高中数学必修一 函数与方程的思想方法

合集下载

高中数学必修一第五讲 函数的表示方法

高中数学必修一第五讲 函数的表示方法

第五讲 函数的表示方法1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。

例如,s =602t ,A =π2r ,2S rl π=,2)y x =≥等等都是用解析式表示函数关系的。

特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。

中学阶段研究的函数主要是用解析法表示的函数。

解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。

2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。

例如:初中学习过的平方表、平方根表、三角函数表。

我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。

这种表格常常应用到实际生产和生活中。

列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。

3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。

例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。

特别提醒:图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。

图像法的缺点:不能够精确地求出某一自变量的相应函数值。

二、函数图像:1、判断一个图像是不是函数图像的方法:要检验一个图形是否是函数的图像,其方法为:任作一条与x 轴垂直的直线,当该直线保持与x 轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。

高中数学必修一 第1讲函数及其表示

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。

(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。

A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。

A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。

A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。

A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

数学家和哲学家对数学的确切范围和定义有一系列的看法。

下面是店铺整理的高中四大数学思想方法,希望对你有所帮助!一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。

运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线。

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。

以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。

分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏。

如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结。

高中数学必修1知识难点总结

高中数学必修1知识难点总结

高中数学必修1知识难点总结高中数学必修一作为高中学生必须掌握的重要学科之一,其内容广泛,难度较大。

其中涉及到了很多重要的知识点,以下是笔者针对这些知识点的难点进行的总结。

1.方程与不等式:方程和不等式是高中数学必修1中难度较大的部分,它们是数学分析和解决实际问题的重要工具。

而其中又以一次方程和一次不等式最为基础,理解和掌握其解法是学习这一部分知识的关键。

此外,二次方程和二次不等式也是难点,其解的方法不仅多样,且常涉及高中数学中其他知识点的关联,因此也需要学生投入大量时间和精力去掌握。

2.函数:函数是高中数学必修1中最主要的部分之一,是整个数学课程的重中之重。

函数可以用来总结和反应实际问题中的某些规律,是数学与实际生活相结合的一个重要工具。

而其中又以幂函数、指数函数、对数函数、三角函数等更为常见且重要的知识点最为难以掌握,这些函数不仅是高中数学的重要内容,同时也是高考中经常涉及的复杂题型,因此学生需要针对这些知识点进行重点练习和深入理解。

3.几何:高中数学必修1涉及到的几何部分有很多内容,如直线与角、三角形、四边形和圆等,其中以圆和三角形为难点。

对于圆来说,其性质杂且记忆量大,而对于三角形来说,如线段中线定理、角平分线定理、余弦定理、正弦定理等都是比较抽象的概念,需要学生多加练习,才能掌握。

4.向量:向量是高中数学必修1的新知识,也是比较难理解的一部分。

其涉及到了向量的定义,向量的数量运算、向量的线性运算及向量的应用等多个方面。

需要学生具备很强的空间概念和抽象思维能力,才能够掌握和应用这部分知识。

5.三角函数的图象与性质:三角函数作为高中数学必修1中的重要部分之一,其图象和性质是学习这个领域必不可少的知识点。

但是这部分内容既抽象又复杂,需要学生针对性进行练习和理解,才能够掌握其相关的概念和规律。

6.数列与数学归纳法:数列是高中数学必修1中的一个非常重要的概念,在高考数学中经常涉及。

而数学归纳法则是证明数学命题的常见方法,需要学生掌握其基本思想和应用方法,才能够在数列相关的题型中取得好的成绩。

高中数学必修一(人教版)4.5.1函数的零点与方程的解

高中数学必修一(人教版)4.5.1函数的零点与方程的解
答案:(1)C (2)(1,+∞)
方法归纳
1.确定函数零点个数的方法: ①结合零点存在定理和函数单调性; ②转化为两个函数图象的交点个数. 2.已知函数零点个数求参数范围的常用方法
跟踪训练 1 (1)函数 f(x)=12x-x3-2 在区间(-1,0)内的零点个数 是( )
A.0 B.1
C.2 D.3
4.函数 f(x)=log2x-1 的零点为________.
解析:令 f(x)=log2x-1=0,得 x=2,所以函数 f(x)的零点为 2. 答案:2
方法归纳
函数零点的求法 求函数 y=f(x)的零点通常有两种方法:其一是令 f(x)=0,根据解 方程 f(x)=0 的根求得函数的零点;其二是画出函数 y=f(x)的图象,图 象与 x 轴的交点的横坐标即为函数的零点.
第1课时 函数的零点与方程的解
[教材要点]
要点一 函数的零点 1.零点的定义 对于函数 y=f(x),把_f_(x_)_=__0_的__实__数___x__,叫做函数 y=f(x)的零点. 2.方程的根与函数零点的关系
交点的横坐标
零点
状元随笔 函数的零点不是一个点,而是一个实数,当自变量取 该值时,其函数值等于零.
又函数 f(x)=log3x-8+2x 的图象是连续的. ∴函数 f(x)的零点所在区间是(3,4).
答案:C
方法归纳
判断函数零点所在区间的三个步骤 (1)代入:将区间端点值代入函数求出函数的值. (2)判断:把所得的函数值相乘,并进行符号判断. (3)结论:若符号为正且函数在该区间内是单调函数,则在该区间 内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.
状元随笔 利用数形结合讨论方程的解或图象的交点.讨论方程

高中数学重要数学思想

高中数学重要数学思想

一、高中数学重要数学思想一、函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。

1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。

二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。

1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。

2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。

这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。

因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。

3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。

4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。

”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。

高中数学常用思想方法

高中数学常用思想方法

高中数学常用的思想方法在高中数学里,思想方法是数学学科的灵魂,应用在教学内容里,体现在解决问题中,是知识和能力连接的桥梁。

学生若能掌握一些常用的思想方法,在问题处理上将变被动为主动,积极探索,引领着步入数学的王国。

下面总结一些常见的数学方法,以例题来进一步领会探究。

一、函数的思想函数的思想,是用运动和变化的观点分析和研究数学的数量关系,是对函数概念的本质认识,建立函数关系和构造函数,运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决,经常利用的函数性质有单调性、奇偶性、周期性、对称性、最大值和最小值以及图像的变换等。

例1:已知函数f(x)=kx,g(x)= ,若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求k的取值范围。

分析:由f(x)≥g(x)可知k≥恒成立,转化为求k大于等于函数f(x)= 的最大值。

解:由题意可得 k≥在区间(0,+∞)上恒成立,令f(x)= 又f’(x)= 令f’(x)=0得x=∴函数f(x)在区间(0,)上单调递增,在(,+∞)上单调递减,当x= 时,函数f(x)有最大值,且最大值为。

∴k的取值范围为k≥二、方程的思想方程的思想,是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析转化问题,使问题得以解决,方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。

例2:已知成等差数列的四个数之和为26,而第二个数与第三个数之积为40,求这个等差数列。

分析:常规方法利用已知求出a1与 d ,再求这四个数,此方法计算复杂,由于四个数的和已知,不如设这四个数依次为a-3d,a-d,a+d,a+3d.这样列方程求a和d会更简单,但应注意公差为2d。

解:设成等差数列的这四个数依次是:a-3d,a-d,a+d,a+3d。

由题设可知(a-3d)+(a-d)+(a+d)+(a+3d)=26(a-d)(a+d)=40解得a= d= 或a= d=-∴这个数列为2,5,8,11或11,8,5,2函数思想和方程思想是密切相关的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程的思想方法函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

函数思想的精髓就是构造函数。

方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个领域,在解题中有着广泛的运用。

对于函数)(xfy=,当0=y时,就转化为方程0)(=xf,也可以把函数式)(xfy=看做二元方程0)(=-xfy,函数与方程这种相互转化的关系十分重要。

函数与表达式也可以相互转化,对于函数)(xfy=,当0>y时,就转化为不等式)(>xf,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。

数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。

函数)()()(*Nnbxaxf n∈+=与二项式定理密切相关,利用这个函数,用赋值法和比较系数法可以解决很多有关二项式定理的问题。

解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。

立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。

建立空间向量后,立体几何与函数的关系就更加密切。

函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。

高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。

第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等;第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题;第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等;第四层次:构造方程或不等式求解问题。

其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。

纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”就带动起了中学数学的“目”。

即使对函数极限、导数的研究,也完全是以函数为对象、为中心的。

熟练掌握基本初等函数的图像和性质,是应用函数与方程思想解题的基础。

善于根据题意构造、抽象出函数关系式是用函数思想解题的关键。

经典例题:一. 函数思想所谓函数思想,不仅仅是使用函数的方法来研究和解决函数的问题,它的精髓是运用函数分析问题、、解决问题的观点、方法,是通过构造函数关系,使用函数方法来解决问题的思想。

1. 构造函数,运用函数的性质例1.(1)已知关于x 的方程0cos 222=+-a x x 有唯一解,求a 的值;(2)解不等式0)2)1(1)(1()21(22>+++++++x x x x 。

分析:(1)构造函数22cos 2)(a x x x f +-=,则问题转化为求)(x f 的零点唯一时的a 。

(2)由观察可构造函数)21()(2++=x x x f 再利用函数的性质,解决问题。

解析:(1)令22cos 2)(a x x x f +-=,R x ∈是偶函数。

)(),()(x f x f x f ∴=-)(x f ∴的图像关于y 轴对称,而题设方程0)(=x f 由唯一解,从而此解必为0=x (否则必有另一解),2,020)0(2±==+-=∴a a f 解得。

(2)设R x x x x f ∈++=),21()(2,易证)(x f 在区间[)+∞,0内为增函数。

)上为增函数,,在区间(是奇函数,从而∞+∞-∴-=++-=-)()().()21()(2x f x f x f x x x f 21,1),()()1(,0)1()(f ->∴->+-=->+>++∴x x x x f x f x f x f x 即即原不等式可化为点评:有关不等式、方程及最值之类的问题,通过构造函数关系式,借助函数的图像与性质,常可使问题简单得解。

2.选定主元,揭示函数关系例2.对于]1,1[-∈a 的一切值,使不等式a x ax x +++<21)32()32(2恒成立的x 的取值范围是 分析:从一个含有多变元的数学问题里,选定合适的主变元,从而揭示其中主要的函数关系。

解析; a x ax x +++<21)32()32(2且1320<<,a x ax x +>++∴212,即0)1()1(2>-+-x x a 。

①当1=x 时,不定式①不成立。

当1≠x 时,设=)(a f 2)1()1(-+-x x a 。

当0)1(0)(]1,1[)(1>->->f a f a f x 恒成立,则只需上的增函数,欲使时时,,即.2,01,0)1()1(2>∴>->-+-x x x x 又当, 0)1(0)(]1,1[)(1>>-<f a f a f x 恒成立,则只需上的减函数,欲使时时,即.0,1,0)1()1(2<∴<>-+-x x x x 故x 的取值范围时),2()0,(+∞⋃-∞。

点评:本解的巧妙之处是“反客为主”,求x 反而以a 为主变元对x 进行讨论,这才是真正切中要害。

若以x 为主元对a 进行讨论,则问题的解决就繁就难多了。

3.选取变元,确定函数关系例3.函数x x y -+=1的值域是 。

分析:一般思路是:平方,移项,孤立根式,再平方,可以化无理式为有理式。

面对这样一个低于四次的含双变量的方程,其难度真不敢想象。

然而,可考虑转换选取新变元。

解析:由10010≤≤⇒⎩⎨⎧≥-≥x x x ,∴设θπθθ22cos 12,0,sin =-⎥⎦⎤⎢⎣⎡∈=x x ,则, 那么).4sin(2cos sin πθθθ+=+=y 4344,2,0ππθππθ≤+≤∴⎥⎦⎤⎢⎣⎡∈ , 当[]2,1.24;1,20max min 于是函数的值域是时,当时或====y y πθπθ 点评:虽然经选取变元后的函数简洁明快,可以使人拍案叫绝,但须特别注意到:转化后的函数⎥⎦⎤⎢⎣⎡+=20)4sin(ππ,在x y 上没有单调性,故最大值不能在其右端点取得。

4.利用二项式定理构造函数例4:求证:k n m n k m k n m k n m C C C C C C C +-=+++011 。

分析:构造函数n m n m x x x x f ++=++=)1()1()1()(,比较两个展开式中k x 的系数。

解析:令n m x x f ++=)1((,n m k n m x C +++)是(1展开式中k x 的系数,又 ),)(()1()1()(102210n n n n n m n m m m m n m x C x C C x C x C x C C x x x f +++++++=++= 其中kx 的系数为0110n k m k n m k n m C C C C C C +++- ,故0110n k m k n m k n m C C C C C C +++- =k n m C +。

点评:利用函数)()()(*N n b ax x f n ∈+=,用赋值法或“二项”展开来比较系数可以解决许多二项式定理有关的问题。

5.用函数的思想方法解数列题例5.已知不定式127)1(log 1212121112+->+++++a n n n 对一切大于1的自然数n 都成立,求实数a 的取值范围。

分析:nn n 21211++++ 无法求和,常规数列的方法就不起作用了,故必须用函数的思想,用研究函数单调性的方法研究这个数列,求出最小值。

解析:令时,有当且2),2(21211)(≥≥∈++++=n n N n n n n n f 0)12)(1(2111221121)()1(f >++=+-+++==-+n n n n n n f n , 所以)(),()1(n f n f n f ∴>+为增函数,且,127)2()(min ==f n f 由题意得21,0)1(log ,127)1(log 12112722<<<-∴+->a a a 解得。

点评:利用数列的函数性质(本例为单调性)求出)(n f 的最小值。

用函数方法解决问题,正是函数思想的核心。

6.建立函数关系解应用题例6.用总长为14.8m 的钢条制成一个长方体容器的框架,要求底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积。

分析:这里有四个变量:底面的长、宽、长方体的体积和高。

设长、高可用x 表示,容积y 是x 的函数。

运用长方体的体积公式,建立目标函数表达式,再求函数的最大值。

解析:设容器底面宽为x(m),则长为x+0.5(m),高为).(22.34)5.0(448.14m x x x -=+-- 由6.100022.3<<>>-x x x 得和,设容器的容积为y(m 3),则有),6.10)(22.3)(5.0(<<-+=x x x x y 整理得x x x y 6.12.2223++-=,求导,得 6.14.462++-='x x y ,令,06.14.46,02=++-='x x y 有即,0411152=--x x 解得)(154,121不合题意,舍去-==x x 。

从而,在定义域),(6.10内只有在01='=y x 处使。

因此,当1=x 时,y 取得最大值,8.16.12.22max =++-=y 这时,高为)(2.1122.3m =⨯-。

答:当容器的高为1.2m 时,容积最大,最大容积是1.8(m 3)。

点评:此题容易忽视的时自变量x 的取值范围,缺少它,很难判断求出的最大值是否符合题意。

另外,适当设出自变量,建立函数关系是解此类题的关键。

本题在求函数最大值时,是用求导的方法求出极值点,再根据实际情况判断是最大值还是最小值。

相关文档
最新文档