、概率与统计1. 已知甲、乙、丙三个事件的概率分别为P(甲)=0.4,P(乙)=0.3,P(丙)=0.7,求P(甲且乙且丙)的概率。

2. 进行n次独立重复试验,每次试验中事件A发生的概率为p,求至少发生一次事件A的概率。

3. 某班学生的语文成绩服从正态分布N(80, 16),求在该班级中成绩高于90分的学生所占的比例。

五、导数与微分1. 求函数y=x^3-3x^2+5的导函数。

2. 设直线y=kx+m与曲线y=x^2-3x交于两个不同的点,求m的取值范围。

3. 设函数f(x)在区间[0,1]上连续可导,且f(0)=0,f(1)=1,求f'(c) = 2的解c。

六、数学证明1. 证明:任何两个整数的立方之和能被3整除。

2. 设有等腰三角形ABC,有AD ⊥ BC (D ∈ BC),证明:AB^2 = AC^2 + BC·CD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程
一、选择题
1、设2
3)(x x f x -=,则在下列区间中,使函数f (x )有零点的区间是( )
A. [0,1]
B.[1,2]
C. [-2,-1]
D. [-1,0]
2、已知函数2)1()(22-+-+=a x a x x f 的一个零点比1小,另一个零点比1大,则( )
A .-1<a<1
B .a>1或a<-2
C .-2<a<1
D .a>2或a<-1
3、已知0lg lg =+b a ,函数x a x f =)(与函数x x g a log )(-=的图象可能是( )
4、函数1
1ln )(--=x x x f 的零点的个数是( ) A .0 B .1 C .2 D .3 5、设)(x f 是连续的偶函数,且当0>x 时)(x f 是单调函数,则满足⎪⎭⎫
⎝⎛++=43)(x x f x f 的所有x 之和为( )
A .-3
B .3
C .-8
D .8
6、已知函数7(13)10()x a x f x a
--+⎧=⎨⎩66x x ≤>若数列{}n a 满足*()()n a f n n N =∈, 且{}n a 是递减数列,则实数a 的取值范围是( )
A .1(,1)3
B . 11(,)32
C .15(,)38
D . 5(,1)8
7、设函数f(x)=13
4)(,42+=
+--x x g a x x , 当x ∈[-4, 0]时, 恒有f(x)≤g(x), 则a 可能取的一个值是( ) A . -5 B . 5 C . -
35 D . 35 二、填空题
8、不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数0)(<-x f 的解集为
_________
9、直线y=kx 与曲线2--=x x y 有3个公共点,则实数k 的取值范围为_________
10、偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=x
⎪⎭
⎫ ⎝⎛101
在⎣
⎡⎦⎤0,103上根的个数是____________ 11、已知函数a ax x x f -++=3)(2,当]2,2[-∈x 时,函数至少有一个零点,则a 的范围
为_________
12、对于函数①514)(-+=x x x f ,②x x x f ⎪⎭
⎫ ⎝⎛-=21log )(2,③x x x f cos )2cos()(-+=判断如下两个命题的真假:命题甲:f(x)在区间(1,2)上是增函数;命题乙:f (x )在区间,()+∞,0上恰有两个零点21,x x ,且121<x x 。

能使命题甲、乙均为真命题的函数的序号是__________
三、解答题
13、设f(x)是R 上奇函数,且)()2(x f x f -=+,当10≤≤x 时,()x x f =
(1)求()πf 的值;
(2)当44≤≤-x ,求f (x )的图像与x 轴围成的图形面积
14.已知函数x
x f 2)(=,x ∈R .
(1)当m 取何值时方程m x f =-|2)(|有一个解?两个解?
(2)若不等式0)()(2>-+m x f x f 在R 上恒成立,求m 的范围.
15、已知R a ∈,函数)()(2a x x x f -=.
(1)求函数)(x f 在区间[]2,1上的最小值)(a h ;
(2)对(2)中的)(a h ,若关于a 的方程)2
1()(+=a m a h 有两个不相等的实数解,
求实数m 的取值范围.。

相关文档
最新文档