12用数轴上的点表示有理数
第二章---有理数及其运算-讲义-答案版本

%第二章有理数及其运算1 有理数题型一具有相反意义的量及表示方法1.下列选项中,具有相反意义的量是()A.胜2局与负3局 B.6个老师与6个学生C.盈利3万元与支出3万元 D.向东行30米与向北行30米`2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果向东走5米记为+5米,那么向西走3米记为()A.﹣3米B.﹣5米C.+3米D.+5米3.某商场经理对今年上半年每月的利润作了如下记录:月盈利分别是33万元、32万元、万元、54万元,3、4月份亏损分别是万元和万元.试用正、负数表示各月的利润,并算出该商场上半年的总利润.|题型二几何图形的构成4.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.05.在下列各说法中,正确的是()A.数0的意义就是没有 B.一个有理数,不是整数就是分数C.一个有理数不是正有理数就是负有理数 D.正数和负数统称为有理数6.在﹣,2,0,,﹣9这五个数中,负有理数的个数为个;整数的个数为个.:7下列各数中,既不是整数也不是负数的是()A.B.5 C.﹣1 D.08.课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数;②0既不是正数,也不是负数;③0不是整数,是自然数;④0没有实际意义.其中正确的个数是()A.4 B.3 C.2 D.19.(1)统称整数,(2)统称分数,(3)统称有理数.10..下列各数,哪些是整数,哪些是分数哪些是正数,哪些是负数1,﹣,,﹣789,325,0,﹣20,,1 .,11.五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+,﹣4,+,﹣,+.这五袋白糖共超过多少千克总重量是多少千克]题型三数的集合12.把下列各数填入相应的大括号内:﹣,2,0,﹣,﹣3,+27,﹣15%,﹣1正数集合{ }负数集合{ }整数集合{ }分数集合{ }非负数集合{ }—1 有理数-提升1.小青乘飞机取旅游,从放置在座位后背的一份杂志上看到这样的一张表格:飞机距离地面高度h(千米)012~3……飞机舱外面的温度t(℃)82﹣4﹣10……)此时飞机舱外部的温度显示为﹣22℃,地面此时温度为8℃,请你帮小青算算,他所乘坐的飞机此时距离地面()千米.A.8 B.7 C.6 D.52.下列说法正确的是()A.有理数分为正数和负数B.﹣a一定表示负数C.正整数,正分数,负整数,负分数统称为有理数D.有理数包括整数和分数3.给出下列各数:+10,﹣2,0,﹣,5,﹣1,,﹣2016,,,其中,是负数的有()【A.2个B.3个C.4个D.5个4.小明和小红以旗杆为起点,小明向东走15米记作+15米,小红向西走3米记作﹣3米,小明和小红相距()米.A.18米B.19米C.20米5.﹣,0,2008,,10%,﹣23,,﹣,3,上述数中,整数有,负分数有.6.下列数﹣11、5%、﹣、、、0、﹣、﹣π、2014中,负有理数有个,负分数有个,整数有个.7.邻居张大爷上星期五买进某公司股票,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一;三四五二﹣每股涨跌+2 +﹣1。
有理数知识点

有理数知识点归纳1.(重点)(1)正数:大于零的数;(2)负数:小于零的数(在正数前面加上负号“—”的数);注意:①0既不是正数也不是负数,它是正负数的分界点;②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数;③字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a 是正数;当a表示0时,-a仍是0。
④正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
例:1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,π2、零下15℃,表示为_________,比O℃低4℃的温度是_________.3、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为__ _____地,最低处为____ ___地.4、“甲比乙大-3岁”表示的意义是______________________.2.有理数的概念⑴正整数、0、负整数统称为整数;⑵正分数和负分数统称为分数;⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数;②有限小数和无限循环小数都可化成分数,都是有理数;③-a不一定是负数,+a也不一定是正数;3.有理数的分类⑴按有理数的定义分类 ⑵按性质符号来分 正整数 正整数 整数 0 正有理数负整数 正分数有理数 有理数 0 (0不能忽视)正分数 负整数分数 负有理数负分数 负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑤0是整数不是分数。
例:1、下列有理数-7,10.1,-16,89,0,-0.67,315中,哪些是整数,哪些是分数,哪些是负数?2、把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813 , 0.1, -5.32, -80, 123.52正整数集合 负整数集合正分数集合 负分数集合4. 规定了原点,正方向,单位长度的直线叫做数轴。
有理数应用题及答案

有理数应用题及答案【篇一:初一有理数练习题及答案一】t>一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(a)1.1?104 (b)1.1?105 (c)11.4?103 (d)11.3?103 2、大于–3.5,小于2.5的整数共有()个。
(a)6 (b)5 (c)4 (d)33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a?b|?2xy的值等于()(a)2(b)–2(c)1(d)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(a)同号,且均为负数(b)异号,且正数的绝对值比负数的绝对值大(c)同号,且均为正数(d)异号,且负数的绝对值比正数的绝对值大 5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数a、1b、2c、3d、46、如果一个数的相反数比它本身大,那么这个数为() a、正数 c、整数b、负数d、不等于零的有理数7、下列说法正确的是()a、几个有理数相乘,当因数有奇数个时,积为负;b、几个有理数相乘,当正因数有奇数个时,积为负; c、几个有理数相乘,当负因数有奇数个时,积为负; d、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()a.1个b.2个c. 3个d.无穷多个9、下列计算正确的是()a.-22=-4b.-(-2)2=4c.(-3)2=6d.(-1)3=1 10、如果a0,那么a和它的相反数的差的绝对值等于() a.a b.0 c.-a d.-2a 二、填空题:(每题2分,共42分) 1、??2?64。
2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b =3a?2b。
《有理数》 导学案

《有理数》导学案一、学习目标1、理解有理数的概念,能区分正有理数、零和负有理数。
2、掌握有理数的分类方法,会对给定的数进行分类。
3、理解数轴的概念,能正确画出数轴,能用数轴上的点表示有理数。
4、理解相反数和绝对值的概念,会求一个数的相反数和绝对值。
二、学习重难点1、重点(1)有理数的概念及其分类。
(2)数轴的概念及应用。
(3)相反数和绝对值的概念及计算。
2、难点(1)对负数概念的理解。
(2)绝对值的性质及其应用。
三、知识梳理(一)有理数的概念整数和分数统称为有理数。
整数包括正整数、零和负整数。
例如:5、0、-3 等。
分数包括正分数和负分数。
例如:1/2、-3/4 等。
(二)有理数的分类1、按定义分类:有理数分为整数和分数。
整数分为正整数、零和负整数。
分数分为正分数和负分数。
2、按性质分类:有理数分为正有理数、零和负有理数。
正有理数分为正整数和正分数。
负有理数分为负整数和负分数。
(三)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素:原点、正方向、单位长度。
3、数轴上的点与有理数的关系:数轴上的点与有理数一一对应,即任何一个有理数都可以用数轴上的一个点来表示;反之,数轴上的任意一个点都表示一个有理数。
(四)相反数1、定义:只有符号不同的两个数叫做互为相反数。
例如:5 和-5 互为相反数,0 的相反数是 0。
2、性质:(1)互为相反数的两个数的和为 0。
(2)在数轴上,互为相反数的两个数位于原点的两侧,且到原点的距离相等。
(五)绝对值1、定义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
2、性质:(1)正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
即:当 a>0 时,|a| = a;当 a = 0 时,|a| = 0;当 a<0 时,|a| = a。
(2)绝对值具有非负性,即|a|≥0。
四、典型例题例 1:把下列各数分别填入相应的集合里:+5,-314,0,-7,12/13,-20%,-001,21,-98,314159正数集合:{________________}负数集合:{________________}整数集合:{________________}分数集合:{________________}解:正数集合:{+5,12/13,21,314159}负数集合:{-314,-7,-20%,-001,-98}整数集合:{+5,0,-7,21,-98}分数集合:{-314,12/13,-20%,-001,314159}例 2:画出数轴,并用数轴上的点表示下列各数:-3,2,0,-15,5/2解:先画出数轴,然后在数轴上找到对应的点。
苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。
数轴上的点与有理数之间的关系

有理数与数轴上点的关系
有理数和数轴上的点不是一一对应。
原因如下:
数轴上包括了有理数和无理数,所以有理数与数轴不是一一对应。
正确:实数(有理数和无理数的总称)与数轴上的点一一对应。
有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
数轴的作用
1、数轴能形象地表示数,横向数轴上的点和实数成一一对应,即每一个实数都可以用数轴上的一个点来表示。
2、比较实数大小,以0为中心,右边的数比左边的数大。
3、虚数也可以用垂直于横向数轴且同一原点的纵向数轴表示,这样就与横向数轴构成了复数平面。
4、用两根互相垂直且有同一原点的数轴可以构成平面直角坐标系;用三根互相垂直且有同一原点的数轴可以构成空间直角坐标系,以确定物体的位置。
数轴具有数的完备性,不仅能够表示有理数和无理数,还能够表示虚数,同时还可以建立坐标系,构成了一个比较严密的数的系统。
1.2用数轴上的点表示有理数

-4
-3
-2
-1 0
1
2
3
4
拓展应用,深化认识
4.如果瓢虫先向左移动2个单位长度,再向右移动几个 单位长度才能回到自己的家?
-4
-3
-2
-1
0
1
2
3
4
拓展应用,深化认识
5.如果瓢虫第1次先向左移动1个单位长度,第2次再向右移动 2个单位长度,第3次再向左移动1个单位长度,第4次再向右 移动2个单位长度,如此第8次,瓢虫回到自己的家了吗?如 此下去,第100次瓢虫终点表示的数为__________.
请同学们观看一段视频,回答下列问题。 1、怎样的一条直线就是数轴? 2、数轴有哪些要素? 3、画数轴应注意的问题有哪些?
-5 -4 -3 -2 -1 0 1 2 3 4 5
归纳:像这样,规规定定了_原__点__、_正__方__向__、__单_位__长__度__的直线叫做数轴。
(二)应用新知,巩固提高
一般地,如果a是一个正数,则数轴上表示数a的点在原点_右__
边,距离原点_a_个单位长度;表示数-a的点在原点_左_边,距 离原点_a_个单位长度
任何一个有理数都可以用数轴上的一个点来表示。
例2:写出数轴上A,B,C,D ,E 表示的数:
EB
AC
D
-5 -4 -3 -2 -1 0 1 2 3 4 5
数轴的画法
一画(直线) 二定(原点) 三选(正方向) 四统一(单位长度)
判断下面所画数轴是否正确,并说明理由. 原点、正方向和单位长度缺一不可.
(三)应用迁移,动手实践
例1:画出数轴,试说出下列各数分别在数轴上的什么位置? 并在数轴上找到表示下列各数的点 。
有理数

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0) 在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0;比较两个负数的大小:绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
绝对值的性质:①对任何有理数a ,都有|a|≥0。
②若|a|=0,则|a|=0,反之亦然。
③若|a|=b ,则a=±b ;④对任何有理数a,都有|a|=|-a|越来越大相反数1.下列各组数,互为相反数的是()A.3和13B.3和-3 C.3和13- D.-3和13-2. -35的相反数是()A.-35 B.35 C.53 D.-533.已知a是有理数,给出下列判断:(1)a是正数;(2)-a是负数;(3)a与-a必然有一个负数;(4)a与-a互为相反数.其中正确的个数是()A.1 B.2 C.3 D.44.-(-13)是____的相反数.5.化简:- [+(-75)]=_____.6.若a-5和-7互为相反数,则a的值为____.7.已知-m=-8,-n=0,求mn的值.8.写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,-12,23,-4.5,0,-3.9.如图1-2.3-1,图中数轴的单位长度为1.(1)如果点B,E表示的数互为相反数,那么点D表示的数是多少?(2)如果点C,E表示的数互为相反数,那么点D表示的数的相反数是多少?10.化简下列各数,并解答问题.①-(-2);②+(-15);③- [-(-4)];④-[-(+3.5)];⑤-{-[-(-5)]};⑥-{-[-(+5)]}.问:(1)当+5前面有2 017个负号时,化简后结果是多少?(2)当-5前面有2 018个负号时,化简后结果是多少?你能总结出什么规律?绝对值1.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是正数,那么这个数的绝对值是它本身D.如果一个数的绝对值是它本身,那么这个数是正数2.一个数的绝对值是最小的正整数,则该数是()A.0 B.-1 C.1 D.1或-13.下列数-3,1,-2,0,最小的数是()A.-3 B.0 C.-2 D.14.12007-的相反数的绝对值是________.5.67- _______78-.(填“>”“<”或“=”) 6.若|a-1|+|b-2|=0,则a+b=_____.7.若|x|=3,|y|=5,且0<x<y,求x+y的值.8.a,b,c的大小关系如图1-2.4-1,则a b b c c aa b b c c a----+---的值是()A.-1 B.1 C.-3 D.39.观察下列每对数在数轴上的对应点之间的距离:4与-2,3与5,-2与-6,-4与3,并回答下列各题:(1)如图,在数轴上,A,B两点分别表示的数为a,b,则这两点间的距离AB=_______.(2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为_______.(3)结合数轴探求|x-2|+|x+6|的最小值是_______.10.国际乒联规定在正式比赛中采用大球,对大球的直径有严格的规定.现有6个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,检测结果如下:A.-0.15 mm B.+0.05 mm C.+0.18 mm D.-0.05 mm E.-0.13 mm F.-0.21 mm你认为应选哪一个乒乓球用于比赛呢?为什么?相反数知识点一:相反数1-5的相反数是()A.-5 B.5 C.- D.2.如图所示,下面四个点表示的数互为相反数的是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D拓展点一:多重符号的化简1.化简下列各数:-(+19),+(-0.32),+(+8),-(-6).拓展点二:相反数与数轴的综合应用2.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点AB.点BC.点CD.点D3.如图,数轴上A,B两点表示的数互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是.1.4的相反数是() A.4 B.-4 C. D.-2.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()3.计算:-(-1)=() A.±1 B.-2 C.-1 D.14如果a与-3互为相反数,那么a等于()A.3 B.-3 C. D.-5.下列各组数中,互为相反数的是()A.3和 B.3和-3 C.3和- D.-3和-6.数a的相反数是()A.-a B. C.- D.a7.如图,在单位长度为1的数轴上,点A,B表示的两个数互为相反数,那么点A表示的数是()A.2B.-2C.3D.-38.如图所示,数轴上点A所表示的数的相反数是.9-(-13)是的相反数.10.在数轴上画出表示下列各数以及它们的相反数的点:-4,0.5,3.11.若a-5和-7互为相反数,求a的值.12.如图,图中数轴的单位长度为1.(1)如果点B,E表示的数互为相反数,那么点D表示的数是多少?(2)如果点C,E表示的数互为相反数,那么点D表示的数的相反数是什么13.化简下列各式的符号,并回答问题:(1)-(-2); (2)+; (3)-[-(-4)]; (4)-[-(+3.5)]; (5)-{-[-(-5)]}; (6)-{-[-(+5)]}. 问:①当+5前面有2 016个负号时,化简后结果是多少?②当-5前面有2 017个负号时,化简后结果是多少?你能总结出什么规律?14.已知A 为数轴上的一点,先将点A 向右移动7个单位长度,再向左移动4个单位长度,得到点B ,若A ,B 两点表示的数恰好互为相反数,求点A 表示的数.知识点一:绝对值1.如果一个有理数的绝对值等于它本身,那么这个数一定是( ) A.负数 B.负数或零 C.正数或零 D.正数2.绝对值是10的有理数是( )A.10 B.-10 C.±10 D.以上都对知识点二:有理数的大小比较3.下列各式中,正确的是( )A.-|16|>0 B.|0.2|>|-0.2| C.->- D.|-6|<04.如图,数轴上A ,B 两点分别对应实数a ,b ,则a ,b的大小关系为5.比较下列有理数的大小: (1)-( )-20; (2)-( )-.拓展点一:字母表示的数的绝对值1.若|a|=|b|,则a ,b 的关系是( ) A.a=b B.a=-b C.a=b 或a=-b D.a=0且b=0拓展点二:利用绝对值解决实际问题2.某汽车配件厂生产一批圆形的橡胶垫,从中抽取6件进行检验,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查结果如下:用绝对值的知识说明哪个零件的质量最好?1.-5的绝对值是() A. B.5 C.- D.-52.|-2|=() A.2 B.-2 C.±2 D.3.已知点M,N,P,Q在数轴上的位置如图所示,则其中表示的数的绝对值最大的点是()A.MB.NC.PD.Q4.一个数的绝对值是5,则这个数是()A.±5 B.5 C.-5 D.255.数轴上点A,B表示的数分别是5,-3,则它们之间的距离可以表示为()A.-3+5B.-3-5C.|-3+5|D.|-3-5|6.点A,B在数轴上的位置如图所示,其表示的数分别是a和b.有以下结论:①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是()A.①②B.③④C.①③D.②④7.若x为实数,则|x|-x的值一定是()A.正数 B.非正数 C.非负数 D.负数8.已知|a+2|=0,则a=. 9.|-0.3|的相反数等于.10.计算:(1)|-5|+|-10|-|-9|;(2)|-3|×|-6|-|-7|×|+2|.11.若|a|=5,|b|=1,求a和b的值.12如图,若A是实数a在数轴上对应的点,则对于a,-a,1的大小关系表示正确的是()A.a<1<-aB.a<-a<1C.1<-a<aD.-a<a<113有理数a,b,c在数轴上对应的点分别为A,B,C,其位置如图所示.试化简|a|+|b|+|c|.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.与原点距离是 2.5个单位长度的点所表示的有理数是
( C)
A.2.5
B .-2.5
C.±2.5
D .这个数无法确定
3.在数轴上表示数 6的点在原点 __右___侧,到原点的距
离是__6___个单位长度,表示数 -8的点在原点的 __左___
侧,到原点的距离是 __8___个单位长度.表示数 6的点
到表示数 -8的点的距离是 ___1_4__个单位长度.
4.在数轴上到表示 -2的点相距 8个单位长度的点表示
的数为 _-_1_0_或__6__ .
5.如图,写出数轴上点 A,B,C,D,E表示的
1,-5,-2.5,4
1 2
,0
-5 -4 -3 -2 -1 0 1 2
解:
-5
-2.5
●
●
-5 -4 -3 -2 -1
注意:
01
●
●
012
①把点标在线上;
②把数标在点的上方, 以便观看 .
345
1 42
●
345
任何一个有理数都可以用数轴上的一个点来表示 .
一般地,设 a是一个正数,则数轴上表示数 a 在原点的 _右___边,与原点的距离是 __a__个单位长 度;表示数 -a的点在原点的 _左___边,与原点的距 离是__a__个单位长度.
0
0
-3 -2 -1 0 1 2 3
?
?
?
试一试: 判断下面所画数轴是否正确,并说明理由 原点、正方向、单位长度一个也不能少 .
归纳总结
画数轴注意事项:
(1)原点、单位长度和正方向三要素缺一不可; (2)直线一般画水平的; (3)正方向用箭头表示,一般取从左到右; (4)取单位长度应结合实际需要,但要做到刻 度均匀.
§1.2.2
育才中学 苏海珠
1.什么叫有理数?
有 理 数 的 分 类
学习目标
1.掌握数轴的概念,理解数轴上的点和 有理数的对应关系.(重点) 2.会正确的画出数轴,利用数轴上的点 表示有理数.(难点)
情景引入1
问题: 在一条东西向的马路上,有一个汽车站牌, 汽车站牌东 3m和7.5m处有一棵柳树和一棵杨树, 汽车站西 3m和4.8m处分别有一棵槐树和一根电线 杆,试画图表示这一情境.
答:1、点P表示5和1;
2、点B是5;
3.点C是1
变式训练
点A为数轴上表示- 2的动点,当点 A沿数轴移动 4
个单位长度到点 B时,点B所表示的数为 ( C )
A.2
B. -6
C.2或-6 D.不同于以上
分析:点A可能向左移,也可能向右移,所以需 分情况讨论 .
拓展三
请同学们开动你的脑筋想一想,我们选择什 么的数轴,能标出1000,5000,-2000,-4000的 大数呢?
正方向
单位长度
定义:规定了原点、正方向、单位长度的直线叫数轴 .
考一考你: 数轴有哪些要素?
1、原点
2、正方向 3、单位长度
数轴的画法:
1.画一条水平直线,定原点 (如图),原点表示 0. 2.规定从原点向右为正方向,那么相反的方向 (从
原点向左 )则为负方向 . 3.选择适当的长度为单位长度 .
-4.8 -3
01 3
7.5
我们把正数、 0和负数用一条直线上的点表示出来 .
情景引入2
观察如图所示的温度计,回答下列
50
问题:
45
40
B
(1)点A表示多少摄氏度?点 B呢? 30 35
25
点C呢?
20
15
A
(2)温度计刻度的正负是怎样规定 10 5
的?以什么为基准 ?
0 -5
(3)每摄氏度两条刻度线之间的距 -10
. . B 左移2个
-3 -2 -1 0
右移5个
C.
12 3
拓展一
1. 书店A、冷饮店B、商店C依次坐落在一条东西
走向的商业街上。冷饮店在书店西边20米处,
商店位于书店东边100米处。小明从书店沿街
向东走了40米,接着又向西走了60米,此时小
明的位置在哪儿?
解:
60米
40米
BA
C
-120 -100 -80 -60 -40 -20 0 20 40 60 80 100
例2 在下面数轴上, A,B,C,D各点分别表示 什么数?
.D C. B.
A.
-2
-1
0
1
2
解: (1)A 点表示2; (2) B 点表示0.25; (3)C点表示-0.75; (4) D点表示-1.5
例3 从数轴上表示 -1的点出发,向左移动两个单位 长度到点 B,则点B表示的数是 -3 ,再向右移动 5个单位长度到达点 C,则点C表示的数是 2 . 解析:如图,
-15
C
-20
离有什么特点 ?
一 数轴的概念 活动: 把温度计平放,我们能从中发现什么?
-20 -10 0 10 20 30 40 50
-15 -5 5 15 25 35 45
零下
0
零上 分刻度
思考:你能借鉴温度计 ,用一条直线上的点表示有理 数吗?
? 温度计的启示
横放的温度计
原点
-2 -1 O 1 2 3
注意:对很大(或很小)的数,我们要选适当 的单 位长度确定数轴再在数轴上标出所求的大数(或 很小)的数
当堂练习
1.下列说法中正确的是( C) A. 在数轴上的点表示的数不是正数就是负数 B.数轴的长度是有限的 C. 一个有理数总可以在数轴上找到一个表示它的点 D. 所有整数都可以用数轴上的点表示,但分数就不 一定能找到表示它的点
二 在数轴上表示有理数
..
-3 -2 -1 0 1 2 3 思考: 1.观察上面数轴,哪些数在原点的左边,哪些数在原点
的右边,由此你有什么发现?
2.每个数到原点的距离是多少?由此你又有什么发现 ? 3.如何用数轴上的点来表示分数或小数? 如:1.5,- —3 怎样表示.
2
典例精析
例1 在所给数轴上画出表示下列各数的点 .
4.8 3
0
3
7.5
4.8 3
0
3
7.5
图中没有表示 出来东西方向, 那我们怎样表 示出东西方向
呢?
东西方向可以用前 面我们学过的相反 意义的量来表示.
思考:怎样简明地表示这些树、电线杆与汽车站牌的 相对位置关系(方向、距离)?
为了使表达更清楚,我们规定向东为正,把点 汽车站牌左右两边的数分别用负数和正数表示 .
答:小明在冷饮店。
拓展二
数轴上的点 P与表示有理数 3的点A距离是2ຫໍສະໝຸດ 1、试确定点 P表示的有理数?
2、将点A向右移动2个单位到 B点,点B表示 的有理 数是多少?
3、再将点 B向左移动4个单位长度到 C点,
则点C表示的有理数是多少? 4
解:
C
P
2 PB
A
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5