大坝变形监测施工与观测方法及要求

合集下载

变形监测方法和技术要求

变形监测方法和技术要求

变形监测方法和技术要求1、变形监测方法(1)常规大地测量方法常规的大地测量方法通常指的是利用常规的大地测量仪器测量方向、角度、边长、高差等技术来测定变形的方法。

包括布设成边角网、各种交会法、极坐标法以及几何水准测量法、三角高程测量法等。

常规的大地测量仪器有水准仪、全站仪等。

常规大地测量方法主要用于变形监测网的布设以及每个周期的观测。

(2)测量机器人随着自动化技术的运用和发展,测量机器人在变形监测中的应用也日益普遍。

以智能全自动化全站仪为代表的测量机器人,在变形监测中,能够通过多周期的观测,得到更准确的数据。

这对分析出相应监测点的变形,并判断建筑变形是否在安全范围内更具有可靠性。

测量机器人通过CCD影像传感器和其它传感器对现实测量世界中的“目标”进行识别,并完成照准、读数等操作,以完全代替人的手工操作。

测量机器人在工程建筑物的变形自动化监测方面,已渐渐成为首选的自动化测量技术设备,测量机器人具有高效、全自动、准确、实时性强、结构简单、操作简便等特点,特别适合于小区域的变形监测,可实现全自动无人值守的变形监测。

(3)RTK方法GNSS动态实时差分测量技术(RTK)应用于变形监测在测量的连续性、实时性、自动化及受外界干扰小等方面表现出了越来越多的优越性。

使用GNSS动态差分技术进行变形监测时,需要将一台接收机安放在变形体以外的稳固地点作为基准站,另外一台或多台GNSS接收机天线安放在变形点上作为流动站。

GNSS方法可以用于测定场地滑坡的三维变形、大坝和桥梁水平位移、地面沉降以及各种工程的动态变形(如风振、日照及其他动荷载作用下的变形)等。

(4)数字近景摄影测量方法数字近景摄影测量方法观测变形时,首先在变形体周围的稳定点上安置高精度数码相机,对变形体进行摄影,然后通过数字摄影测量处理获得变形信息。

与其他方法相比较,数字近景摄影测量方法具有以下显著特点:①信息量丰富,可以同时获得变形体上大批目标点的变形信息;②摄影影像完整记录了变形体各时期的状态,便于后续处理;③外业工作量小,效率高,劳动强度低;④可用于监测不同形式的变形,如缓慢、快速或动态的变形;⑤观测时不需要接触被监测物体。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

大坝变形监测技术综述

大坝变形监测技术综述

大坝变形监测技术综述大坝是人类用于蓄水、发电、灌溉等目的的重要水利工程。

随着大坝的运行和使用年限的增加,大坝的变形监测逐渐成为确保大坝安全运行的关键任务。

本文将综述目前常用的大坝变形监测技术,包括测量原理、监测方法、优缺点以及应用案例等内容。

1. 测量原理大坝的变形监测通过测量大坝的形变变化来判断其安全性。

常用的测量原理包括全站仪测量、GPS测量、激光雷达测量、振动传感器监测等。

全站仪利用现代光学技术测量地面的三维坐标,可以测量大坝的形变位移。

GPS技术通过卫星信号测定接收器的三维坐标变化,精度较高。

激光雷达利用激光束扫描目标,通过测量反射回来的激光信号来计算目标物体的位置和形状。

振动传感器则通过测量大坝的振动,来判断其变形情况。

2. 监测方法大坝变形监测方法多种多样,可以分为定点测量和连续监测两种方式。

定点测量通常采用全站仪、GPS等测量仪器,在不同的时间点对大坝进行测量。

这种方法适合对局部区域或特定地点的变形进行测量。

连续监测则是采用激光雷达、振动传感器等设备,可以实时地监测大坝的变形情况。

这种方法适合对大坝整体的变形进行长期监测。

3. 优缺点不同的大坝变形监测技术有各自的优点和缺点。

全站仪测量方法精度较高,但需要专业人员操作,且测量时间较长。

GPS技术可以实时监测大坝的变形,但精度受到卫星定位精度的限制。

激光雷达测量方法速度较快,但在大坝表面有遮挡物时会影响测量结果。

振动传感器能够实时监测大坝的振动情况,但只能监测到振动造成的变形,无法测量其他形变。

4. 应用案例大坝变形监测技术在实际工程中得到广泛应用。

例如,中国的三峡大坝项目采用了全站仪、GPS和振动传感器等多种监测技术,对大坝的变形进行定期检测。

根据监测数据,可以及时发现大坝的异常变形,采取相应的维护和保护措施。

在国外,美国的背水坝坝体变形监测系统可以实时监测大坝的变形情况,并通过无线传输技术将数据传输到远程维护中心。

结论:大坝变形监测技术的发展与进步为大坝的安全运行提供了重要的保障。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

大坝变形观测制度内容

大坝变形观测制度内容

大坝变形观测制度内容
大坝变形观测制度的内容主要包括以下几部分:
1. 观测设备的保护:观测设备应有必要的保护装置和人身安全保护设施。

2. 观测精度的确定:大坝的变形观测包括水平位移(横向和纵向)、垂直位移(竖向位移)坝体及坝基倾斜、表面接缝和裂缝监测。

对于混凝土坝的应力、应变及温度监测包括混土的应力和应变、无应力、钢筋应力、钢板应力、坝体和坝基温度、接缝和裂缝开度监测。

观测设备的精度应根据观测项目的要求进行选择,并长期稳定可靠,仪器、设备应做好检查,校正工作,至少每年应检校一次。

3. 观测信息的记录与整理:有联系的观测项目,应尽量同时观测。

观测信息应及时记录并整理存档。

4. 特殊情况的处理:如果大坝位于地震多发地带或者附近有不稳定的岸坡,还应进行必要的抗震、滑坡、崩岸等监测。

以上信息仅供参考,具体内容可能会根据大坝的实际情况有所差异。

如何准确测量大坝工程的变形与位移

如何准确测量大坝工程的变形与位移

如何准确测量大坝工程的变形与位移大坝工程是一项重要的水利工程,它为人类创造了丰富的水资源,同时也对旁边的地形和自然环境产生了一定的影响。

在大坝的运行过程中,准确测量大坝工程的变形与位移是确保大坝安全运行的重要环节。

本文将探讨如何准确测量大坝工程的变形与位移,以保障大坝的安全性。

在大坝工程中,变形与位移的测量是通过测量大坝结构的水平、垂直和径向位移以及扰动快照等方式进行的。

其中,测量水平位移主要使用全站仪和GNSS等设备,通过在大坝结构上布设监测点,利用测距、测角等方法测量点的坐标和角度,从而得到大坝的水平位移信息。

测量垂直位移主要采用测水准的方法,通过测量水准线和基准点的差异,计算出大坝垂直位移的大小。

而径向位移的测量主要通过应变计等设备进行,通过监测大坝结构的变形情况,得出径向位移的数据。

扰动快照则是利用摄像机拍摄大坝结构的照片,通过比对不同时间段的照片,分析大坝结构的位移变化。

在进行大坝工程的变形与位移测量时,需要注意的是测量精度的问题。

大坝是一个庞大的工程,存在诸多不确定因素,如地质条件、水体压力、自然环境等,这些都会对测量的结果产生一定的影响。

因此,在进行测量时,需要选择合适的测量设备和方法,并进行仔细的数据处理和分析,以提高测量的准确性。

同时,还需要建立完善的监测体系,定期对大坝进行监测和维护,及时发现和解决潜在的安全隐患。

除了测量精度,测量频率也是测量大坝工程变形与位移的关键因素之一。

由于大坝结构的变化与时间密切相关,过低的测量频率可能导致不能及时发现变形与位移的异常情况,而过高的频率则会增加测量成本和工作量。

因此,在确定测量频率时,需要综合考虑大坝结构的特点、工程投入和实际需要等因素,制定合理的测量计划。

一般来说,对于新建的大坝工程,初始阶段和运行初期可以选择较高的测量频率,以便及时发现和解决问题;而对于已经投入运行较长时间的大坝,可以适量减少测量频率,减轻对工程的干扰。

此外,大坝工程的变形与位移测量还需要注意测量数据的分析和应用。

各种测量作业指导书

各种测量作业指导书

变形监测作业指导书(一)大坝变形监测施工与观测工艺流程图(二)大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

变形观测(大坝外观部分)

变形观测(大坝外观部分)

变形监测(外观部分)1 一般规定1.1变形观测是针对工业与民用建筑物、构筑物、建筑场地、地基基础、大(中、小)型水坝等进行观测,评价风险,保证安全。

1.2 大型或重要工程建筑物、构筑物,在工程设计时,应对变形监测统筹安排。

施工开始时,即应进行变形监测。

1.3 变形监测首先建立变形监测控制网,其具有高精度性和相对独立性的特点。

其作用在于依靠控制网提供的基准点的准确数据,利用观测值计算出变形观测点的坐标、高程;并验证工作基点相关数据的准确性和可靠性,如工作基点发生损毁或位移时,可依据变形监测控制网补建或纠正工作基点。

当变形监测控制点损毁或发生位移亦可通过其他稳固的网内控制点进行修复。

变形监测控制网是变形观测的基础,它为监测工作提供可靠的观测起算数据,并验证和检测工作基点的可靠性。

使不同时期的观测数据建立在一个相同的观测基础上,从而具有可比性。

同时,变形监测控制网是各工作基点修正、恢复的依据,保障变形观测系统的可靠安全运行。

1.4变形监测点,宜分为基准点、工作基点和变形观测点。

其布设应符合下列要求:一、每个工程至少应有3个稳固可靠的点作为基准点;二、工作基点应选在比较稳定的位置。

对通视条件较好或观测项目较少的工程,可不设立工作基点,在基准点上直接测定变形观测点;三、变形观测点应设立在变形体上能反映变形特征的位置。

1.5 变形测量的等级划分及精度要求,应符合表1.4的规定。

坡监测等注:①变形点的高程中误差和点位中误差,系相对于最近基准点而言;②当水平位移变形测量用坐标向量表示时,向量中误差为表中相应等级点位中误差的1/;③垂直位移的测量,可视需要按变形点的高程中误差或相邻变形点高差中误差确定测量等级。

1.6变形测量的观测周期,应根据建筑物、构筑物的特征、变形速率、观测精度要求和工程地质条件等因素综合考虑。

观测过程中,根据变形量的变化情况,应适当调整。

1.7 每次变形观测时,宜符合下列要求:一、采用相同的图形(观测路线)和观测方法;二、使用同一仪器和设备;三、固定观测人员;四、在基本相同的环境和条件下工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大坝变形监测施工与观测方法及要求
1.技术标准和规范:
承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):
(1)《混凝土大坝安全监测技术规范》(SDJ336—89)
(2)《土石坝安全监测技术规范》(SL60—94)
(3)《国家一、二等水准测量规范》(GB12897—91)
(4)《国家三角测量规范》(GB/T17942-2000)
(5)《水利水电工程测量规范》(SL197—97)
(6)《水利水电工程施工测量规范》(SL52—93)
2.变形监测仪器设备购置、加工:
变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:
倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

倒垂孔保护管应认真组装调试,并进行保护管垂直度检测,保护管垂直度必须满足其有效孔径大于100mm,加固以后进行灌浆。

钢管标、钢、铝管双金属标、保护管、芯管应认真组装调试,满足设计要求以后,芯管根部(1m~2m)采用水泥浆灌浆固结,保护管芯管间距2米采用橡胶圈加固。

倒垂孔、钢管标、钢、铝管双金属标保护管、芯管安装完成后,其管口均应安装保护装置,以防损坏。

钻孔施工单位应提交钻孔地质柱状图,钻孔垂直度检测单位应整理并提交钻孔与保护管垂直度检测资料以及保护管芯管安装埋设竣工图。

倒垂孔、钢管标、钢、铝管双金属标施工完成并经监理工程师验收合格后,施工单位应会请监理工程师会签单项工程竣工验收签证。

4.变形监测设施予留予埋:
布设在砼大坝各层廊道的变形监测设施(如引张线、静力水准、正、倒垂线测站、精密导线、弦矢导线、竖直传高、垂直位移监测点)应按照设计图纸进行
予留、予埋放样测量,并进行予留槽、予埋件安装施工,予留槽、予埋件安装施工应准确定位、安装固定牢固,完成以后进行检查验收。

予留、予埋部位砼浇筑施工完成后应及时进行复测验收,检测是否变位走样。

如存在跑模走样应及时采取补救措施予以处理。

5.正垂线埋管埋设安装:
布设在砼坝体中的正垂线埋管(砼管、钢管)应按设计坐标进行放样测量,在埋管部位准确标定其中心位置,进行埋管定位。

埋管垂直度应严格控制在设计允许的偏差内。

埋管应牢固加固,以防止在砼浇筑施工中发生变形。

严禁碰撞。

砼浇筑施工完成后应及时复测正垂线埋管垂直度。

以调整后续埋管的垂直度。

砼管在安装过程中管口应平顺衔接,防止错台,接口处应用油毡封闭,防止水泥砂浆流入。

钢管在安装过程中管口应平顺衔接,焊缝应平整、严密。

正垂线埋管埋设安装完成以后,应及时整理编绘埋管竣工资料。

6.变形监测设备安装调试:
6.1倒垂线安装调试:采用浮体组配合弹性导中器复测保护管垂直度,确定倒垂线锚块埋设位置。

安装倒垂浮体组,安装倒垂线锚块,通过滑轮将安装倒垂线锚块的不锈钢丝吊入倒垂线保护管,依靠锚块重力张拉不锈钢丝。

按照锚块埋设位置将不锈钢丝在管口准确定位。

在倒垂线保护管内安装注浆软管,准确计算埋设锚块水泥沙浆用量,通过注浆软管平缓注入埋设锚块水泥沙浆。

注浆结束后再次检测不锈钢丝在管口的准确位置,如发现安装位置有偏移,应即时进行调整,使之恢复到锚块埋设位置。

倒垂锚块埋设安装7—10天以后,安装倒垂浮体组和倒垂线不锈钢丝固定夹具,按设计要求计算浮体工作浮力进行倒垂线不锈钢丝张拉。

按照浮体工作浮力向浮体组注入变压器油,在浮体支架上盘绕固定富余钢丝。

加盖浮体组保护盖。

在砼观测墩上埋设垂线座标仪基座。

6.2正垂线安装调试:
复测正垂线埋管垂直度,确定正垂线埋设位置。

按照确定的正垂线埋设位置,安装正垂线悬线装置、固定夹线装置、活动夹线装置。

悬挂正垂线阻尼重锤,固定夹线装置。

在正垂线砼观测墩上埋设垂线座标仪基座。

在正锤油桶中注入变压器油。

6.3引张线安装调试:
引张线安装前应检验采购的配重件是否符合设计要求。

准确测定引张线安装轴线,按照引张线安装轴线进行端点、测点装置埋设安装,端点滑轮槽、夹线装置V型槽与测点读数钢尺高差应控制在±1mm~2mm以内。

张拉并固定引张线不锈钢丝。

在测点处安放浮船与水箱。

引张线钢丝复位精度应优于±0.1mm。

6.4视准线安装施工:
按设计布置准确测定视准线端点、测点位置,埋设视准线砼观测墩,在砼观测墩顶部埋设强制对中底盘,强制对中底盘应调整水平,倾斜度不得大于4′。

视准线各测点底盘中心应埋设在两端点底盘中心线的连线上,其偏差不得大于10 mm。

6.5静力水准安装施工:
静力水准测点、标定点和连通管壁槽、管槽支架应按设计要求进行土建施工。

静力水准安装施工之前,测点、标定点和PVC管应认真进行清洗。

测点、标定点和PVC管应按出厂说明进行组装,组装完成注入纯净蒸馏水,注入蒸馏水后必须认真排净空气气泡,并进行静力水准系统标定。

7.变形监测施工期观测与资料整理分析:
7.1用于大坝变形监测的仪器、设备须进行计量检测,率定和检验。

使用性能必须满足国家有关计量检测规定。

7.2施工期观测必须按照国家有关技术标准、规范和设计技术要求进行。

施工期观测频次应执行设计技术要求。

7.3施工期观测资料应及时检查、平差计算,并进行资料初步整理分析,及时报送,雨季、汛期和发生异常情况应加密观测,以密切监测工程安全施工。

7.4观测记录,必须内容真实完整,字迹清晰,不得任意涂改。

7.5年度观测资料应进行整理分析,绘制变形过程曲线,编写初步分析报告。

相关文档
最新文档