电势差的公式

电势差的公式
电势差的公式

电势差的公式

1、电场中某点的电荷的电势能跟它的电量的比值,叫做这点电势

U=E/q

其中U表示电势,E表示电势能,q表示电荷量

2、电势能E=W=Uq

电势差的公式Uab=φa-φb

a、b两点的电势差等于a的电势和b的电势的差值

电势的公式:φA=Ep/q。单位正电荷由电场中某点A移到参考点O时电场力做的功与其所带电量的比值。

电势基本概念

静电场的标势称为电势,或称为静电势。在电场中,某点电荷的电势能跟它所带的电荷量(与正负有关,计算时将电势能和电荷的正负都带入即可判断该点电势大小及正负)之比,叫做这点的电势(也可称电位),通常用φ来表示。

电势是从能量角度上描述电场的物理量。(电场强度则是从力的角度描述电场)。电势差能在闭合电路中产生电流(当电势差相当大时,空气等绝缘体也会变为导体)。电势也被称为电位。

电势差公式

1、电场中某点的电荷的电势能跟它的电量的比值,叫做这点电势。

U=E/q

其中U表示电势,E表示电势能,q表示电荷量。

2、电势能E=W=Uq

电势差的公式Uab=φa-φb

a、b两点的电势差等于a的电势和b的电势的差值

U=Ed

所有C=A/B的公式,C都定义为单位B所需要的A的量,叫做C

U=W/Q,因此电势差定义为移动单位电荷所需要的功

那句话的表述有额外难题吧,应该是“把每单位电荷从A移动到B做的功,叫做AB两点之间的电势差”.

这个“单位”的意思不是电子电荷单位,是泛指任意单位,做分母用

比如1库仑的电量,1mC的电量,1静电库仑的电量

只是计算时,分母中电量Q的数值和单位不同

计算出来的电势差U的数值和单位也不同

物理上,物理量和具体的数值及单位是分离的

描述物理量的定义和关系的公式,不依赖于采用的单位制,不依赖于具体的单位

比如5J/2C=2.5V,10J/1mC=10kV

1尔格/1静电库仑=1静电伏特

电解槽正常生产的主要技术参数

电解槽正常生产的主要技术参数铝电解槽经过焙烧、启动和后期管理之后进入正常生产阶段,正常生产阶段的电解槽是在规定的电流强度下进行生产的。其特征是:电解槽的各项技术参数已达到了规定的范围建立了较稳定的电热平衡制度,阴极周围的侧壁上已牢固的形成电解质-氧化铝结壳(俗称伸腿)构成了较好的炉膛内形,另外可看到阳极不氧化、不着火、阳极周围的电解质均匀沸腾,电解质与炭渣分离较好,阳极底下没有过量的沉淀,炉面结壳完整并覆盖一定数量的氧化铝保温。也就是说电解槽的正常生产是在一定的技术参数和常规作业制度的密切配合下实现的。 电解槽生产的技术参数是以电解槽的类型、容量和操作人员的技术水平而定。技术参数包括:槽工作电压、极距、电解温度、电解质成份(分子比)两水平、炉底压降、效应系数。 下面我们分别来讲各项技术参数在铝电解生产中的作用: 1、系列电流强度:每个电解系列都有额定的电流强度、额定的电压、与之对应 有一定的产铝量。额定的电流强度一经确定下来,尽可能保持恒定的电流强度不变,以保证整个电解系列生产的稳定性。 2、槽工作电压:电解槽的工作电压由阳极压降(约0.34V)、电解质压降(约 1.57V)、阴极压降(约0.36V)、母线压降(约0.20V)、极化电压(约1.70V)、效应 分摊电压(约0.10V)。只随氧化铝浓度的变化而稍有变化。 槽工作电压随生产操作而变动,但极化电压和母线压降变化较小,只随氧化铝浓度的变化而稍有变化。变化较大的是阳极压降、电解质压降和阴极压降这三项也是维持电解温度热量来源的电压。其中电解质压降时刻在变化,所以平时工作电压的高低在某种意义上来说就是电解质压降的高低。因而工作电压对电解温度有明显的影响过高或过低保持电压都会给电解槽带来变化。 1.槽电压过高保持不但浪费电能而且电解质热量收入增多,会使电解槽走向热过程,炉膛熔化、原铝质量受影响,并影响电流效率。 2.槽电压保持过低也不行,虽然最初因热收入减少可能会出现低温时的坏处,电解温度低,电解质会下缩产生沉淀的机会增多,而形成结壳会使炉底电阻增加而发热,由冷行程转为热行程。其结果的损失,可能比高电压时要大的多,槽电压过低还可能造成压槽、滚铝和不灭效应等技术事故,因而在生产中决定各种情况下的槽工作电压的保持一定要谨慎。正常生产的槽电压应该时稳定的,如果出现波动应该查明原因及时处理。 3、极距:通常所说的极距是指阳极底掌到铝液镜面之间的距离。它既是电解过 程中的电化学反应区域又是维持电解温度的热源中心,对电流效率和电解温度有着直接影响。

电流电压公式

(1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和... (1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 (2)并联电路 总电流等于遍地电流之和I=I1+I2 遍地电压相称U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 (3)统一用电器的电功率 ①定额功率比现实功率等于定额电压比现实电压的平方Pe/Ps=(Ue/Us)的平方 2.有关电路的公式 (1)电阻R ①电阻等于材料疏密程度乘以(长度除以横截平面或物体表面的大)R=疏密程度×(L÷S) ②电阻等于电压除以电流R=U÷I ③电阻等于电压平方除以电功率R=UU÷P (2)电功W 电功等于电流乘电压乘时间W=UIT(普式公式) 电功等于电功率乘以时间W=PT 电功等于电荷乘电压W=QT 电功等于电流平方乘电阻乘时间W=I×IRT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间W=U?U÷R×T(同上) (3)电功率P ①电功率等于电压乘以电流P=UI ②电功率等于电流平方乘以电阻P=IIR(纯电阻电路) ③电功率等于电压平方除以电阻P=UU÷R(同上) ④电功率等于电功除以时间P=W:T (4)电热Q 电热等于电流平方成电阻乘时间Q=IIRt(普式公式) 电热等于电流乘以电压乘时间Q=UIT=W(纯电阻电路 功率=1.732*定额电压*电流是三相电路中星型接法的纯阻性负载功率计算公式 功率=定额电压*电流是单相电路中纯阻性负载功率计算公式 P=1.732×(380×I×COSΦ)是三相电路中星型接法的感性负载功率计算公式 单相电阻类电功率的计算公式= 电压U*电流I 单相机电类电功率的计算公式= 电压U*电流I*功率因子COSΦ 三相电阻类电功率的计算公式= 1.732*线间电压U*线电流I (星形接法)

电解槽的安全用电

LOGO https://www.360docs.net/doc/3b12519330.html,

电气学习的认识 £电压、电流 U=IR 短路断路 £态度:我以为没有事,并不代表他没事(每个人的知 识层次是不同的) £心态:不接触、不用,永远不会有事,如果动,必须先了解,再掌握,后会用 £用电安全是相对的:对用心的人是安全的,对好事的人是危险的 £电气的核心目的是用电 £具备的条件:能学、会学、能懂、会用缺一不可

绝缘的概念 £所谓绝缘,就是使用不导电的物质将带电体隔离或包裹起来,以对触电起保护作用 的一种安全措施。良好的绝缘是保证电气设备与线路的安全运行,防止人身触电事故发生的最基本和最可靠的手段。

相关的电气及触电知识 £电路:电流流过的路径,由电源、负载、控制电器和保护电气、导线组成。 £短路:电源不经过负载直接接通叫作短路。此时的能量释放根据电源的大小来 决定。 £在一般情况下,人体电阻可按 1000~2000欧 £电气设备分为高压和低压两种: £高压:电压等级在1000V及以上者; £低压:电压等级1000V以下者。

设备不停电时的安全距离 £电压等级10 kV及以下 0.70 m £ 35 kV1.00m £ 110kV1.50m £ 220kV3.00m £雷雨天气,需要巡视室外高压设备时,应穿绝缘靴, 并不得靠近避雷器和避雷针。

人体的电流 £感知电流——引起感觉的最小电流。如轻 微针刺,发麻。 £平均(概率50%),男:1.1 mA ;女:0.7 mA £摆脱电流——能自主摆脱带电体的最大电 流。 £平均(概率50%),男:16mA;女:10.5 mA £最低(概率0.5%),男: 9mA;女: 6 mA £室颤电流——引起心室发生心室纤维性颤 动的最小电流。 50mA £一般人体所能忍受的安全电流可按30 mA考虑 £人体触电后非死即伤

电解槽一般常出现问题

电解槽一般常出现以下问题: 1、涂层脱落。 2、单槽电压出现波动打开后发现阳极极网下陷,严重时极网与加强筋的焊接处断裂。 3、某一电解槽连续多次维修,直到单槽位置调整后才能运行,且与所修单槽相邻的单元开车时出现槽电压升高现象。 4、当单槽电压出现升高时打开后发现膜下部呈规则状起泡。 5、槽电压突然升高打开后膜边部出现撕裂现象。 6、有时槽电压升高打开后膜与极片都没有问题。 7、膜针孔现象有几种现象导致? 8、什么原因导致电槽爆炸? 9、集液管变形后流量变化对槽电压有什么影响? 10、膜被污染是什么原因? 11、单元槽电压上涨的原因? 1:①开停车时极化电流送反;②电槽长时间无电流循环,原电池反应损坏电极③安装极网时划伤开车后腐蚀②膜漏后氢氧根到阳极生成氧气腐蚀阳极涂层,氯气到阴极腐蚀阴极涂层 2:气相压差过高压坏极网 3:不能正常运行?描述下啊,是槽电压不正常吗?还是出液不正常?调整后相邻单元槽升高很明显吗?还有啥具体现象?

4:①多高?工艺指标正常吗?膜下部的话能导致产生气泡的指标有阴极液流量小或槽内阴极循环不畅、进槽碱浓度高,阳极流量小、相对电流密度大、进槽盐水浓度低或循环不畅等都会造成浓度不均而造成水泡,另外还有酸度大,阴阳极温差大,正压差过大,槽温过高 ②如果指标没问题,可能是粘结剂涂抹过多,流到极网面上,附着在离子膜上使电流效率下降,发生盐泡和针孔,并使槽电压上升 ③如果阳极垫片比阴极垫片更突出于电解槽内的话,突出部位也容易产生盐泡和针孔 5膜撕裂:①膜本身的问题,没检查好、膜试漏没做好②阴极有毛刺对膜产生机械损伤③垫片粘接不牢,压力增大时垫片被挤压会连带所装的膜拉伸使膜受伤,严重时会使靠近边框处撕裂④阳极垫片太靠里,产生水泡、针孔甚至撕裂⑤经常发生电解液浓度和稳定的突变 6槽电压升高:①如果是整个电槽子的单元槽都偏高,一般是操作因素的影响,需要检查是否过电流、阴阳极循环流量、盐水杂质、电解液浓度温度PH、电槽压力压差②如果是单个单元槽升高,一般是膜泄露或者极板损伤,如果膜和极板都没有问题就不知道了,检查下单元槽进出软管电解液情况, 7膜针孔:参照4和5,膜起泡、针孔、撕裂的原因都差不多,就是严重等级的问题 8:电解槽爆炸一般都是由氯气和氢气混合造成的,比如没控制好压力压差过大等原因造成离子膜机械损伤严重使CL2和H2大量混合引起爆炸;电流超出最大负荷时产生大量气体槽内压力过大,造成槽喷裂;氢气泄漏

三相电流计算公式

三相电流计算公式 I=P/(U*所以1000W的线电流应该是。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是,电压等于380V时,电流是,以上说的是指的单相的情况。380V 三相的时候,公式是I=P/(U*,电流大小是 三相电机的电流计算I= P/*380* 式中:P是三相功率是根号3) 380 是三相线电压(I 是三相线电流) 是功率因数,这里功率因数取的是,如果功率因数取或者,计算电流还小。电机不是特别先进的都是按计算。按10kW计算:I=10kW/*380* =10kW/ = A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电流。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2 S=√(P2+Q2) 视在功率S= 有功功率P=Φ 无功功率Q=Φ 功率因数cosΦ=P/S 根号3,没有软件写不上,用代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器; FR表示热继电器;

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

解析离子膜电解槽电压升高的原因

解析离子膜电解槽电压升高的原因 摘要:本文通过槽电压的引入,对离子膜电解槽电压升高的原因进行了深入细致的分析,同时提出了预防改进的措施。 关键词:离子膜电解槽电压升高原因分析 考核离子膜电解槽运行性能的重要技术经济指标是槽电压,是电解生产是否正常的考核标志。它与能耗密切相关,与离子膜的生产成本有着直接影响,因此在操作中要求尽量低的槽电压。为保证电解槽在低压下稳定运行,对影响电压的因素进行以下分析。 一、槽电压的结构 槽电压的计算公式为: V=Va+Vb+η阴+η阳+I(R金+R液),式中,V表示单槽电压V;Va表示理论分解电压V;Vb表示膜电压V;η阴为阴极过电压V;η阳为阳极过电压V;I为电流强度A;R金、R液分别表示金属导体、溶液的电阻Ω。其中Va是不变的,V的大小取决于其他项。 二、分析槽电压升高的原因 1.阴阳极性能不同程度的退化影响着单元槽电压 以前生产的离子膜厚度大,膜电压较高,但膜的强度也高,保护了阴阳极涂层。近年来,在高电流密度电解装置的运行控制自动化程度上已有了很大的提高,但配置的离子膜厚度小,强度较低,但要求的操作水平较高,一旦运行压力和压差失控发生故障,会严重的损伤离子膜,也不能有效地保护阴阳极涂层,甚至破坏性地腐蚀阴阳极基网。 当电解槽完成了一个膜寿命周期运行以后,即使更换了新膜,也不可能将单元槽电压恢复如初。这都源于阴阳极性能的逐步退化和网面是否平整以及膜极距弹性下降曾在以前运行中受到的意外影响变差造成的。 阴阳极涂层的有效使用期为6-8年。有效期过后,因阴阳极损坏而使单元槽电压上升达到250 mv以上。通常如果离子膜由于携带的杂质进入造成的电压明显上升或电流效率明显下降而膜的物理损伤并不严重,其阴阳极属于自然劣化,阴阳极寿命应损失1/4,如此情况下,电压上升一般在50~70 mv左右。 然而,电解装置的管理者为进行换膜工作,一般都会选择性能状态较差、电

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

306KA电解槽电压摆的原因及处理

306KA电解槽电压摆的原因及处理 摘要指出了306kA电解槽沉淀生成的原因、探讨消除沉淀的方法。 关键词炉底沉淀;电能利用率;换极作业;堵卡打击头;技术参数匹配 电解槽炉底沉淀对电解槽安全高效生产有很大的危害,一方面沉淀随着液体流动而磨损阴极,据邱竹贤研究,软沉淀的电导率是传统电解质的一半,沉淀会使周边的阴极有很大的电流密度,容易受到腐蚀,缩短槽寿命,另一方面,槽底沉淀会增加槽底电阻,使炉膛畸形,造成电解槽电压不稳定,迫使电解槽的极距降低,增加铝的再溶解量,大幅度降低电流效率,升高运行电压,降低了吨铝电能利用率,增加了吨铝成本。 某厂306KA电解槽自投产以来,技术参数和作业方式经过多次调整,逐渐总结出适宜的做法,预防并消除了炉底沉淀,稳定了电解槽况,提高了电流效率,降低了电耗。 1 306KA电解槽沉淀产生的原因 现代电解铝工艺普遍采用中间点式下料的方法向电解槽内添加氧化铝粉,正常情况下,不会产生沉淀,但是在实际生产中,会出现短时间内进入大量的氧化铝粉和电解质块的情况,物料无法被全部溶解,便沉积槽底,形成在铝水下的沉淀,经久不化,则变成结壳。产生沉淀的主要原因有: 1)換极作业操作不合理性是沉淀的重要原因之一。初期換极存在以下三种问题,是制造沉淀的主要原因:(1)是換极前不扒出极上浮料,提极后残极四周浮料全部进入槽内;(2)是更换阳极时壳面开口不合理,造成进入过多物料;(3)是管理制措施不完善,提极时掉入电解槽的块料捞不干净; 2)堵击头现象造成的沉淀,也是投生成沉淀的重要原因之一,306KA电解槽中缝设计阳极间距为200mm,由于电解槽不稳定,加之使用的打壳气缸是小气缸,高压风在0.45mp左右,所以电解槽下料点堵打击头现象十分严重,经常出现在下料口堆积大量氧化铝粉,此时一旦下料口被打开,堆积的氧化铝粉迅速进入电解槽中,在下料点处的槽底形成大量沉淀,长时间堆积变成槽底结壳; 3)下料方式落后造成的电解槽炉底沉淀增加,306KA电解槽在设计时采用中间下料点五点同时进料,但在经几年的运行实践表明,五点同时下料一次性对电解槽供料量过大,下料经常出现沉淀,严重时变成结壳,也有悖于现代电解槽低氧化铝浓度稳定运行的理念,不利于氧化铝粉的充分溶解,易形成沉淀; 4)技术参数匹配不合理,GeaD等人对电解槽槽底沉淀的研究得出,槽底沉淀的组成主要是Al2O3和冰晶石的成分,沉淀物中的电解质成分非常接近于Na3AlF6槽内沉淀与氧化铝粉的共晶点温度为955℃z左右,因此,当电解槽使

电流电压功率之间的关系及公式.

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

如何通过曲线对电解槽运行状况做出判断

如何通过曲线对电解槽运行状况做出判断 随着计算机技术的发展,电解铝控制系统有了很大的进步。现在大型电解槽管理已由原来自焙槽的现场管理为过渡为技术管理为主。通过观察计算机生产的电阻、加料等各种状态曲线能够为我们提供大量在现场观察不到的信息,通过分析这些信息对电解槽运行状况做出正确判断。由于计算机采集信息的连续性,相当一天2 4 小时对每天电解槽运行状况进行监控,这是人工无论如何也做不到的,对各种曲线进行正确分析是电解槽管理者必须掌握的。 现在计算机控制系统关键在其自适应加料系统。其工作原理就是根据氧化铝浓度对电解槽槽电阻变化情况判断何时进入何种下料状态。通过各种加料状态的改变将氧化铝浓度控制在1. 5 ~3. 0 %之间,在这个氧化铝浓度范围槽电阻随着氧化铝浓度的增加槽电阻有下降趋势。但下降的趋势逐步减缓,也即斜率减小。电解槽槽电阻稳定的电解槽,由于氧化铝浓度变化对槽电阻的变化可从槽电阻曲线上明显看出,其关系表现在当进入过量周期时,由于加料量大于消耗量,氧化铝浓度不断上升,由于氧化铝浓度上升槽电阻有下降趋势,从接口机槽电阻曲线上可看出正常槽每当进入过量期槽电阻就开始下降。反之当加料周期进入欠量期时槽电阻就有上升的趋势,原因是欠量期加料量比消耗量小导致浓度有所下降,浓度下降导致槽电阻有上升的趋势。由此可看出,自适应系统适应的前提是电解槽运行稳定,槽电阻没有针振或电压摆现象发生。原因在于氧化铝浓度变化造成的槽电阻变化是很微小的,一旦电解槽出现针振或电压摆现象,由于铝水波动造成槽电阻变化远远大于氧化铝浓度造成槽电阻的变化。这样自适应加料系统就失去了判断的依据,就可能出现错断现象,表现在效应等待期发生的

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

常用(电)计算公式

电功率的计算公式 电功率的计算公式,用电压乘以电流,这个公式是电功率的定义式,永远正确,适用于任何情况。 对于纯电阻电路,如电阻丝、灯炮等,可以用“电流的平方乘以电阻”“电压的平方除以电阻”的公式计算,这是由欧姆定律推导出来的。 但对于非纯电阻电路,如电动机等,只能用“电压乘以电流”这一公式,因为对于电动机等,欧姆定律并不适用,也就是说,电压和电流不成正比。这是因为电动机在运转时会产生“反电动势”。 例如,外电压为8伏,电阻为2欧,反电动势为6伏,此时的电流是(8-6)/2=1(安),而不是4安。因此功率是8×1=8(瓦)。 另外说一句焦耳定律,就是电阻发热的那个公式,发热功率为“电流平方乘以电阻”,这也是永远正确的。 还拿上面的例子来说,电动机发热的功率是1×1×2=2(瓦),也就是说,电动机的总功率为8瓦,发热功率为2瓦,剩下的6瓦用于做机械功了。 电工常用计算公式 一、利用低压配电盘上的三根有功电度表,电流互感器、电压表、电流表计算一段时间内的平均有功功率、现在功率、无功功率和功率因数。 (一)利用三相有功电度表和电流互感器计算有功功率 式中 N——测量的电度表圆盘转数 K——电度表常数(即每kW·h转数) t——测量N转时所需的时间S CT——电流互感器的变交流比

(二)在三相负荷基本平衡和稳定的情况下,利用电压表、电流表的指示数计算视在功率 (三)求出了有功功率和视在功率就可计算无功功率 (四)根据有功功率和现在功率,可计算出功率因数 例1某单位配电盘上装有一块500转/kW·h电度表,三支100/5电流互感器,电压表指示在400V,电流表指示在22A,在三相电压、电流平衡稳定的情况下,测试电度表圆盘转数是60S转了5圈。求有功功率、现在功率、无功功率、功率因数各为多少? [解]①将数值代入公式(1),得有功功率P=12kW ②将数值代入公式(2);得视在功率S=15kVA ③由有功功率和视在功率代入公式(3),得无功功率Q=8l kVar ④由有功功率和现在功率代入公式(4),得功率因数cosφ= 0.8 二、利用秒表现场测试电度表误差的方法 (一)首先选定圆盘转数,按下式计算出电度表有N转内的标准时间 式中 N——选定转数 P——实际功率kW K——电度表常数(即每kW·h转数) CT——电流互感器交流比 (二)根据实际测试的时间(S)。求电度表误差 式中 T——N转的标准时间s t——用秒表实际测试的N转所需时间(s)

电流计算公式

有一个餐厅使用, 220V 用电器风扇排气扇风机照明冰柜微波炉抽油烟机等,额定功率共123KW 380V 用电器炒炉蒸包炉空调等额定功率共119KW 怎样计算负荷电流??要选择多大的电缆??? 最好列出公式,谢谢!!我来帮他解答插入图片插入地图您还可以输入9999 个字 您提交的参考资料超过50字,请删除 参考资料:提交回答 网友推荐答案2012-1-13 18:42 sycw100 | 五级123+119=242KW 按全部负荷同时运行、功率因数为1计算,且三相负荷分布均匀,负荷电流=242/1.732/380=367.7A 电缆选择与型号有关,如果选聚氯乙烯绝缘的不考虑电压降估计得用185平方的铜芯电缆实际工作情况是不可能同时工作、三相不可能完全平衡、功率因数不可能为1,还有环境温度等等、所以电缆选型会有差别追问123+119=242KW 不同电压,两者功率能相加的吗??回答功率可以相加的 你这实际上是一个电压等级。380v用电器是三相供电,220v用电器是单相供电。380是三相电的线电压,220是三相电的相电压赞同0| 评论(1) 其他答案共4条2010-8-5 00:35 排忧解难尊者| 一级 单相乘 4.5,三相乘 2.前提功率必须是千瓦[提问者认可] | 赞同0| 评论2010-8-4 10:54 东南第一帅| 七级 I=P/U. P是功率,U是电压赞同0| 评论2012-1-14 08:48 qlzfwxl | 四级 这样大的负载,一定要用三相电380V接入,接入单相负荷时三相尽量均匀分配,按每千瓦2A估算赞同0| 评论2012-1-15 10:37 三里店村| 十三级 220V 用电器风扇排气扇风机照明冰柜微波炉抽油烟机等,额定功率共123KW (电器三相尽量均布)每相大约:123/3=41KW 380V 用电器炒炉蒸包炉空调等额定功率共:P=119KW+41=160KW 总负荷电流:I=160/(1.732*0.38*0.7)=347A 选用总铜导线面积:S=347/2=174平方毫米 根据导线规格应选用:3*185+2*120的铜电缆赞同1| 评论

三相电流计算公式

三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算I= P/(1.732*380*0.75) 式中:P是三相功率(1.732是根号3) 380 是三相线电压(I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算:I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2S=√(P2+Q2) 视在功率S=1.732UI 有功功率P=1.732UIcosΦ无功功率Q=1.732UIsinΦ功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器;

电机转矩、功率、转速、电压、电流之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即P=F*V---————公式【3】转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】

电路中相关计算公式

一、欧姆定律 导体中的电流I和导体两端的电压U成正比,和导体的电阻R成反比,即I=U/R 这个规律叫做欧姆定律。如果知道电压、电流、电阻三个量中的两个,就可以根据欧姆定律求出第三个量,即I=U/R,R=U/I,U=IR在交流电路中,欧姆定律同样成立,但电阻R应该改成阻抗Z,即I =U/Z 二、功率因数 1、电源的总功率中应包括电阻的有功功率和电感的无功功率,这个总功率称为视在功率,符 号为S,单位是V?A(伏安)。视在功率与有功功率和无功功率的大小关系是:S=√P2+Q2L 有功功率占视在功率中的比例称为功率因数,符号为cosΦ,cosΦ=P÷S=UR÷U=R÷Z。cosΦ的值从0到1,值越大说明有功功率占视在功率的份额越大,也说明电能的利用率越高。由于无功功率只是与电源交换能量,而不是将电能转换为其它可用能量,但交换能量的电流在电路中流动,会在电路的电阻上转化为热能而消耗掉一部分电能,因此,无功功率越小越好。 2、功率因数的提高,电感性电路中电流的相位落后于电压,角度在0°~90°之间。其中电阻的成分越大,电流落后于电压的角度越小,cosΦ值越大;电阻的成分越小,电流落后于电压的角度越大,cosΦ值越小。由于电感的无功功率占有电源的容量,并在线路上消耗一定的能量,在生产中,希望电感的无功功率越小越好。电容在电路中,流过电容的电流比电压越前90°,恰好与电感电路中电流电压的相位关系相反,也就是说两者与电源交换能量的时间不同。电感从电源吸取能量转变为磁能时,正好是电容将其储备的电能返还电源的时候,如果把这两个组件接在一起,电感所需能量可由电容提供一部分,而电容充电时所需电能也恰好能由电感提供,一部分无功电能将在电容与电感之间转换,而不再通过电源。对电源来讲,负担电感的部分能量将减少,意味着电路的功率因数cosΦ提高。 如果把电容与线圈串联,线圈两端的电压就不再是原来所加的电压。为了使线圈接电容前后所加电压相同,必须把电容与线圈相并联。所以实际生产中提高功率因数的方法,是在电感性电路两端并联一个合适的电容。 三、电功率与电能 负载在电路中消耗电能,一个负载在单位时间内所消耗的电能,叫做电功率,电功率的单位是瓦特,简称瓦,符号为W,电功率的量符号为P。 负载工作一段时间所消耗的电能量叫做电能,电能的单位是KW.h(千瓦时)。1 KW.h电能就是平常所说的1度电。 四、三相交流电路

几种常见的电解槽

几种常见的电解槽 氯气和烧碱是电解氯化钠水溶液(食盐水)的“孪生”产物,其化学方程式如下: 2NaCl+2H2O→2NaOH+Cl2↑+H2↑ (1) 该电解反应需要的电能跟电解过程的电流密度、外加电压、电极材料和电解槽结构有关. 总的电解化学反应是由下列两个电化学反应组成的: 阳极2Cl-→Cl2+2e- (2) 阴极2H2O+2e-→H2+2OH- (3) 根据法拉第电解定律,每通入1法拉第=96447C(A·s)的电量,产生一克当量的电解产物.按照这个关系式可算出生产每吨氯或碱的最低耗电量千瓦小时(KAH) =60kA·h/t 按照Cl2和NaOH产生的方式,氯碱电解槽可分为三种类型:(1)隔膜电解槽(2)水银电解槽(3)离子交换膜电解槽. 一、隔膜电解槽

隔膜电解槽的图解原理如图一所示,电解时,氯气照方程式(2)在阳极发生,工业生产上的阳极是钌基或铂/铱基涂刷在钛板上制成的,称为金属阳极.在阳极产生的氯气首先溶解在电解液中直至饱和,后呈气泡放出.由于氯的溶解度是温变的函数,所以电解一般在较高的温度(95~100℃)下进行,以减少氯的溶解度,并增加溶液的电导.伴随着氯气的产生,在阳极可能发生两个副反应,一是在阳极上H2O放电而产生O2,如方程式(4)所示,另一是OCl-离子的电化学氧化而生成氯酸盐,如方程式(5)所示. 2H2O→O2+4H++4e- (4) 上列反应中,O2的析出是跟“阴极材料”和介质的pH有关 如果采用石墨作阳极,由于产生了C→CO2的反应,而导致阳极材料的消耗 C+2H2O→CO2+2H2 电解质通过隔膜,从阳极区渗入阴极区,通常采用石棉或氟高聚物改性石棉为隔膜,采用真空吸附的方法沉积在多孔的阴极上(编网或多孔钢板).在阴极区,水分子放电产生H2和NaOH,其中NaOH部分地回迁移至阳极区,跟溶解在里面的氯起反应而产生氯酸盐.如方程式(7)(8)和(9)所示. Cl2+OH-→HOCl+Cl- (7) HOCl+OH-H2O+OCl- (8) 2HOCl+OCl-→ClO3-+2H++2Cl- (9) 上列副反应产生影响电解的电流效率.阴极流出液中一般会有12%NaOH和 15%NaCl. 此类现已逐渐被淘汰

电解槽正常生产的主要技术参数

电解槽正常生产的主要技术参数 铝电解槽经过焙烧、启动和后期管理之后进入正常生产阶段,正常生产阶段的电解槽是在规定的电流强度下进行生产的。其特征是:电解槽的各项技术参数已达到了规定的范围建立了较稳定的电热平衡制度,阴极周围的侧壁上已牢固的形成电解质一氧化铝 结壳(俗称伸腿)构成了较好的炉膛内形,另外可看到阳极不氧化、不着火、阳极周围的电解质均匀沸腾,电解质与炭渣分离较好,阳极底下没有过量的沉淀,炉面结壳完整并覆盖一定数量的氧化铝保温。也就是说电解槽的正常生产是在一定的技术参数和常规作业制度的密切配合下实现的。 电解槽生产的技术参数是以电解槽的类型、容量和操作人员的技术水平而定。技术参数包括:槽工作电压、极距、电解温度、电解质成份(分子比)两水平、炉底压降、效应系数。 下面我们分别来讲各项技术参数在铝电解生产中的作用: 1、系列电流强度:每个电解系列都有额定的电流强度、额定的电压、与之对应有 一定的产铝量。额定的电流强度一经确定下来,尽可能保持恒定的电流强度不变, 以保证整个电解系列生产的稳定性。 2、槽工作电压:电解槽的工作电压由阳极压降(约0.34V)、电解质压降(约 1.57V)、阴极压降(约0.36V)、母线压降(约0.20V)、极化电压(约1.70V)、效应 分摊电压(约0.10V)。只随氧化铝浓度的变化而稍有变化。 槽工作电压随生产操作而变动,但极化电压和母线压降变化较小,只随氧化铝浓度的变化而稍有变化。变化较大的是阳极压降、电解质压降和阴极压降这三项也是维持电解温度热量来源的电压。其中电解质压降时刻在变化,所以平时工作电压的高低在某种意义上来说就是电解质压降的高低。因而工作电压对电解温度有明显的影响过高或过低保持电压都会给电解槽带来变化。 1 ?槽电压过高保持不但浪费电能而且电解质热量收入增多,会使电解槽走向热 过程,炉膛熔化、原铝质量受影响,并影响电流效率。 2.槽电压保持过低也不行,虽然最初因热收入减少可能会出现低温时的坏处,电解 温度低,电解质会下缩产生沉淀的机会增多,而形成结壳会使炉底电阻增加而发热,由冷行程转为热行程。其结果的损失,可能比高电压时要大的多,槽电压过低还可能造成压槽、滚铝和不灭效应等技术事故,因而在生产中决定各种情况下的槽工作电压的保持一定要谨慎。正常生产的槽电压应该时稳定的,如果出现波动应该查明原因及时处理。 3、极距:通常所说的极距是指阳极底掌到铝液镜面之间的距离。它既是电解过程 中的电化学反应区域又是维持电解温度的热源中心,对电流效率和电解温度有着直接影响。 1.提高极距:能减少铝的损失会使电流效率提高,也就是说能减少二次反应次数

电流、功率、电压、电阻计算公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* = 1.732 X U X I X COSφ 功率P =1.732X380X I X0.85 电流I = P / (1.732 X 380 X 0.85) 功率分有功和无功,有功P=U*I*(cos a);无功Q=U*I*(sin a);注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点! 2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A

公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法)= 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 ⑵并联电路 总电流等于各处电流之和I=I1+I2 各处电压相等U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2

相关文档
最新文档