大坝变形监测

合集下载

大坝安全监测变形观测

大坝安全监测变形观测
大坝安全监测变形观测
目录
• 大坝安全监测概述 • 大坝变形观测技术 • 大坝安全监测系统的设计与实施 • 大坝变形分析与应用 • 大坝安全监测的未来发展
01
大坝安全监测概述
大坝安全监测的定义
• 定义:大坝安全监测是通过一系列的仪器和设备,对 大坝的各个部位进行实时、定期的观测和检测,以获 取大坝的工作状态、性能和安全状况等信息。
02
大坝变形观测技术
变形观测的基本原理
01
02
变形观测是利用测量技术对变形体的各种物理量进行测量,分析其变 化规律,从而研究变形体的变形规律和原因。
变形观测的基本原理包括基准面选择、变形监测网布设、测量方法选 择和数据处理分析等。
变形观测的主要方法
水平位移监测
通过大地测量、GPS、全站仪等手段进 行监测。
01
对监测到的变形数据进行处理,包括数据清洗、滤波、去噪等
,提取有效的变形信息。
数据分析
02
利用数学和物理方法对变形数据进行深入分析,揭示大坝变形
的规律和机理。
数据应用
03
将变形数据应用于大坝的安全评估、维护保养和加固改造等方
面,为大坝的管理和决策提供科学依据。
05
大坝安全监测的未来发展
大坝安全监测技术的发展趋势
输和处理监测数据。
大坝安全监测系统的实施
03
监测点安装
数据采集与传输
数据处理与分析
按照设计要求,准确安装监测设备,确保 设备稳定、可靠。
定期采集监测数据,并通过数据传输系统 将数据传输至数据处理中心。
对采集到的数据进行处理、分析,提取变 形信息,评估大坝安全状况。
大坝安全监测系统的运行维护

大坝变形监测技术研究及应用

大坝变形监测技术研究及应用

大坝变形监测技术研究及应用大坝作为水利和能源工程的重要组成部分,其安全性和稳定性对于防洪、发电和供水具有重要意义。

然而,由于多种因素的影响,大坝可能存在变形和位移的问题,从而威胁到大坝的安全。

为了有效地监测和预测大坝的变形情况,大坝变形监测技术应运而生。

大坝变形监测技术是通过采集大坝表面或内部的变形数据,并进行分析和解读,以评估大坝的稳定性和安全性。

下面将介绍几种常见的大坝变形监测技术及其应用。

1. 高精度测量技术高精度测量技术主要包括全站仪、GNSS(全球导航卫星系统)测量等。

全站仪可以实现对大坝各个位置的坐标、高程和位移数据的实时测量,并能够监测到大坝的形变情况。

GNSS测量则通过接收卫星信号,并对其进行测量处理,可以提供大坝的绝对位置和位移信息。

2. 接触式和非接触式应变测量技术接触式应变测量技术一般使用应变计等传感器贴附在大坝结构上,通过测量传感器的应变变化来评估大坝的变形情况。

而非接触式应变测量技术则采用光纤传感器、激光散射测量等方式,可以在不接触大坝表面的情况下实时监测大坝的应变变化。

3. 遥感技术遥感技术主要利用卫星和航空遥感数据,通过对大坝周边地形、植被和土壤等进行监测和分析,得出大坝周围环境条件的变化情况,并通过数学模型进行预测和分析大坝的变形趋势。

4. 流体测量技术流体测量技术主要通过测量水流和水压力等参数来评估大坝的变形情况。

如针对水电站大坝,可以通过安装流速计和水位计等设备,实时监测水流的速度和水位的高度,从而预测大坝的水力压力和变形情况。

上述大坝变形监测技术在实际应用中有着广泛的需求和应用前景。

大坝变形监测技术可以有效地提高大坝的安全性和稳定性,为大坝工程的运行和维护提供科学依据和预警措施。

例如,在地震等自然灾害前,通过大坝变形监测技术可以实时获取大坝的变形数据,及时采取预警和安全措施,以最大程度地减少灾害的发生和损失。

此外,大坝变形监测技术还可以在大坝的建设和设计过程中发挥重要作用。

大坝变形监测技术综述

大坝变形监测技术综述

大坝变形监测技术综述大坝是人类用于蓄水、发电、灌溉等目的的重要水利工程。

随着大坝的运行和使用年限的增加,大坝的变形监测逐渐成为确保大坝安全运行的关键任务。

本文将综述目前常用的大坝变形监测技术,包括测量原理、监测方法、优缺点以及应用案例等内容。

1. 测量原理大坝的变形监测通过测量大坝的形变变化来判断其安全性。

常用的测量原理包括全站仪测量、GPS测量、激光雷达测量、振动传感器监测等。

全站仪利用现代光学技术测量地面的三维坐标,可以测量大坝的形变位移。

GPS技术通过卫星信号测定接收器的三维坐标变化,精度较高。

激光雷达利用激光束扫描目标,通过测量反射回来的激光信号来计算目标物体的位置和形状。

振动传感器则通过测量大坝的振动,来判断其变形情况。

2. 监测方法大坝变形监测方法多种多样,可以分为定点测量和连续监测两种方式。

定点测量通常采用全站仪、GPS等测量仪器,在不同的时间点对大坝进行测量。

这种方法适合对局部区域或特定地点的变形进行测量。

连续监测则是采用激光雷达、振动传感器等设备,可以实时地监测大坝的变形情况。

这种方法适合对大坝整体的变形进行长期监测。

3. 优缺点不同的大坝变形监测技术有各自的优点和缺点。

全站仪测量方法精度较高,但需要专业人员操作,且测量时间较长。

GPS技术可以实时监测大坝的变形,但精度受到卫星定位精度的限制。

激光雷达测量方法速度较快,但在大坝表面有遮挡物时会影响测量结果。

振动传感器能够实时监测大坝的振动情况,但只能监测到振动造成的变形,无法测量其他形变。

4. 应用案例大坝变形监测技术在实际工程中得到广泛应用。

例如,中国的三峡大坝项目采用了全站仪、GPS和振动传感器等多种监测技术,对大坝的变形进行定期检测。

根据监测数据,可以及时发现大坝的异常变形,采取相应的维护和保护措施。

在国外,美国的背水坝坝体变形监测系统可以实时监测大坝的变形情况,并通过无线传输技术将数据传输到远程维护中心。

结论:大坝变形监测技术的发展与进步为大坝的安全运行提供了重要的保障。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

变形观测(大坝外观部分)

变形观测(大坝外观部分)

变形监测(外观部分)1 一般规定1.1变形观测是针对工业与民用建筑物、构筑物、建筑场地、地基基础、大(中、小)型水坝等进行观测,评价风险,保证安全。

1.2 大型或重要工程建筑物、构筑物,在工程设计时,应对变形监测统筹安排。

施工开始时,即应进行变形监测。

1.3 变形监测首先建立变形监测控制网,其具有高精度性和相对独立性的特点。

其作用在于依靠控制网提供的基准点的准确数据,利用观测值计算出变形观测点的坐标、高程;并验证工作基点相关数据的准确性和可靠性,如工作基点发生损毁或位移时,可依据变形监测控制网补建或纠正工作基点。

当变形监测控制点损毁或发生位移亦可通过其他稳固的网内控制点进行修复。

变形监测控制网是变形观测的基础,它为监测工作提供可靠的观测起算数据,并验证和检测工作基点的可靠性。

使不同时期的观测数据建立在一个相同的观测基础上,从而具有可比性。

同时,变形监测控制网是各工作基点修正、恢复的依据,保障变形观测系统的可靠安全运行。

1.4变形监测点,宜分为基准点、工作基点和变形观测点。

其布设应符合下列要求:一、每个工程至少应有3个稳固可靠的点作为基准点;二、工作基点应选在比较稳定的位置。

对通视条件较好或观测项目较少的工程,可不设立工作基点,在基准点上直接测定变形观测点;三、变形观测点应设立在变形体上能反映变形特征的位置。

1.5 变形测量的等级划分及精度要求,应符合表1.4的规定。

坡监测等注:①变形点的高程中误差和点位中误差,系相对于最近基准点而言;②当水平位移变形测量用坐标向量表示时,向量中误差为表中相应等级点位中误差的1/;③垂直位移的测量,可视需要按变形点的高程中误差或相邻变形点高差中误差确定测量等级。

1.6变形测量的观测周期,应根据建筑物、构筑物的特征、变形速率、观测精度要求和工程地质条件等因素综合考虑。

观测过程中,根据变形量的变化情况,应适当调整。

1.7 每次变形观测时,宜符合下列要求:一、采用相同的图形(观测路线)和观测方法;二、使用同一仪器和设备;三、固定观测人员;四、在基本相同的环境和条件下工作。

大坝变形监测方案

大坝变形监测方案

大坝变形监测方案1. 简介大坝是人类工程中保护水源、调节水量的重要设施之一。

由于大坝长期承受水压和地质运动的力量,随着时间的推移,大坝可能会发生变形。

为了保障大坝的安全性,需要进行定期的变形监测。

本文档将介绍一种大坝变形监测方案,帮助工程师进行科学有效的大坝变形监测。

2. 监测目标大坝变形监测的主要目标是提前发现大坝的变形情况,以防止严重事故的发生。

监测的主要内容包括以下几个方面:•大坝的水平位移变形:主要指大坝在水平方向上的位移情况,通过测量水平位移来判断大坝是否存在下滑或滑坡的风险。

•大坝的竖向位移变形:主要指大坝在垂直方向上的位移情况,通过测量垂直位移来判断大坝是否存在沉降的风险。

•大坝表面的裂缝情况:通过监测大坝表面的裂缝情况,可以了解大坝是否存在结构破裂或渗漏的风险。

3. 监测方法3.1 测量仪器选择为了进行大坝变形的定量测量,需要选择合适的测量仪器。

以下是一些常见的大坝变形监测仪器:•GPS测量仪:可用于测量大坝的水平位移变形,具有高精度、实时性强的特点。

•倾斜仪:可用于测量大坝的竖向位移变形,一般采用水平方向和垂直方向两个方向的倾斜角度进行测量。

•应变计:可用于测量大坝表面的应变情况,一般通过电阻、电容或光纤等方式进行测量。

3.2 监测方案设计根据大坝的具体情况,制定相应的监测方案。

以下是一个常见的大坝变形监测方案设计示例:1.确定监测点位:根据大坝的结构和地质条件,确定监测点位,包括水平位移监测点和竖向位移监测点。

2.布设测量仪器:根据监测点位,布设相应的测量仪器。

GPS测量仪可以布设在大坝上不同位置进行水平位移监测,倾斜仪可以布设在大坝表面进行竖向位移监测,应变计可以布设在大坝表面的关键部位进行应变监测。

3.数据采集与处理:定期采集测量仪器的数据,并进行数据处理。

可以使用专业的监测设备自带的软件对数据进行分析和展示,也可以使用MATLAB或Excel等软件进行数据处理。

4.结果分析与报告:对监测数据进行分析,判断大坝的变形情况,并及时生成监测报告。

大坝变形监测数据分析与处理研究

大坝变形监测数据分析与处理研究

大坝变形监测数据分析与处理研究引言:大坝是一种重要的水利工程结构,它承担着调节水流、防洪、发电等多种功能,对于社会、经济和环境的稳定发展具有重要作用。

然而,由于大坝的使用时间长、工作环境复杂等原因,大坝会出现各种问题,如变形现象。

因此,对大坝的变形进行监测十分必要,而对监测数据进行分析与处理则能为大坝的安全运行提供有效保障。

一、大坝变形监测数据概述大坝的变形监测数据通常包括水平位移、竖向位移、沉降位移等方面的数据。

这些数据的采集可以通过传感器进行实时监测,也可以通过定期测量的方式获取。

在获取这些监测数据之后,需要对其进行分析与处理,以便及时发现大坝变形的异常情况,并采取相应的措施。

二、大坝变形监测数据分析方法1. 统计分析方法:统计分析方法是对大量监测数据进行整体分析的一种方法。

通过对监测数据进行统计,我们可以获得大坝变形的一些基本统计量,如平均值、标准差、极差等,从而判断大坝的稳定性。

此外,还可以通过统计分析来探索大坝变形与其他因素的相关性,如年龄、水位变化、降雨量等。

2. 趋势分析方法:趋势分析方法是利用大坝变形数据的变化趋势来判断其稳定性的一种方法。

通过对一段时间内的数据进行趋势分析,我们可以判断大坝的变形是否呈现出增长或减小的趋势,并根据趋势预测未来可能出现的问题。

常见的趋势分析方法包括线性回归分析、指数平滑法等。

3. 频谱分析方法:频谱分析方法是利用大坝变形数据的频谱信息来判断其稳定性的一种方法。

频谱分析可以将时域的变形数据转化为频域数据,从而揭示出变形数据中的主要频率成分。

通过对频谱进行分析,我们可以识别出大坝变形的周期性变化,并判断其是否处于危险状态。

三、大坝变形监测数据处理方法1. 数据清洗:数据清洗是指对采集到的监测数据进行预处理的过程。

在数据清洗中,我们需要检查数据的完整性、准确性和一致性,并对异常数据进行处理。

同时,还需要对数据进行去噪处理,以消除测量误差和干扰。

2. 数据可视化:数据可视化是将监测数据以图表、曲线等形式展示出来的过程。

大坝变形监测技术与数据分析

大坝变形监测技术与数据分析

大坝变形监测技术与数据分析大坝是水力工程中重要的建筑物,用于蓄水、防洪和发电等目的。

然而,由于长期受到水压和土体的作用,大坝可能会发生变形,导致其结构稳定性和安全性受到威胁。

因此,大坝变形监测技术和数据分析在保障大坝的安全运行方面起到了至关重要的作用。

一、大坝变形监测技术1. GPS技术:GPS(全球定位系统)是一种通过卫星定位测量的技术,可用于测量大坝的位移变形。

通过安装在大坝上的GPS接收器,可以精确测量大坝的坐标变化,并实时监测其变形情况。

通过GPS技术,可以及时发现大坝的变形趋势,为进一步的分析和预测提供数据支持。

2. 建筑物振动监测技术:震动传感器和振动检测设备可用于监测大坝的振动情况。

通过安装在大坝上的传感器,可以实时测量大坝的振动频率、振幅和振动模态等参数,从而判断大坝的结构变形情况。

这些数据可以帮助工程师监测大坝的状况,并进行相应的结构分析和评估。

3. 应变监测技术:应变测量传感器可用于测量大坝结构的应变情况。

通过在大坝表面安装应变测量设备,可以获取到大坝不同部位的变形情况。

这些数据对于分析大坝的结构稳定性和安全性非常重要,可以帮助工程师判断大坝是否存在变形问题,并采取相应的措施进行修复。

二、大坝变形数据分析1. 数据处理与分析:收集到的大坝变形数据需要进行处理和分析。

首先,需要对原始数据进行筛选和去噪,排除异常值和干扰因素。

然后,将数据进行整理和归类,建立适当的数据库。

接下来,可以利用统计学和数据分析方法来分析大坝的变形趋势、变形速率等参数,以及变形与其他因素的关系,如降雨量、温度等。

2. 变形预警与预测:通过对大坝变形数据的分析,可以建立变形的预警模型。

根据大坝的历史数据和相关参数,可以进行变形预测,及时发现潜在的变形趋势,并采取必要的措施进行修复和加固。

预测模型的准确性将直接影响到大坝的安全性和可靠性。

3. 结构健康评估:通过大坝变形数据的分析,可以对大坝进行结构健康评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面: 1.会使一部分水量从坝体和坝基
渗流到下游,造成一定水量的
渗漏损失,这在缺水地区和卡
斯特地貌地区尤为重要。
渗流监测项目
测压管是进行渗透压力监测 和地下水监测的基本设施,在 渗流检测中应用广泛。测压管 的结构形式主要包括单管式、 多管式和U形测压管。U形测压
管目前国内已基本不使用。 用于渗压监测的渗压计,目
?1994 年9月至11月对首级水 平控制网连续进行 两次观 测。为提高基准值精度, 将两次观测值叠加在一起 进行联合平差,方向、边 长均取两次观测值的加权 平均值。
? 为监测各平面基准点的稳 定性,与 1996年12月至
1997 年1月进行第一次复测, 1997 年10 月至 11月进行第 二次复测。观测结果采用 秩亏自由网平差 方法处理, 为使各期观测成果具有可
? 裂缝,到目前为止,绝大多数 混凝土大坝都产生过裂缝,一 般为表面裂缝,少数为贯穿性 裂缝,如果对表面裂缝不加以 处理,表面裂缝就会变为贯穿 性裂缝,对已产生的裂缝需跨 缝埋设裂缝针,监测裂缝是否
12.4.2 渗流量监测
在大坝上下游水位差的作用下, 坝体、坝基和坝肩会出现渗量现象, 渗流现象造成的危害主要有两个方
12.4 工程实例
黄河小浪底水利枢纽工程位 于河南省洛阳市孟津县与济源市 之间,三门峡水利枢纽下游130 公里、河南省洛阳市以北40公里 的黄河干流上,是黄河干流上的 一座集减淤、防洪、防凌、供水
12.5.1首级水平控制网的布设及监测
? 首级水平控制网由黄委会 勘察规划设计院测量总队 负责设计、造标和观测。 此项工作自 1991 年9月开始 投入,于 1992 年上半年完 成设计, 1993 年完成造标。
1.设计值与实际值对比 2.工程类比
3.正常蓄水位下大坝变形预测 分析
? 主体建筑物区首级水平控 制网有 固1、固2、固3、 固4组成边角全测 大地四边 形。如下图:
? 滑坡体区首级水平控制点 由 HG01 、HG02 、HG03 组成边角全测的 完全三角 形。如下图:
? 首级水平控制网均按一等 边角网观测,具体观测技 术要求:水平角采用 方向 观测法 且在两个以上时间 段完成,边长观测采用 方 向观测法 、每条边 对向观
大坝变形监测
12.4 内部变形监测
12.4.1 应力应变及温 度监测
12.4.2 渗流量监测 12.4.3 环境量监测 12.4.4 巡视检查
12.5 工程实例
12.4 内部变形监测
12.4.1 应力应变及温度监测
外力的作用,物体内部产生的力 为应力,物体的变形为应变 应力应变及温度是大坝安全监
? 试用GPS 观测, 3台接收机
12.5.3 大坝变形分析
1 . 一般变形特征
参看下图,可知2条283视准 线变化规律一致,各测点变化 连续、平顺、无突变,呈现出 河床最大坝高处位移量大,向 两岸逐渐减少趋势,累计变化 量逐年增加,表现为水平位移 向下游方向,垂直位移向下沉 陷的变化规律。年度变化量呈
12.5.2 首级水平控制网的布设及监测
? 布设了 8条视准线 ,监测点 均采用强制对中标墩,标 墩下部设有水准标志。每 条视准线两端和坝轴线转 折点设工作基点,但在观 测中按动点进行监测。大
? 小浪底大坝变形较大,除 常规视准线观测法外,还 采用了其它观测法: 下游 边坡监测采用多测站边角 交会和直接水准法,上游 坡采用测量机器人观测 。
12.4.3 环境量监测
一般情况下,大坝变形除了 受自重影响外,环境量是影响大 坝变形、渗流、应力应变、温度 的主要原因。这些原因量包括大 坝下游水位、坝址地区的气温、
? 水位监测
大坝上下游水位产生的水压力 是作用于大坝的外部荷载,是影 响大坝抗滑稳定的重要因素。水 压力不仅作用于坝的上下游面, 同时也产生浮托力和渗透压力作 用于坝体、坝肩、基岩和建基面
2Hale Waihona Puke . 不均匀变形参看下图,不均匀变形表现 为相同高程的上下游测点水平 位移和垂直位移均存在一定差 值,下游侧测值大于上游测测 值,尤其以水平位移更明显。
12.5.4 大坝变形成因分析
1.时效因素 2.初次蓄水到新高水位
3.水库水位骤降 4.筑坝材料
5.河床深覆盖层 6.施工速率
12.5.4 大坝变形分析评价
测的重要项目之一。如果说变形 监测主要是对大坝及基础岩体进 行的宏观监控,那么应力应变监
监测方法及意义: ? 混凝土重力坝的坝踵、坝趾及大
坝内部常布置 应变计组和无应力 计,通过应力测值可了解坝体整 体性能以及坝踵或坝体是否产生 裂缝,根据坝体的应力测值还可
预计未来的应力变化 ? 重力坝坝基和拱坝两岸拱座的基
? 温度监测
温度也是影响大坝变形、渗流、 应力应变的原因之一,任何物体 都具有热胀冷缩的特性,大坝也 不列外。气温和水温是影响大坝 温度变化的主要外界因素,因此
12.4.4 巡视监测
大坝巡视检查具有全面性、及 时性和直观性等特点,是大坝仪器 监测及其自动化所不能代替的。 据国内外有关资料统计,通过大 坝巡视检查发现大坝的重大安全
相关文档
最新文档