高中数学 函数与方程思想

合集下载

高中数学中函数与方程思想的研究

高中数学中函数与方程思想的研究

高中数学中函数与方程思想的研究作者:张军来源:《文理导航》2013年第36期【摘要】数学思想是数学活动的指导思想,是数学活动的一般概括。

它从整体和思维的更高层次上指导学生有效地认识数学本质,运用基本的数学知识发现、完善数学知识结构,探寻解题的方向和途径。

本文对此进行了分析研究。

【关键词】高中数学;函数思想;方程思想;研究数学思想是数学活动的指导思想,是数学活动的一般概括。

它是从整体和思维的更高层次上指导学生有效地认识数学本质,运用基本的数学知识发现、完善数学知识结构,探寻解题的方向和途径。

通过概括、比较的基本方法让学生的数学能力得到提升,并借助数学思想的运用,能够逐步培养学生掌握初步的科学方法论,增强思维能力。

数学思想的教学使高中数学教学进一步走向现代化,本文将谈谈高中数学中最重要的两种思想:函数思想与方程思想。

一、构建函数关系在数学各分支形形色色的数学问题或综合题中,将非函数问题的条件或结论通过类比、联想、抽象、概括等手段,构造某些函数关系,利用函数思想和方法使原问题获解,这是函数思想解题的高层次的体现。

构造函数时要仔细审题,充分发掘题设中可类比、联想的因素,促进思维迁移。

例题1.a为何值时,不等式a2+2a-sin2x-2acosx>2对任意实数x都成立。

分析:看到这个题目后很容易想到分离变量a和x,转化为a的二次函数的最值解决,但实际解题中却无法直接从原不等式中分离出参数a,深入审题知思维屏障产生于sin2x与cosx 的不和谐性。

以此为突破口,利用整体思想、换元,将原不等式先转换为cosx的二次不等式,再利用新构造的函数关系求解.解析:令t=cosx,则sin2x=1-t2,t∈[-1,1],不等式化为t2-2at+a2+2a-3>0在t∈[-1,1]上恒成立,设f(t)=t2-2at+a2+2a-3=(t-a)2+2a-3.当a≤-1时,f(t)min=f(-1)=a2+4a-2;且当-10.即所求的a值为下列不等式组的解。

高中数学常见思想方法总结

高中数学常见思想方法总结

高中常见数学思想方法我们通常认为数学思想就是人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想.而且数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,在我们解决问题、进行数学思维时,也总是自觉或不自觉地运用数学思想方法.所以我们总结了以下几种常见的数学方法并附带例题加以说明,让学生对数学思想方法有更深刻的认识.方法一函数与方程的思想方法函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.高考数学命题近年来经历了以“知识立意”到以“问题立意”再发展为以“能力立意”的过程,试图体现突出能力与学习潜能的考查,使知识考查服务于能力考查;试图突出数学的思想方法的层次,即数学思想方法、逻辑学中的方法和具体的数学方法.函数与方程的思想方法作为基本的数学思想方法之一,在知识的互相联系、互相沟通中起到了纽带作用.因此,函数与方程的思想方法一直为近几年的高考重点,大小试题中均有体现.用函数与方程的思想方法解题时,要领悟其实质,充分考虑其可行性,不可生搬硬套.【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.(1)求公差d 的取值范围;(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.【解】(1) 由3a =12a d +=12,得到1a =12-2d ,所以12S =121a +66d =12(12-2d )+66d =144+42d >0,13S =131a +78d =13(12-2d )+78d =156+52d <0.解得:2437d -<<-. (2)解法一:(函数的思想)n S =21115(1)(12)222na n n d dn d n ++=+- =22124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大. 由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小,所以6S 最大.解法二:(方程的思想)由0d <可知12313a a a a >>>> .因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,则n S 就是1S ,2S , ,n S 中的最大值. 121300S S >⎧⎨<⎩⇒1150260d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩,故在1S 、2S 、…、12S 中6S 的值最大.【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解】 (1)由题意知)0,2(F ,)0,3(A ,设),(y x P ,则4)3()2(2222=---+-y x y x化简整理得29=x . (2)把21=x ,312=x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(31:+=x y AM ① 直线)3(65:--=x y BN ② ①、②联立得107,3T ⎛⎫ ⎪⎝⎭. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)8040,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N A BO F直线2222222224020203(20)8020:3(80)3(20)20208020m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.方法二 数形结合的思想方法数形结合,是中学数学最重要的思想方法之一.著名数学家华罗庚先生说:“数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数流一体,永远联系切莫分离.”这精辟地阐述了数形结合的重要性,它不仅是一个重要的数学思想,而且是一种重要的解题方法,因而数形结合的能力必然是历年高考的一个重点.所谓数形结合的思想方法,就是由数学问题所呈现的条件和结论,通过研究数式问题的几何意义,或者研究几何问题的代数意义,设法沟通数学问题在数量关系和空间形式的内在联系,使隐含条件明朗化,复杂问题简单化,抽像问题具体化,开拓题的新思路,以便最终找到解决问题的带有数形信息转换特征的数学方法.正确利用数形结合,应注意三个原则:(1)等价性原则数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.(2)双向性原则数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.(3)简单性原则有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.运用数形结合的思想方法解题的途径主要有三条:第一,以形助数:把一些数式的几何意义明朗化,构造出解题的几何模型,突显问题的直观性,使解题思路变得形像而通畅;第二,以数助形:利用几何图形或图像图表中隐含的数式特征,构造出解题的代数模型(必要时建立坐标系),突显问题的本质,另辟解题的捷径;第三,数形互助:根据问题的需要,将以形助数和以数助形二方面结合运用.数形结合的应用是广泛的,数与形的结合点主要集中在以下几个方面:1.研究函数的性质(单调性、奇偶性、周期性、对称性、值域与最值等),可从函数图像的直观性得到鲜明的启示.2.利用数轴与坐标系(包括直角坐标系、极坐标系),使数与点对应,使函数与图像、方程与曲线结合,使代数与几何联结.这样,可利用坐标或向量的运算,探索几何图形的相关性质;利用函数图像与方程曲线的直观性,探索函数或方程的性质.3.从统计图表、图像中,收集分析出“数”的信息,由破译的数量关系建立代数模型,探索相关的结论.这类数形信息的转换能力是近年高考的新亮点.4.三角函数与单位圆、三角函数曲线的联系.5.复平面与复数、向量的沟通.6.利用类比法、换元法(如三角换元)、构造法、坐标法等构造代数问题的几何模型、几何问题的代数模型,开辟解题的新思路.【例1】 (12年上海模拟)若函数()()y f x x R =∈满足(2)()f x f x -=,且[1,1]x ∈-时,2()1f x x =-,函数lg(1),11(),00,01x x g x x xx ->⎧⎪⎪=-<⎨⎪≤≤⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点个数为_________. 【答案】 9【解】 由题意,直接求解会很麻烦,且不易得到正确的答案,所以该题中求()()()h x f x g x =-的零点,可以转化为求()f x 与()g x 两函数图像的交点.则画出()f x 与()g x 的图像,由于()f x 在[1,1]x ∈-上为2()1f x x =-,且为周期函数,周期为2,而()g x 是分段函数,注意其图像共分为三部分,如图,可等共有9个交点,其中有一个易错点,即其中1个交点为(1,0)很容易被遗漏.【点评】 要求()()()h x f x h x =-在区间[5,6]-内的零点的个数,可转化为求()f x 与()h x 交点的个数,可以作出图形,观察图形易得交点的个数.本题体现了数形结合的思想,正是运用数形结合的思想方法解题的途径中的以形助数.【例2】 函数y =f (x )的图像为圆心在原点的两段圆弧,试解不等式f (x )>f (-x )十x .【解】 解法一:(以数助形) 由题意及图像,有⎪⎩⎪⎨⎧<≤---≤<-=011101)(22x x x x x f ,(1)当0<x ≤1时, f (x )>f (-x )+x 得21x ->-2)(1x --+x , 解得0<x <552; (2)当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-552, ∴ 原不等式的解集为[-1, -552)∪(0, 552). 解法二:(数形互助) 由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 552). 【点评】 本题以形看数(解式,奇偶性),以数解形(曲线交点A 、B ),最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.方法三 分类讨论的思想方法分类讨论的思想方法是中学数学的基本思想方法,同时也是一种化整为零、各个击破、整合结论的解题策略.在分析和解决数学问题中,运用分类讨论思想可以将问题的条件与结论的因果关系、局部与整体的逻辑关系揭示得一清二楚、十分准确.在解决对像为可变的数量关系和空间图形形式的数学问题中有着广泛和重要的作用.有关分类讨论思想的数学问题贯穿于高中数学的各个部分,形式多样、综合性强,对于培养学生思维的缜密性、条理性、深刻性有着十分重要的作用.因此,分类讨论一直是高考命题的热点之一,也是每年必考的重要数学思想方法之一.1.通常引起分类讨论的原因,大致可归纳为如下几点:(1)涉及的数学概念是分类定义的;(2)涉及运算的数学定义、公式或运算性质、法则是分类给出的;(3)涉及题中所给的限制条件或研究对像的性质而引起的;(4)涉及数学问题中参变量的不同取值导致不同结果而引起的;(5)涉及的几何图形的形状、位置的变化而引起的;(6)一些较复杂或非常规的数学问题,需要采用分类讨论的解题策略解决的.2.分类讨论的步骤一般可分为以下几步:(1)确定讨论的对像及其范围;(2)确定分类讨论的标准,正确进行分类;(3)逐类讨论,分级进行;(4)归纳整合,作出结论.其中最重要的一条是“不漏不重”.学生必须对相关知识点或涉及的概念、定义、定理相当清楚,对于一些结论成立的条件掌握牢固,这样才能在解题时思路清晰,才能知道何时必须进行分类讨论,而何时无须讨论,从而可以知道怎样进行分类讨论.在分类过程中要注意按照一个统一的标准,这样才能做到不重复不遗漏,考虑问题要周到缜密,特别是对于一些特殊情况要考虑慎重,养成严谨的学习态度和思想作风.【例1】(12年上海二模)点),(y x Q 是函数122-=x y 图像上的任意一点,点(0,5)P ,则P 、Q 两点之间距离的最小值是______________.【答案】 11【解】 ①当2102x -<时,222221,(5)(6)92x y PQ x y y =-=+-=--. 63y -=±时,即y =9或y =3,PQ 取最小值0,但222x y =-都为负数,∴不成立; ②当2102x -≥时,212x y =-,2222(5)(4)11PQ x y y =+-=-+.当y =4时,PQ 取最小值为11.综上所述,P 、Q 两点之间距离的最小值为11.【点评】 由于题中给出的是绝对值函数,需要利用分类讨论的思想去掉绝对值,然后再求解.体现了数学概念是分类定义的而引起的分类讨论.【例2】设等比数列{}n a 的公比为q ,前n 项和0(1,2,3,)n S n >= ,求q 的取值范围.【分析】在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况.【解】 {}n a 是等比数列,且前n 项和0(1,2,3,)n S n >= ,110a S ∴=>,且0q ≠当1q =时,10n S na =>;当1q ≠时,1(1)01n n a q S q -=>-,即10(1,2,3,)1nq n q->=- . 上式等价于1010n q q ⎧->⎨->⎩ ①或1010n q q ⎧-<⎨-<⎩ ②,由①得1q >,由②得11q -<<,∴q 的取值范围为()()1,00,-+∞ .【点评】本题正是分类讨论中运算的数学定义、公式或运算性质、法则是分类给出的体现.【例3】 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S A ⊆且S B ≠∅ 的集合S 的个数是 ( )A.57B.56C.49D.8【答案】 B【解】由题意得S 中必含有4,5,6中至少一个元素,而元素1,2,3可以任意含有,则可按S 中所含元素个数分类:(1) 当S 中只含有4,5,6中的一个元素时,有13C 种,而1,2,3可构成集合32个,故S 有13323824C ⋅=⨯=(个);(2) 当S 中只含有4,5,6中的两个元素时,有23C 种,而1,2,3可构成集合32个,故S 有23323824C ⋅=⨯=(个);(3) 当S 中只含有4,5,6中的三个元素时,有33C 种,而1,2,3可构成集合32个,故S 有33328C ⋅=(个). 故集合S 的可能个数为24+24+8=56.【点评】本题正是由于题中所给的限制条件或研究对像的性质而引起的分类讨论.【例4】已知实数0a ≠,函数()2,1,2, 1.x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为________.【答案】 34-【解】首先讨论1a -,1a +与1的关系.当0a >时,11a -<,11a +<,所以()()1121f a a a a -=---=--;()12(1)32f a a a a +=++=+.因为()()11f a f a -=+,所以132a a --=+,所以34a =-; 当0a <时,11a ->,11a +>,所以()()1212f a a a a -=-+=-;()1(1)231f a a a a +=-+-=--.因为()()11f a f a -=+,所以231a a -=--,所以32a =-(舍去). 综上,满足条件的34a =-. 【点评】本题的解题关键在于讨论1a -,1a +与1的关系,正是体现了数学问题中参变量的不同取值导致不同结果而引起的分类讨论.【例5】如图所示,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE x =,过E 作OB 的垂线l l ,记△AOB 在直线l 左边部分的面积为S ,则函数()S f x =的图象是 ( )【答案】 D【解】当02x <≤时, ()2111224f x x x x =⋅⋅=,是开口向上的抛物线,且()21f =; 当23x <≤时, ()()()21112123133222f x x x x x =⨯⨯+--+=-+-,是开口向下,以33,2⎛⎫ ⎪⎝⎭为顶点的抛物线; 当3x >,()f x 是确定的常数,图象为直线.【点评】本题正是图形运动造成,不同时段,面积有所不同,正是体现了几何图形的形状、位置的变化而引起的分类讨论问题.方法四 概括归纳的思想方法概括是在思维中将同一种类型的对像共同的本质属性集中起来,结合为一般类型的属性.归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性.一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等.在上海主要体现在“归纳——猜想——证明”中,是发现数学规律,并用数学归纳法证明的完整过程.在近几年的高考中,都有这种找规律的题,考生不易得分,需要考生加强这方面的训练.【例1】 (12年上海模拟)在证明恒等式2222*1123(1)(21)()6n n n n n N ++++=++∈ 时,可利用组合数表示2n ,即22112(*)n n n C C n N +=-∈推得.类似的,在推导恒等式23333*(1)123()2n n n n N +⎡⎤++++=∈⎢⎥⎣⎦时,也可以利用组合数表示3n 推得.则3n =____________.【答案】 6C 3n +1+C 1n【解】 由题意得:n 2=2C 2n +1-C 1n =n (n +1)-n =n 2+n -n ,则由类比推理可得,∴n3=n 3-n +n =n (n +1)(n -1)+n =6C 3n +1+C 1n .【点评】 此题利用了类比推理以及归纳、猜想思想,从已知条件中得到规律,用到问题中去,从而得到结论.【例2】在数列{n a }中,1a =13 ,且前n 项的算术平均数等于第n 项的2n -1倍(n ∈N*).(1)写出此数列的前5项;(2)归纳猜想{n a }的通项公式,并用数学归纳法证明.【分析】(1)利用数列{n a }前n 项的算术平均数等于第n 项的2n -1倍,推出关系式,通过n =2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{n a }的通项公式,然后用数学归纳法证明.第一步验证n =1成立;第二步,假设n =k 猜想成立,然后证明n =1k +时猜想也成立.【解】 (1)由已知1a =13,123n a a a a n++++ =(2n -1)n a ,分别取n =2,3,4,5,得2111153515a a ===⨯,()312111145735a a a =+==⨯, ()4123111277963a a a a =++==⨯,()512341114491199a a a a a =+++==⨯, 所以数列的前5项是:113a =,2115a =,3135a =,4163a = ,5199a = . (2)由(1)中的分析可以猜想1(21)(21)n a n n =-+(n ∈N*).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设当n =k (k ≥1且k ∈N*)时猜想成立,即1(21)(21)k a k k =-+ . 那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++ , 即21231(23)k k a a a a k k a +++++=+ .所以221(2)(23)k k k k a k k a +-=+, 即1(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+, 所以11(21)(23)k a k k +=++,即当1n k =+时,猜想也成立. 综上①和②知,对一切n ∈N*,都有1(21)(21)n a n n =-+成立. 【点评】 本题考查数列的项的求法,通项公式的猜想与数学归纳法证明方法的应用,注意证明中必须用上假设,考查计算能力,分析问题解决问题的能力.正是体现了概括归纳的思想方法.方法五 化归与等价变换的思想方法在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化成一个新问题(相对来说,对自己较熟悉的),通过对新问题的求解,达到解决原问题的目的.这一思想方法我们称之为“转换化归思想”.而转换化归思想的基本原则就是:化难为易,化生为熟,化繁为简,化未知为已知.1.利用转换化归思想解决数学问题时必须明确三个问题:(1)把什么东西进行转换化归,即化归对像;(2)化归转换到何处,即化归转换的目的;(3)如何进行转换化归,即转换化归的方法.2. 化归与转化常遵循以下几个原则.(1)目标简单化原则:将复杂的问题向简单的问题转化;(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.3.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.化归与等价变换的思想方法所涉及到的具体问题很多很多,如果不断努力地用这种方法去解决一些数学问题或数学范畴以外的问题时,往往会出现事半功倍的奇特效果.【例1】 设x 、y ∈R 且22326x y x +=,求22x y +的范围.【解】 方法一:等价转化法(转化为函数问题)由22623x y x -=≥0得0≤x ≤2.设22k x y =+,则22y k x =-,代入已知等式得:2620x x k -+=, 即2132k x x =-+,其对称轴为x =3. 由0≤x ≤2得k ∈[0,4].所以22x y +的范围是:0≤22x y +≤4.方法二:数形结合法(转化为解几何问题):由22326x y x +=得()221132y x -+=,即表示如图所示椭圆,其一个顶点在坐标原点.22x y +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22x y k +=,代入椭圆中消y 得2620x x k -+=.由判别式3680k ∆=-=得4k =,所以22x y +的范围是:2204x y ≤+≤.方法三: 三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由22326x y x +=得()221132y x -+=,设1cos 6sin 2x y αα-=⎧⎪⎨=⎪⎩,则 2222233112cos cos sin 12cos cos 222x y ααααα+=+++=++- []215cos 2cos 0,422αα=-++∈ 所以22x y +的范围是:2204x y ≤+≤.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.而且各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型,正是体现了熟悉化原则,将不熟悉的知识转化为自己熟悉的知识.【例2】设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.【答案】-2【解】q a a S 112+=,11S a =,23111S a a q a q =++∵1322S S S =+ ∴12111222a q a q a a =++(a 1≠0)∴2q =-或0q =(舍去).【点评】 由于该题为填空题,我们不防用特殊情况来求q 的值.如:213,,S S S 成等差,求q 的值.这样就避免了一般性的复杂运算.既体现简单化原则,也是特殊化方法的使用,正是转化与化归的思想方法的典型体现。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

数学家和哲学家对数学的确切范围和定义有一系列的看法。

下面是店铺整理的高中四大数学思想方法,希望对你有所帮助!一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。

运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线。

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。

以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。

分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏。

如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结。

高中数学函数知识点总结

高中数学函数知识点总结

高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。

二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。

如果函数y=f(x)在某个区间是增函数或减函数。

那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。

一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。

二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。

二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。

一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。

这时(-1)^p的指数p的奇偶性无关。

高考的数学答题技巧(推荐8篇)

高考的数学答题技巧(推荐8篇)

高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。

以下总结高考数学五大解题思想,帮助同学们更好地提分。

1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。

同学们在解题时可利用转化思想进展函数与方程间的互相转化。

2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。

它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。

不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。

5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。

以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。

函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程思想数学思想是数学活动的指导思想,是数学活动的一般概括。

它是从整体和思维的更高层次上指导考生有效地认识数学本质,运用数学知识发现、完善数学知识结构,探寻解题的方向和途径。

通过概括、比较上升为数学能力,并通过数学思想的运用,培养学生初步的科学方法论,提高思维素质,增强思维能力。

数学思想的教学使中学数学教学进一步走向现代化。

第一轮复习中,数学思想尚处于隐含、渗透的阶段。

第二轮复习有必要明确地突出其重要作用,使考生清楚地认识到只有在数学思想的指导下的解题活动,才是科学的解题活动,才具有很强的能动作用和创造作用。

从高考的实际出发,本书只强调现行热点的函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想。

函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分枝。

函数思想以函数知识做基石,用运动变化的观点分析和研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来一股很强的创新能力。

因此,越来越成为数学高考的长考不衰的热点。

函数思想在高考中的应用主要是函数的概念。

性质及图像的应用,包括显化、转换、构造、建立函数关系解题四个方面。

方程思想是从问题的数量关系出发,运用数学语言将问题中的条件转化为方程、不等式或它们的混合组,通过解方程(组)、不等式(组)或其混合组使问题获解。

包括待定系数法,换无法、转换法和构造方程法四个方面。

函数思想与方程思想的联系十分密切。

解方程f (x )=0就是求函数y =f (x )当函数值为零时自变量x 的值;求综合方程f (x )=g (x )的根或根的个数就是求函数y =f (x )与y =g (x )的图像的交点或交点个数;合参数的方程f (x , y , t )=0和参数方程更是具有函数因素,属能随参数的变化而变化的动态方程。

它所研究的数学对象已经不是一些孤立的点,而是具有某种共性的几何曲线。

正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库。

1.显化函数关系在方程、不等式、最值、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而使用函数知识或函数方法使问题获解.例题1.在数列{a n }中,a 1=15,以后各项由 a n +1=a n -32,求数列{a n }的前n 项和的最大值.分析:由题设易知数列{a n }为等差数列,其通项的一个充要条件形式就是 n 的一次函数,a n = An +B ,(A 、B ∈R )欲求前n 项和S n 的最大值只需利用a n 的单调性转化为a n >o ,a n +1<0即可获解.解:∵ a n +1=a n -32, ∴ d =a n -1-a n =-32, ∵ a 1=15, ∴ a n =15-32(n -1),由⎩⎨⎧<>+001n n a a ,即⎪⎩⎪⎨⎧<->--032150)1(3215n n ,解得245<n <247(n ∈ N ),即n =23.故数列{a n }的前23项的和最大.点拨解疑:数列是定义在自然数集N 上的特殊函数,等差、等比数列的通项公式,前n 项和公式都具有隐含的函数关系,都可以看成n 的函数.在解等差数列、等比数列问题中,有意识地凸现其函数关系、从而用函数思想或函数方法研究、解决问题,不仅常能获得简便优秀的解法,且能促进科学思维的培养,提高发散思维的水平. 2.转换函数关系在函数性态、曲线性质或不等式的综合问题、恒成立问题中逆求参数的取值范围,按照原有的函数关系很难奏效时,灵活转换思维角度,放弃题设的主参限制,挑选合适的主变元,揭示它与其它变元的函数关系,切人问题本质,从而使原问题获解.例题2.已知函数f (x )=1421lg2+-⋅++a aaxx, 其中为常数,若当x ∈(-∞, 1]时,f (x )有意义,求实数a 的取值范围.分析:参数a 深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”.解:14212+-⋅++a a axx>0, 且a 2-a +1=(a -21)2+43>0, ∴ 1+2x +4x ·a >0,a >)2141(xx+-,当x ∈(-∞, 1]时, y =x41与y =x21都是减函数,∴ y =)2141(xx+-在(-∞, 1]上是增函数,)2141(xx+-max =-43,∴ a >-43, 故a 的取值范围是(-43, +∞).点拨解疑:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(xx+-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法. 3.构造函数关系在数学各分支形形色色的数学问题或综合题中,将非函数问题的条件或结论、通过类比、联想、抽象、概括等手段,构造某些函数关系,利用函数思想和方法使原问题获解,是函数思想解题的更高层次的体现,构造时,要深入审题,充分发掘题设中可类比、联想的因素,促进思维迁移. 例题3.a 为何值时,不等式a 2+2a -sin 2x -2a cos x >2对任意实数x 都成立. 分析:由例2易想到分离变量a 和x ,转化为a 的二次函数的最值解决,但实际解题中却无法直接从原不等式中分离出参数a ,深入审题知思维屏障产生于sin 2x 与cos x 的不和谐性.以此为突破口,利用整体思想、换元、将原不等式先转换为cos x 的二次不等式,再利用新构造的函数关系求解.略解:令 t =cos x ,则sin 2x =1-t 2,t ∈[-1, 1],不等式化为 t 2-2at +a 2+2a -3>0在 t ∈[-1, 1]上恒成立,设f (t )= t 2-2at +a 2+2a -3=(t -a ))2+2a -3.当a ≤-1时,f (t )min =f (-1)= a 2+4a -2;当-1<a <1且时,f (t )min =f (a )=2a -3;当a ≥1时,f (t )min =f (1)=a 2-2.原问题等价于当t ∈[-1,1]时f (t )min >0.即所求的a 值为下列不等式组的解. (1)⎩⎨⎧>-+-≤02412a a a 或 (2)⎩⎨⎧>-<<-03211a a 或(3) ⎩⎨⎧>->0212a a ,依次解得a <-2-6或a ≠0或a >2,故所求a 的取值范围是a <-2-6或a >2.点拨解疑:① 不等式恒成立问题的基本解法是转化为函数最值问题,利用函数性质解决,但本题无法分离参数,不能转化为例2中的较简单情形,只好对含参数a 的二次函数最值依对称轴位置分情况讨论,利用函数性质: f (t )>0,对t ∈[-1, 1]恒成立等价于f (t )min >0,t ∈[-1,1], 使问题解决.② 在解题中综合使用了函数思想,数形结合思想,分类讨论思想和化归思想及换元法,对思维品质要求较高.例题4.如图,已知ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于ABCD 所在平面,且GC =2,求点B 到平面EFG 的距离. 分析:距离的概念常由最小值定义,故可设法将点B 到平面的距离通过构造函数关系,建立一个二次函数关系式,转化为二次函数的最值解决.解:连接EC 、AC 、BD 、EF 、FG ,分别交AC 于H 、O ,连CH .因ABCD 为正方形.故BD ⊥AC ,由已知易得BD 与平面GEF 内的直线GH 是异面直线,由此可将点B 到平面GEF 的距离转化为两异面直线BD 、GH 的距离,建立两异面直线上任意两点距离的一个二次函数关系式.在GH 上任取一点K ,作KL ⊥AC ,垂足为L ,连结KO ,设KL =x ,利用Rt △KLH ∽Rt △GCH ,可得LO 2=2)2223(-x ,∴ KO 2=x 2+2)2223(-x =2)116(211-x +114,(其中0≤x ≤2),所以KO 的最小值为11112,即点B 到平面EFC 的距离.点拨解疑:函数最值法求距离是函数思想应用较高层次,解题的关键是在于选取变元构造恰当的二次函数,应注意积累有关技巧。

4.建立函数关系 对于实际问题,在正确过好事理关,文理关,明白题意后,根据题目的要求,选择相应的函数关系建立数学模型,利用函数的性质解决问题,是函数思想应用的一个热点,也是高考的热点.例题5.某小区要建一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字形地域,计划在正方形MNPQ 上建一座花坛,造价为每平方米4200元,在四旁四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元.(1)设总造价为S 元,AD 长为x 米,试建立S 关于x 的函数关系式;(2)当x 为何值时S 最小,并求出这个最小值.分析:细心审读题意,由平面几何知识,找出图形总面积的关系式,进而由三类不同的的建筑要求,不同的造价得出三类不同地域上的建筑费用,从而得出总造价S 关于x 的函数式,此即(1)的目标函数式,再根据目标函数S (x )的结构特征,选择常用的方法求其最值。

解:(1)设DQ =y 米,∵ AD =x 米, 则x 2+4xy =200, ∴ y =xx42002-, 由题意S =4200x 2+210·4xy +80·2y 2=38000+4000x 2+2400000x.(2) ∵ x >0 ∴ S ≥38000+281016⨯=118000,当且仅当4000x 2=2400000x,即x 4=100(米)时取等号.故当x =10米时,总造价最小,最小值为118000元.点拨解疑:① 若直接由x 建立目标函数S (x )较困难时,可考虑增设变元,沟通关系,实现联系后,再消去增设的变元,得到题目所需S 关于x 函数式.此法叫参数法,基本步骤是:先引参,建立S 关于x 、y 的关系式S (x , y ).再消参,整理得目标函数S (x ).它可以在应用题的建模过程中化解难点,缩短建模过程. ② 求目标函数的最值的常用方法中,分式型函数y =ax +xb (a .b 为正数)适宜用重要不等式法,即平均值不等式法. 5.待定系数法把题目中待定的未知数(或参数)和已知数的等量关系揭示出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.例题6.是否存在常数 a ,b ,c ,使得等式1·22+2·32+3·42+……+n (n +1)2=12)1(+n n (an 2+bn +c )对于一切自然数n 都成立?并证明你的结论.分析:本例属存在型探索题,但也是待定系数法的典型题目,问题要求含三个待定常数a ,b ,c 的等式对一切自然数都成立,易联想到用赋值法、此等式必然对a ,b ,c 所取的任何具体的自然数的值都成立.令n =1,2,3,建立a ,b ,c 的三元方程组,转化为方程组是否有解,问题便不难解决了.略解:假设存在a ,b ,c ,使题设的等式成立,令n =1,2,3,得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614,解得⎪⎩⎪⎨⎧===10113c b a , 下面用数学归纳法证明(略:读者自行完成)点拨解疑:待定系数法的实质就是方程思想的应用,由于待定系数法是数学的一大基本方法,因而赋予方程思想的应用以广阔空间,高中数学中比比皆是,诸如已知函数式及某特殊函数值,求待定系数或底数或指数的值,已知数列的类型及某特殊项或前n 项和的值,求通项公式或前n 项和公式中的待定系数,已知曲线方程的类型,由某些已知数求方程中待定系数的值等等. 6.转换方程形式把题目中给定的方程根据题意转换形式,凸现其隐含条件,充分发挥其方程性质,有关方程的解的定理(如韦达定理,判别式、实根分布的充要条件)使原问题获解,是方程思想应用的又一个方面.例题7.设二次函数f (x )=ax 2十bx 十c (a > 0),方程f (x )-x =0的两个根满足0<x 1<x 2<a1,(1)当x ∈(0,x 1)时,证明:x <f (x )<x 1;(2)设函数f (x )的图像关于直线x =x 0对称,证明x 0<21x .分析:本例是有一定难度的代数推理题,审题中要细心分清函数f (x )与方程f (x )-x =0是两个不同的条件,x =x 0是函数f (x )的对称轴,x 1,x 2则是方程f (x )-x =0的根,它们之间的联系通过a ,b ,c 隐蔽地给出,因而充分利用二次函数的性质,引进辅助函数g (x )=f (x )-x ,凸现已知条件的联系,是解题的关键.证明:(1)令g (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以不妨设 g (x )=a (x -x 1)(x -x 2), 当x ∈(0, a 1)时,由于x 1<x 2,∴ (x -x 1)(x -x 2)>0, 又a >0, ∴ g (x )=a (x -x 1)(x -x 2)>0,即x <f (x ),而x 1-f (x )=x 1-x +x -f (x )=x 1-x -g (x )=x 1-x -a (x -x 1)(x -x 2)= (x 1-x )[1+a (x -x 2)],又∵ 0<x <x 1<x 2<a1, ∴ x 1-x >0, 1+a (x -x 2)=ax +1-ax 2>1-ax 2>0,得x 1-f (x )>0, ∴ f (x )<x 1即x <f (x )<x 1; (2)由题意知 x 0=-ab 2, ∵ x 1,x 2是方程f (x )-x =0的根,即 x 1,x 2是方程ax 2+(b -1)x +2=0的根.∴ x 1+x 2=ab 1--,∴ x 0=-ab 2=ax x a 21)(21-+=21x 1+21(x 2-a1),∵ x 2<a1, ∴ x 0<21x .点拨解疑:① 本题为1997年理科24题,由于缺乏用方程思想解题的意识和能力,不会转换方程形式,沟通与二次函数的联系,加之题中涉及字母多达6个(x ,x 1,x 2,a ,b ,c )不会处理.当年平均得分仅为1分,难度系数为0.09、说明方程思想对解题能力提高很重要.② 从二次方程根的研究应注意从代数形式与几何意义两方面进行,并相互联系,促进深化.代数形式上应全面考虑根的判别式面,根与系数的关系(韦达定理)与求根公式.几何意义上应全面考查抛物线的顶点、张口方向,对称轴,单调区间及实根分布的充要条件.③ 超越方程(对数方程等)的解的情况研究适宜于转换为二次方程的实根分布解决.7.构造方程法分析题目中的未知量,根据条件布列关于未知数的方程(组),使原问题得到解决,叫构造方程法,是应用方程思想解决非方程问题的极富创造力的一个方面.例题8.已知tan αtan β=3,tan2βα-=2,求cos(α+β).分析:由题设的表面信息,企图由三角函数的恒等变形得到目标,将徒劳无功,极其艰难.因为欲求cos(α+β),必须先求cos α,cos β,sin α,sin β四个中间变量的值,然而题设仅有两个方程,欲挖掘隐含,联立求解,将非常费力,转换思维角度,欲求cos(α+β).先求cos αcos β=x ,sin αsin β=y 这两个未知数的值,转换为建立关于x ,y 的方程组,由 tana αtan β=3即xy =3得到一个方程,再由tan2βα-=2设法演化出含x ,y 的方程,问题便迎刃而解.解:∵ tan2βα-=2, ∴ cos(α-β)=)2(tan1)2(tan122βαβα-+--=-53,设cos αcos β=x ,sin αsin β=y ,∴⎪⎩⎪⎨⎧=-=-=+353)c o s (x yy x βα,解得⎪⎩⎪⎨⎧-=-=309203y x ,∴ cos(α+β)=x -y =103.点拨解疑:① 本例是用方程思想解三角问题的范例,② 若题目条件分散,联系隐蔽,难于发掘或解题过程十分繁难,应主动应用基本数学思想方法,灵活转换思维角度,寻求优秀解法. 例题9.已知x ∈[21, 2], 求函数y =xx 25-的最小值.分析:函数问题方程解.对函数形态的研究,常常因函数与方程的密切联系,转化为方程问题,应用方程思想解决.本例即可转化为方程在[21, 2]有解的充要条件来解答.略解;原函数变形为y 2x 2-5x +2=0,x ∈[21, 2]有解的充要条件为:(1)⎪⎪⎩⎪⎪⎨⎧≤⋅><0)2()21(225212522f f yy 或或 (2)⎪⎪⎩⎪⎪⎨⎧≥≥≥-=∆≤≤0)2(0)21(08252252122f f y y或,不等式组(1) 无解;解不等式组(2)得2≤y ≤425,∴ y min =2, 此时x =21或x =2.点拨解疑:① 本例体现了函数与方程思想的相互转化,相互补充,提供了构造方程(或函数)解题的又一途径,扩展了解题思维的空间.② 本例应用方程思想解决时,易误为方程有两个实根,而从判别式考虑,未注意到是在区间[21, 2]上有实根,必须用区间上的根的原理解决,审题时应注意两类情况的区别,不可混为一谈. 8.建立方程模型数学应用题的数学模型为方程,或必须使用待定系数法确定某些字母的值时,应建立相应的方程(组),把问题转化为方程求解.例题10.某车间生产某种产品,固定成本2万元,每生产 1件产品成本增加 100元.根据经验,当年产量少于400件时,总收益R (成本与总利润的和,单位:元)是年产量Q (单位:件)的二次函数,当年产量不少于400件时,R 是Q分析:题面信息易知, 该题为求分段函数的最值,且两段上的函数模型已经给出.因而,解题的关键是确定各段上函数解析式的系数(字母)的值,应使用待定系数法(即方程思想).审题中还需弄清“收益”、“成本”、“利润”等概念以及它们之间的关系,扫清语言障碍,过好事理关、文理关,特别注意:总利润=总收益一总成本.解:当Q <400时,设R =f (Q )=aQ 2+bQ +c ,由给定数据,得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 35035011375020020080000505023750222,解得⎪⎪⎩⎪⎪⎨⎧==-=050021c b a , 故R =f (Q )=-21Q 2+500Q ,当Q ≥400时, 设Q =dQ +e , 由给定数据,得⎩⎨⎧+=+=ed e d 65013250050012500, 解得d =50,e =100000, 故R =50Q +100000, ∴R =f (Q )=⎪⎩⎪⎨⎧≥+<<+-400100000504000500212Q Q Q QQ ,设总利润为y 元,则y =R -100Q -20000=⎪⎩⎪⎨⎧≥+-<<-+-4008000050400020000400212Q Q Q Q Q ,当Q <400时,y 是增函数,所以y <60000,当Q ≥400时,y 是减函数,所以y ≤-50×400+80000=60000,故每年生产400件时产品利润最大,最大利润为60000元.点拨解疑:① 应用方程模型解应用题是一种基本题型.审题时务必审清题意,过好事理关,读懂符号语言、图形、表格与专业用语,过好文理关. ② 解完后,应根据实际问题反思,评价解的合理性. 9.函数思想与方程思想的联用在解综合题中,解决一个问题常常不止需要一种数学思想,而是两种数学思想方法的联用.例如函数思想与方程思想的联用.它们间的相互转换一步步使问题获得解决,转换的途径为函数十方程十函数,或方程十函数一方程.例题11.若抛物线 y =-x 2十mx -1和两端点 A (0, 3),B (3, 0)的线段AB 有两个不同的交点,求m 的取值范围. 分析:先由方程思想将曲线的交点问题转化的方程的解的问题再由方程有解转化为二次函数的实根分布问题,再通过解不等式(组)得到所求范围.解:线段AB 的方程为33y x +=1 (0≤x ≤3)代入y =-x 2十mx -1得x 2-(m +1)x +4=0, (0≤x ≤3), 原命题等价于f (x )= x 2-(m +1)x +4在[0, 3]上有两个不等的实数根,故应有⎪⎪⎩⎪⎪⎨⎧≥++-=>=<+<>-+=∆04)1(39)3(04)0(3210016)1(2m f f m m , 解得3<m ≤310, 故m 的取值范围是(3,310].基本练习题1.若数列中{a n }中,a 1=15, 以后各项由a n +1=a n -32确定,则{a n }的前 项之和最大。

相关文档
最新文档