化学键-教案

合集下载

化学键教案(共2课时)人教课标版(汇教案)

化学键教案(共2课时)人教课标版(汇教案)

化学键教案(共2课时)一、教学目标1. 知识与技能:理解化学键的概念,掌握共价键和离子键的形成过程及特点,能够运用化学键的知识解释一些常见物质的性质和变化。

2. 过程与方法:通过实验观察和理论分析,培养学生的观察能力和分析问题的能力,提高学生的实验操作技能和理论联系实际的能力。

3. 情感态度与价值观:激发学生对化学学科的兴趣,培养学生的科学素养和团队合作精神,树立正确的世界观、人生观和价值观。

二、教学重点与难点1. 教学重点:化学键的概念、共价键和离子键的形成过程及特点。

2. 教学难点:化学键的形成过程及其对物质性质的影响。

三、教学过程第一课时(一)导入新课1. 通过展示一些常见物质的图片,如水、氯化钠、氧气等,引导学生思考这些物质是由什么组成的,它们之间是如何相互作用的。

2. 提问:什么是化学键?它对物质的性质有什么影响?(二)新课讲解1. 讲解化学键的概念:化学键是相邻原子之间的强烈相互作用,是保持物质稳定性的基本因素。

2. 讲解共价键的形成过程及特点:共价键是原子之间通过共享电子对形成的化学键,具有方向性和饱和性。

3. 讲解离子键的形成过程及特点:离子键是阴阳离子之间的静电作用力,具有无方向性和饱和性。

(三)实验观察1. 实验一:观察水分子中氢原子和氧原子之间的共价键。

2. 实验二:观察氯化钠晶体中钠离子和氯离子之间的离子键。

(四)课堂小结2. 强调化学键对物质性质的影响。

第二课时(一)复习导入1. 复习化学键的概念、共价键和离子键的形成过程及特点。

2. 提问:如何运用化学键的知识解释一些常见物质的性质和变化?(二)新课讲解1. 讲解化学键的断裂与形成:化学反应实质上是化学键的断裂与形成过程。

2. 讲解化学键对物质性质的影响:不同类型的化学键会导致物质具有不同的性质,如熔点、沸点、硬度、导电性等。

(三)课堂练习1. 练习一:运用化学键的知识解释水、氯化钠、氧气等物质的性质。

2. 练习二:运用化学键的知识解释一些化学反应的实质。

化学键教案优秀6篇

化学键教案优秀6篇

化学键教案优秀6篇《化学键》教案参考篇一一、教材分析1.本节是人教版高中化学必修2第一章《物质结构元素周期律》的第3节。

初中介绍了离子的概念,学生知道钠离子与氯离子由于静电作用结合成化合物氯化钠,又知道物质是由原子、分子、离子构成的,但并没有涉及到离子化合物、共价化合物以及化学键的概念。

本节的目的是使学生进一步从结构的角度认识物质的构成,从而揭示化学反应的实质,是对学生的'微粒观和转化观较深层次的学习。

为今后学习有机化合物、化学反应与能量打下基础。

并通过这些对学生进行辩证唯物主义世界观的教育。

所以这一课时无论从知识性还是思想性来讲,在教学中都占有重要的地位。

3.课标要求化学键的相关内容较多,教材是按照逐渐深入的方式学习,课标也按照不同的层次提出不同的要求,本节的课标要求为:“认识化学键的涵义,知道离子键和共价键的形成”;第三章《有机物》要求“了解有机化合物中碳的成键特征”;选修4《化学反应与能量》中要求“知道化学键的断裂和形成是化学反应中能量变化的主要原因”;选修3《物质结构与性质》中要求“能说明离子键的形成,能根据离子化合物的结构特征解释其物理性质;了解晶格能的应用,知道晶格能的大小可以衡量离子晶体中离子键的强弱;知道共价键的主要类型,能用键能、键长、键角等说明简单分子的一些性质;认识共价分子结构的多样性和复杂性,能根据有关理论判断简单分子或离子的构型,能说明简单配合物的成键情况;知道金属键的涵义,能用金属键理论解释金属的一些物理性质”。

也就是说,在本节教学中,对化学键的要求并不高,教学中应当根据课标要求,注意学生的知识基础和和学生的生理、心理发展顺序及认知规律,降低难度,注意梯度。

在电子式的教学中,而其中不必用太多时间将各种物质电子式都要学生练习一遍,取几个典型的投影出来让学生知道书写时的注意事项就行了。

并且交待学生不要花太多时间去钻复杂物质的电子式,如二氧化硫、二氧化氮等电子式的书写。

高中化学化学键教案

高中化学化学键教案

高中化学化学键教案一、教学目标1、知识与技能目标理解化学键的概念,包括离子键和共价键。

掌握离子键和共价键的形成过程及特点。

学会用电子式表示离子化合物和共价化合物的形成过程。

2、过程与方法目标通过对化学键形成过程的分析,培养学生的抽象思维和逻辑推理能力。

通过电子式的书写练习,提高学生的规范表达和微观表征能力。

3、情感态度与价值观目标激发学生对化学微观世界的好奇心和探索欲望。

培养学生严谨求实的科学态度和合作精神。

二、教学重难点1、教学重点离子键和共价键的概念及形成过程。

离子化合物和共价化合物的判断。

电子式的书写。

2、教学难点用电子式表示离子化合物和共价化合物的形成过程。

对化学键本质的理解。

三、教学方法讲授法、讨论法、练习法、多媒体辅助教学法四、教学过程1、导入新课通过展示氯化钠、氯化氢等物质的图片或实物,引导学生思考这些物质是由什么微粒构成的,以及微粒之间是如何结合在一起的。

2、讲解离子键以氯化钠的形成过程为例,讲解钠原子和氯原子在反应中得失电子形成钠离子和氯离子,进而通过静电作用形成离子键。

强调离子键的定义:使阴、阳离子结合成化合物的静电作用。

举例说明常见的离子化合物,如氯化钠、氢氧化钠、硫酸铜等。

3、讲解共价键以氯化氢的形成过程为例,讲解氢原子和氯原子通过共用电子对形成共价键。

强调共价键的定义:原子间通过共用电子对所形成的相互作用。

举例说明常见的共价化合物,如氯化氢、水、二氧化碳等。

4、比较离子键和共价键从形成过程、作用实质、存在范围等方面对离子键和共价键进行比较。

5、电子式的书写讲解电子式的概念和书写规则。

分别示范离子化合物(如氯化钠、氧化镁)和共价化合物(如氯化氢、水)的电子式书写方法。

让学生进行练习,教师巡视指导并纠正错误。

6、课堂练习布置一些与离子键、共价键、电子式相关的练习题,让学生巩固所学知识。

7、课堂小结回顾本节课所学的化学键的概念、离子键和共价键的形成及特点、电子式的书写。

8、布置作业完成课后相关习题。

化学键教案高中化学化学键教案

化学键教案高中化学化学键教案

化学键教案高中化学一、教学目标1. 让学生了解化学键的概念,理解化学键的类型和性质。

2. 培养学生运用化学键知识分析解释化学现象的能力。

3. 帮助学生掌握化学键的基本原理,提高他们的科学素养。

二、教学内容1. 化学键的概念与分类2. 离子键、共价键、金属键的特点与区别3. 化学键的的形成与断裂4. 化学键与物质的性质关系5. 实际案例分析:化学键在化学反应中的应用三、教学方法1. 采用问题驱动的教学方法,引导学生思考和探索化学键的奥秘。

2. 利用多媒体课件,生动展示化学键的类型和性质。

3. 通过小组讨论、实验观察等实践活动,巩固学生对化学键的理解。

4. 结合实际案例,让学生感受化学键在化学反应中的重要作用。

四、教学步骤1. 引入:通过生活中的实例,如盐、金属等,引导学生思考这些物质背后的化学原理。

2. 讲解化学键的概念,阐述化学键的分类及其特点。

3. 分析化学键的形成与断裂过程,让学生理解化学反应的实质。

4. 探讨化学键与物质性质的关系,如溶解性、熔点、沸点等。

5. 结合实际案例,讲解化学键在化学反应中的应用。

五、教学评价1. 课堂问答:检查学生对化学键概念、类型和性质的理解。

2. 课后作业:布置有关化学键的练习题,巩固所学知识。

3. 小组讨论:评估学生在实践活动中的表现,了解他们对化学键的实际运用能力。

4. 期中期末考试:全面检测学生对化学键知识的掌握程度。

六、教学内容6. 极性键与非极性键学生将学习极性键与非极性键的概念,并能够区分和理解它们在分子中的分布和影响。

7. 键长、键角与分子的立体构型学生将通过实例学习键长、键角的概念,并探索它们如何影响分子的立体构型。

8. 分子轨道理论学生将简要介绍分子轨道理论,理解π键和σ键的形成,以及它们如何决定分子的性质。

9. 氢键学生将学习氢键的概念,了解它与其他化学键的区别,并探索氢键在生物分子中的作用。

10. 化学键的近似计算学生将introduction to the concept of bond order and bond energy, and learn how to approximate the values of chemical bonds.七、教学方法1. 采用互动式教学方法,鼓励学生积极参与讨论和提问。

化学键优秀教案第一课时

化学键优秀教案第一课时

化学键优秀教案第一课时1. 本节课将介绍化学键的基本概念和分类。

2. 学生将了解离子键、共价键和金属键的特点和形成过程。

3. 通过实验演示和模型展示,学生将感受化学键的物理本质。

4. 通过课堂讨论和问答,学生将理解不同类型化学键的应用和意义。

5. 本节课将引导学生探索化学键与材料性质之间的关系。

6. 学生将参与小组合作活动,分析不同分子中的化学键特点。

7. 本节课将介绍化学键概念的历史起源和发展过程。

8. 学生将通过观察实验结果,理解化学键对物质性质的影响。

9. 课堂中将采用多媒体展示,辅助学生理解化学键形成的过程。

10. 期望学生了解化学键在生活和工业中的广泛应用。

11. 课堂中将引导学生思考共价键和离子键在材料制备中的不同应用方式。

12. 学生将通过文献查找,探索金属键在材料工程中的重要性。

13. 本节课将通过案例分析,让学生了解实际工程中化学键的设计原则。

14. 学生将参与小组探究活动,观察和讨论不同类型化学键的特点。

15. 期望学生掌握化学键与分子结构之间的联系。

16. 学生将共同制作化学键模型,加深对不同类型键的理解。

17. 教师将使用图表和示意图,直观展示共价键和离子键的生成过程。

18. 通过实验展示,学生将亲身感受不同类型化学键的性质差异。

19. 本节课将强调化学键的重要性和在材料科学领域中的作用。

20. 学生将参与学科交叉讨论,探究化学键在生物学和地球科学中的意义。

21. 课堂中将设置化学键实验操作,激发学生的探究兴趣。

22. 通过应用案例,学生将理解不同键对化合物性质的影响。

23. 本节课将引导学生关注化学键的结构与材料性能之间的关系。

24. 学生将通过观察实验现象,分析共价键和离子键对物质性质的不同影响。

25. 教师将组织学生展开化学键相关领域的科普知识普及。

26. 期望学生能够将化学键的知识应用到实际工程和科研中。

27. 本节课将引导学生思考化学键的数学描述和计算方法。

28. 学生将参与化学键实践操作,感受化学实验的乐趣。

化学键教案参考内容(优秀6篇)

化学键教案参考内容(优秀6篇)

化学键教案参考内容(优秀6篇)《化学键》教案参考篇一【基础知识导引】一、学习目标要求1.掌握化学键、离子键、共价键的概念。

2.学会用电子式表示离子化合物、共价分子的形成过程,用结构式表示简单共价分子。

3.掌握离子键、共价键的本质及其形成。

4.知道离子化合物共价化合物的概念,能够判断常见化合物的类别。

5.知道化学键与分子间作用力的区别,知道氢键影响物质熔沸点。

二、重点难点1.重点:离子键和共价键,用电子式表示离子化合物的形成。

2.难点:离子键和共价键本质的理解。

【重点难点解析】(一)离子键1.氯化钠的形成[实验5—4]钠和氯气化合生成氯化钠实验目的:巩固钠与氯气反应生成氯化钠的性质;探究氯化钠的形成过程。

实验步骤:取一块黄豆大小已切去氧化层的金属钠,用滤纸吸净煤油,放在石棉网上,用酒精灯预热,待钠熔融成球状时,将盛氯气的集气瓶倒扣在钠的上方,观察现象。

实验现象:钠在氯气中燃烧,产生黄色火焰和白烟。

实验结论:钠与氯气化合生成氯化钠2Na?Cl2点燃2NaCl注意:钠的颗粒不宜太大,当钠粒熔成球状时就迅速将盛氯气的集气瓶倒扣在钠的上方不宜太迟。

讨论:金属钠与氯气反应,生成氯化钠,试用已学过的原子结构知识来分析氯化钠的形成过程。

钠、氯的电子层结构为不稳定结构,钠原子易失去电子,氯原子易得到电子,形成最外层电子数为8个电子的稳定电子层结构的离子。

当钠与氯气相互接触并加热时,钠、氯原子具备了发生电子转移的充要条件,发生电子转移形成了稳定的离子——Na和Cl。

带异性电荷的Na和Cl之间发生静电作用,形成了稳定的离子化合物氯化钠。

想一想:Na与F、K 与SO4、Ca与O等阴、阳离子之间能否产生静电作用而形成稳定的化合物?2.离子键的定义与实质(1)定义:使阴、阳离子结合成化合物的静电作用,叫离子键。

(2)实质:就是阴离子(负电荷)与阳离子(正电荷)之间的电性作用。

3.离子键的形成和存在(1)形成;形成离子键的首要条件是反应物中元素的原子易发生电子得失而形成阴、阳离子。

《化学键教案》word版

《化学键教案》word版

《化学键教案》word版第一章:化学键的基本概念1.1 化学键的定义解释化学键的概念强调化学键在化学反应中的重要性1.2 化学键的类型离子键共价键金属键氢键1.3 化学键的形成与断裂离子键的形成与断裂共价键的形成与断裂金属键的形成与断裂氢键的形成与断裂第二章:离子键2.1 离子键的形成解释离子键的形成过程强调离子键形成的条件2.2 离子键的特性电荷的吸引作用离子的排列与结构2.3 离子化合物的主要类型强电解质弱电解质不电解质第三章:共价键3.1 共价键的形成解释共价键的形成过程强调共价键形成的条件3.2 σ键和π键解释σ键和π键的概念强调它们在共价键中的作用3.3 杂化轨道解释杂化轨道的概念强调杂化轨道在共价键中的重要性第四章:金属键4.1 金属键的形成解释金属键的形成过程强调金属键形成的条件4.2 金属键的特性自由电子的概念金属离子的排列与结构4.3 金属的物理性质导电性导热性延展性第五章:氢键5.1 氢键的形成解释氢键的形成过程强调氢键形成的条件5.2 氢键的特性电负性差异的作用氢键的强度与稳定性氢键对分子结构的影响5.3 氢键在生物分子中的应用水分子的氢键结构蛋白质中的氢键作用核酸中的氢键作用第六章:化学键的极性与分子的极性6.1 化学键的极性解释化学键极性的概念强调电负性差异对化学键极性的影响6.2 分子的极性解释分子极性的概念强调分子结构对分子极性的影响6.3 极性分子和非极性分子的性质极性分子的溶解性极性分子的熔点和沸点非极性分子的熔点和沸点第七章:化学键的键长和键能7.1 化学键的键长解释化学键键长的概念强调原子半径对化学键键长的影响7.2 化学键的键能解释化学键键能的概念强调化学反应中键能的变化7.3 键长和键能的关系键长和键能的负相关性键长和键能对化学反应的影响第八章:化学键的极化8.1 化学键极化的概念解释化学键极化的概念强调电负性差异对化学键极化的影响8.2 化学键极化的类型永久极化瞬时极化取向极化8.3 化学键极化对分子性质的影响极化分子的偶极矩极化分子的熔点和沸点极化分子的溶解性第九章:分子轨道理论9.1 分子轨道的概念解释分子轨道的概念强调原子轨道线性组合形成分子轨道9.2 分子轨道的类型σ轨道π轨道σ轨道π轨道9.3 分子轨道在化学键形成中的应用σ键的形成π键的形成分子轨道对称性对化学键性质的影响第十章:化学键的振动和转动能10.1 化学键振动的类型正常振动反常振动10.2 化学键振动频率与分子性质的关系振动频率与分子熔点和沸点的关系振动频率与分子极性的关系10.3 化学键转动能的概念解释化学键转动能的概念强调转动能对分子性质的影响第十一章:化学键的近似能级和量子力学11.1 化学键能级概念解释化学键能级概念强调量子力学在化学键能级计算中的应用11.2 近似能级的方法分子轨道理论密度泛函理论蒙特卡罗方法11.3 化学键能级对分子性质的影响能级分布与分子化学键的稳定性能级分布与分子的反应活性第十二章:化学键的电子云和杂化12.1 化学键电子云的概念解释化学键电子云的概念强调电子云在化学键形成和断裂中的作用12.2 杂化轨道的概念解释杂化轨道的概念强调杂化轨道在化学键形成和分子结构中的重要性12.3 杂化类型及其在分子中的应用sp杂化sp^2杂化sp^3杂化其他杂化类型第十三章:化学键的极化与分子间作用力13.1 化学键极化对分子性质的影响极化分子偶极矩的变化极化分子的溶解性和反应活性13.2 分子间作用力的概念解释分子间作用力的概念强调分子间作用力在物理性质和化学反应中的作用13.3 分子间作用力的类型范德华力氢键离子-偶极相互作用第十四章:化学键的断裂和形成14.1 化学键断裂的条件解释化学键断裂的条件强调能量变化对化学键断裂的影响14.2 化学键形成的过程解释化学键形成的过程强调成键原子之间的电子重排14.3 化学键断裂和形成在反应中的应用化学反应中的键断裂和形成反应机理和反应速率第十五章:总结与展望15.1 化学键的主要概念和性质总结化学键的基本概念和性质强调化学键在化学科学中的核心地位15.2 化学键研究的发展趋势解释化学键研究的最新进展强调未来化学键研究的挑战和发展方向15.3 化学键教学的实践与思考总结化学键教学的重点和难点强调教学方法和策略的选择与实施重点和难点解析本文主要介绍了化学键的基本概念、类型、形成与断裂、极性、键长和键能、振动和转动能、近似能级和量子力学、电子云和杂化、极化与分子间作用力、断裂和形成等内容。

《化学键》说课稿(优秀7篇)

《化学键》说课稿(优秀7篇)

《化学键》说课稿(优秀7篇)作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。

那么你有了解过说课稿吗?熟读唐诗三百首,不会作诗也会吟,以下是漂亮的小编为大家整理的《化学键》说课稿(优秀7篇)。

说课稿说课稿高中化学篇一今天我说课的内容是“折线统计图”,属于“统计与概率”领域的知识。

(课件示图)这节课是在学生已经掌握了收集、整理、描述、分析数据的基本方法,会用统计表和条形统计图来表示统计结果,并能根据统计图表解决简单的实际问题;了解了统计在现实生活的意义和作用,建立了统计的观念的基础上,又一次认识一种新的统计图--单式折线统计图。

单式折线统计图的特点除了可以表示一个数量的多少外,较主要的作用是表示一个数量的增减变化情况。

本节内容为以后的复式折线统计图作准备,通过正确地认读统计图,为今后学习的统计图分析打下基础。

根据以上对教材的认识和分析,结合学生实际和已有知识经验,我拟订如下:1.知识技能目标:在条形统计图的基础上认识折线统计图,并知道其特征。

2.问题解决目标:能从单式折线统计图中发现数学问题,同时能够依据数据变化的特征进行合理的预测。

3.情感态度目标:通过对数据的简单分析,进一步体会统计在生活中的意义和作用,体会数学的价值,更好地激发学生学习数学的兴趣。

认识折线统计图,了解折线统计图的特点。

能够依据折线统计图和数据进行数据变化趋势的分析。

本节课我精心选取了大量的生活素材,使统计知识与生活建立紧密的联系,提供富有现实意义的素材,让学生在分析数据、解读数据的过程中,掌握数据分析的方法培养学生的数据分析能力,体验数学就在身边。

基于上述思考,我设计了如下四个教学环节:(课件)一、创设情境,导入新知;二、旧知迁移,探究新知;三、自主练习,应用提高;四、全课总结,拓展延伸下面就根据这四个环节具体说说我是如何展开教学的。

引入新课时,利用多媒体播放一段上海世博会的介绍短片,激发学生的学习兴趣,也培养了学生从情境图中获取信息的能力,为继续学习统计,培养学生的数据分析能力做了铺垫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学键-教案
化学键(高三复习课)
[教学目标]:
1、知识目标:通过对比回忆说出化学键的类型,识别离子键与共价键的基本特征,理解共
价键的极性,能判断物质中具有的化学键类型,正确书写离子、原子、离子
化合物、共价分子的电子式以及其形成过程。

2、能力目标:通过对离子键、共价键的本质的理解,寻找化学键的形成规律,发展学生对
微观粒子的想象能力,加深对物质结构的系统认识。

通过分析、讨论深入理
解离子键与共价键的本质以及两者的关系,提高分析、演绎、归纳的能力。

通过阅读信息和背景资料的方法,开阔视野,与所学内容结合起来,提高解
决问题的能力。

3、情感目标:通过生生互动、师生互动让学生在交流过程中发现自己认识的深化和发展,
感受到成功的喜悦。

对化学结构理论能预测新物质来体验化学带来的惊奇和
美妙。

[教学重点]离子键、共价键的概念和成键规律,电子式表示的离子化合物和共价化合物的形成。

[设计思路]本节课设计以问题情景发生和解决而产生首尾呼应为框架,以基础知识复习为主线,导入信息促进知识和能力发展为特点,着力体现高三复习“退半步重基
础,跨半步促提高”的复习策略。

[教学方法]多媒体辅助教学法、讨论式教学法、启发式教学法等
[教学过程]
[课的导入]投影:化学史上重大发现——C60彩图展示,(提出问题:你知道它具有什么化学键吗?)。

(话题一转)鲜为人知的是,100多年来科学家对纯氮物种的研究和发现,第一次是1772年分离出N2,第二次是1890年合成了重氮离子,1999年是高能氮阳离子,甚至科学家预计能合成N8,你能预测该物质具有什么化学键吗?(停顿,大多数学生回答为非极性共价键)为了进一步了解其成键情况,我们一起来回顾关于化学键的知识。

[设计意图]用C60引发学生对过去知识的回忆,而N8看似一个延续,实则为学生创设一个新奇的问题情景,为学生通过复习提高最终尝试解决新问题制造一个悬念,激发学生的兴趣。

[过渡]原子结构的知识告诉我们,绝大多数原子核外电子未达到饱和结构,这就决定了绝大多数的原子要以化学键的形式来成就自己的稳定结构,元素原子的多样性决定了化学键的多样性。

[学生]回忆化学键的定义:原子间强烈的相互作用叫做化学键。

并说出键的类型
[投影]
一、化学键的类型
[过渡]这些不同的化学键究竟是怎样形成的?它们有哪些特点?
[投影]按照以下线索,一起回忆、讨论并回答问题。

1、离子键与共价键的实质是什么?成键双方的微粒各是什么?
2、从两种元素结合的角度看,你认为哪些元素之间易形成离子键?哪些元素之间易形成离子键?
3、从化合物类型角度看,你认为哪些物质中含有离子键?哪些物质只含有共价键?
4、如何判断共价键有无极性?
5、离子键的强弱是由金属性或非金属性的强弱决定吗?共价键的强弱又由什么因素决定?[设计意图]提供必要的线索,使学生能充分回忆、互相启发、全面复习关于化学键的基本知识,对比两种化学键之间的差异。

[场景]在学生充分的酝酿之后,以生生对话、师生对话的方式,按照以下投影的各个方面作对比,逐一解决上述问题,教师及时理答、评价并举例说明(例如:共价键的强弱),完成表格内容。

分利用对话过程中产生的生成性问题,引导学生全面参与活动,进行归纳对比,加深对离子
键与共价键的理解和认识。

[投影]⑴由图式判断物质的分子,并指出圆球代表的原子。

⑵判断几种电子式的正误。

(在全班讨论练习过程中,教师要提出关键问,在方法上对学生加以指导。

而电子式的书写则是要求从离子键和共价键的本质上去体现它们的差异。


[设计意图]通过多种不同的表达方式,让学生由表及里地逐步加深对两种化学键本质的理解,这也是对化学用语的一次巩固。

[总结]通过以上的分析,我们可以看出离子键特点是简单明了,共价键似乎具有更大的适用范围。

但不管是哪一种形式,其根本目的都是原子的电子达到稳定结构,使体系能量降低。

[设问]是否由共价键形成的分子中每个原子的电子层结构都达到饱和呢?
[讨论]下列物质分子的原子最外层是否均达到8电子稳定结构?
A、CO
B、SiCl4
C、PBr5
D、XeF2
E、COCl2
F、SF2
G、N02
[教师]⑴引导学生在分析过程中及时总结方法。

如除了用彼此电子配对的方法以外还可以选择类比的方法,如CO2是一个各原子均符合8电子稳定结构的分子,对比之下,CO和NO2肯定不是每个原子均达到稳定结构。

⑵指出共有电子对方式尚不能满足多种化合物成键的需要,电子的成键还存在着其它形式,如配位键,可见化学物质形成化学键的复杂性。

[投影]阅读:在共价键中,还有一类特殊的共价键,电子对是由一个原子单方面提供而跟另一个原子共用。

这样的键叫做配位键。

可以表示为A→B,其中A具有未成键电子对,如NH3、H20提供未共用的电子对,B为电子的接受体,如H+。

[教师]示例NH4+的形成,此外还有H3O+,并指出配位键的性质与普通共价键完全相同。

CO、铵盐、含氧酸根离子等就含有配位键。

因此配位键的方式为共价键提供了更大适应的空间。

[设计意图]配位键不是必修内容,但以信息给予的方式,可以拓展学生的视野,提高自学能
力,并与已学的知识结合起来,为解决N8化学键问题做好伏笔。

二、离子键与共价键的关系——键的多重性
[投影]让学生分析以下物质,判断它们属于什么化合物?并指出它们所含有的化学键,并从中体会、归纳离子键与共价键的关系:
CaC2、H2O2、Mg3N2、Ar、KOH、SiO2、I2、NH4NO3
[小组讨论]通过物质的种类,相互交换对离子键和共价键的关系的认识,写下点点滴滴的结论。

[学生]汇报……(教师点评)
[投影]判断下列说法是否正确?
1、非极性共价键只存在于非金属单质中。

2、离子化合物一定含金属元素。

3、有离子键的化合物一定是离子化合物。

4、离子化合物中可能有极性共价键。

5、共价化合物中只有共价键。

6、气态单质一定含有非极性键。

[教师]回顾总结本节复习课内容。

利用所学知识解决新的问题,把话题重新回到课的开头。

[试一试]
1、1890年合成的重氮离子(N3-)中有一个氮氮三键,请写出其电子式。

2、经分析,1999年合成的高能氮阳离子中有5个氮原子,它们成V字形,且含有2个氮氮叁键,每个氮原子最外层均达到8电子稳定结构,试推断该离子所带的电荷数。

[学生]经过摸索、讨论写出重氮离子、高能氮阳离子电子式:
[教师]让我们重新审视N8,会不会有出乎意料的发现,再来判断N8中可能含有什么化学键?
[场景]此时学生已经开始沸腾,马上意识到N8中隐藏着的奥妙!(然后是一片沉寂)重氮离子、高能氮阳离子组合起来不就是N8!
[学生]争先恐后报告自己的新结果,其中可能含有共价键、配位键和离子键!属于离子化合物,哦,不,是单质!预计它在常温下可能是固体,具有较高的熔沸点,熔融状态下可能会导电,预测是否正确?让我们将拭目以待。

(在一片惊呼声中,复习课结束)
[作业](略)。

相关文档
最新文档