(教案1)2.2用数轴上的点表示有理数
初一数学(北京版)用数轴上的点表示有理数(2)教学设计

1.什么是数轴?
规定了正方向、原点和单位长度的直线叫做数轴.
2.读出下面数轴上A,B ,C,D各点表示的有理数.
3.把表示下列有理数的点画在数轴上.
2
2
-,0, 1.5
3
某地连续5天的平均气温如图所示,这五天中,最低气温是多
表示的负数大.
1.比较下列各组数的大小.(1)0与3
(2)-5与3
(3)0与-2
(4)-5与-2
(5)-3.5与-1
(6)
5
2
-与-2.2
总结:(1)任何负数小于任何正数;
(2)任何负数都小于0;
(3)在用数轴上的点表示负数时,右面的点表示的负数比左面的点表示的负数大.
2.读出下面数轴上点A,B ,C,D表示的有理数,并把这些有理数按从小到大的顺序用不等号连接起来:
3.把和下列有理数对应的点画在数轴上,并把这些有理数按从小到大的顺序用不等号连接起来:
-3 ,5 ,0 ,
3
2
-,
7
4
,-1,3.
1.写出比-3大并且比2小的所有整数,并在数轴上表示出来.。
北京版-数学-七年级上册-《用数轴上的点表示有理数》教案3

《用数轴上的点表示有理数》教案
教学目标 1.通过学习学生能正确理解数轴的意义,掌握数轴的三要素;
2.学生能学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来
3.在学习中通过作图、标点能让学生初步理解数形结合的思想方法.
教学重难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数. 难点:正确理解有理数与数轴上点的对应关系.
教学过程
课前测
1、我们昨天学的有理数由哪三种类型的数构成?
2、这三种类型的数的区别是什么?
3、请你任意写出这三种类型的数,尝试着比较大小用 < 连接
4、什么叫数轴?在定义中画出数轴的三要素.
探究新知
1、你能在射线上表示出1和2吗?
2、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
3、数轴的画法
4、每个数到原点的距离是多少?由此你会发现了什么规律?
5、数轴上的数有什么大小关系么?
课堂练习
1、如图所示的图形为四位同学画的数轴,其中正确的是( )
2、 画出数轴并在数轴上表示
3、-2、0、31、3
2 、+4.5 3、数轴上的A 、B 、C 、D 、E 、F 、G 各表示什么数?
10-1-2-32345 E A C F B D
2、 比较大小
(1)1 -3 (2)2 0 (3)0 -7.2
(4)31 21 (5)45 4
5 (6)-7 4 6、已知有理数a ,b 所对应的点在数轴上的如图所示,则有( ) A -a <0<b
B -b <a <0
C a <0<-b
D 0<b <-a
小结提升
预习相反数定义、两个数互为相反数的区别。
2.2用数轴上的点表示有理数(二)

讲练结合
教
学
过
程
教学内容
学生活动
一、复习引入
1、什么叫做数轴?数轴的三要素是什么?
2、把下列各数表示在数轴上:
2、-1、3/2、0、-4/5、3.5、-5
3.(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左4个单位长度的B点表
总结归纳:
有理数的大小关系:
1、在数轴上的任何两个点,右边的点所表示的数比左边的点所表示的数大。
2、正数大于一切负数。
3、负数都小于零。
三、例题分析
例1;把-3、5、0、-2/3、7/4、-1、3表示在数轴上,并按从小到大的顺序用不等号连接起来
小组讨论得出
在数轴上,右边的点所表示的数比左边的点所表示的数大。
四个人一组讨论。代表发言
学生独立完成
教
学
过
程
教学内容
学生活动
例2:把下列各组数用小到大用不等号连接起来
(1)4、-3、7
(2)-10、5、-15
(3)1/2、0、-1/2
(4)-1.3、1.2、0.05
四、练习反馈
1..①在数轮上距原点3个单位长度的点表示的数是_____________
②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.
学 科
数学
班级
初一
任课教师
赵桂英
课 题
北师大版数学七年级上册2.2《数轴》参考教案

第二章有理数及其运算2. 数轴一、学生起点分析一方面,小学里已经接触到在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的了解,上一节课又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法,这是学生的知识技能基础.从另一方面看,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了生活经验基础,是学生便于理解数轴概念.二、学习任务分析本节课要求学生掌握数轴三要素,会画数轴,准确说出数轴上的点表示的有理数、并把每一个有理数用数轴上的点表示出来;并会借助数轴功能来比较有理数的大小。
数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法.从现在开始,在教学与学习中更应该提醒学生注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性.数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.本节是初步理解数形结合的思想方法,通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.为此,本节课的教学目标是:1、知识与技能:①掌握数轴的三要素,会画数轴;②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来;③数轴上点的大小关系,能利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,初步培养学生数形结合的数学思想方法和意识.3、情感与态度:通过数轴与生活实物对应对比,激发学生兴趣,通过规范画图,培养学生细致准确习惯,扶植勇于探究的精神.三、教学过程设计本节课设计了六个教学环节:①情境导入、适时点题;②问题探究、形成策略;③动手操作、探索新知;④小试牛刀、自我检测;⑤快乐课堂、思维晋级;⑥师生归纳,布置作业。
千阳县第七中学七年级数学上册第一章有理数1.2有理数1.2.2数轴教学设计1新版新人教版

数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.教学过程一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A. B.C. D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出如图中所表示的数轴上的F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A.D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312. 解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( )A .5B .±5C .7D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.三、板书设计1.数轴(1)原点(2)正方向(3)单位长度2.数轴上的点与有理数间的关系(1)原点表示零(2)原点右边的点表示正数(3)原点左边的点表示负数教学反思数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.相交线◆回顾归纳1.两条直线互相垂直,•其中的一条直线叫做另一条直线的_______,•交点叫做________.2.过一点有且只有_______与已知直线_______.3.连结直线外一点与直线上各点的所有线段中,________最短.4.直线外一点到这条直线的________的长度,叫做点到直线的距离.5.如图1直线AB,CD与EF相交,构成_______个角,其中∠1与∠5是_______,∠3与∠5是______,∠4与∠5是_______.图1 图2 图3 图4◆课堂测控知识点一垂线垂线段1.如图2所示,CD⊥AB,则点D是_____,∠ADC=∠CDB=________.2.如图3所示,l1⊥l2,垂足为_____,∠1与∠2是一组_____的邻补角,∠1•与______是一对_______的对顶角.3.(经典题)如图4所示,l1⊥l2,图中与直线L1垂直的直线是()A.直线a B.直线L2 C.直线a,b D.直线a,b,c4.如图5所示,若∠ACB=90°,BC=8cm,•AC=•6cm,•则B•点到AC•边的距离为________.图5 图6 图7 图85.如图6所示,直线L外一点P到L的距离是________的长度.知识点二同位角内错角同旁内角6.如图7所示,图中的同位角有______对.7.如图8所示,下列说法不正确的是()A.∠1与∠B是同位角 B.∠1与∠4是内错角C.∠3与∠B是同旁内角 D.∠C与∠A不是同旁内角8.如图9所示,∠1与∠2是哪两条直线被另一条直线所截,构成的是什么角的关系?∠3与∠D呢?图9◆课后测控1.如图10所示,直线AB,CD交于点O,OE⊥AB且∠DOE=40°,则∠COE=_____.图10 图11 图122.如图11所示,AO⊥OB于点O,∠AOB:∠BOC=3:2,则∠AOC=_______.3.如图12所示,AB与CD交于点O,OE⊥CD,OF⊥AB,•∠BOD= 25 °,•则∠AOE=____,∠DOF=_____.4.(教材变式题)如图所示,图(1)中∠1<∠2,图(2)中∠1=∠2.试用刻度量一量比较两图中PC,PD的大小.5.如图所示,分别过P画AB的垂线.6.(原创题)如图,OA⊥OC,OB⊥OD,且∠AOD=3∠BOC,求∠BOC的度数.◆拓展创新7.(经典题)我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在河流M上架上一座桥梁,如图所示,桥建在何处才能使A,B两个村庄的之间修建路面最短?参考答案回顾归纳1.垂线,垂足 2.一条直线,垂直 3.垂线段4.垂线段 5.八,同位角,内错角,同旁内角课堂测控1.垂足,90° 2.O,相等,∠3,90°3.D(点拨:∵L1∥L2,a⊥L1,b⊥L1,c⊥L1)4.8cm(点拨:点到直线距离定义)5.PC的长(点拨:PE>PD>PC,PA>PB>PC)6.2(点拨:∠ADE与∠B,∠ADC与∠B)7.D(点拨:∠C与∠A是直线AB,BC被AC所截的同旁内角)8.AB,CD被AC所截,∠1与∠2是内错角关系;AC与CD被AD所截,∠3与∠D是同旁内角关系.课后测控1.140°(点拨:∠DOB=∠AOC=90°-40°=50°)2.150°(点拨:∠AOB=90°,3x=90°,x=30°,∠BOC=60°)3.65°,115°(点拨:∠AOC=∠BOD=25°,∠AOE=90°-∠AOC=90°-25°=65°)• 4.图(1)量得PC<PD,图(2)量得PC=PD.5.如图.6.∵∠BOD=90°,∠AOC=90°,∠BOD+∠AOC=180°∴∠AOD=180°-∠BOC,又∵∠AOD=3∠BOC∴3∠BOC=180°-∠BOC,∴∠BOC=45°解题技巧:本题扣住∠AOD=2×90°-∠BOC这一关键式子.7.如图所示.(1)将A向下平移河宽长度得A′;(2)连A′B交河岸于M;(3)过M作MN⊥a,交河岸b于N,MN即为架桥处;(4)连AN,则AN+MN+BM最短.3.1.2 等式的性质知能演练提升能力提升1.下列变形符合等式性质的是()A.如果2x-3=7,那么2x=7-3B.如果3x-2=x+1,那么3x-x=1-2C.如果-2x=5,那么x=-D.如果-x=1,那么x=-32.已知a-b-1=1,则2a-2b-3的值是()A.1B.2C.5D.73.如果式子5x-4的值与-互为倒数,那么x的值是()A.B.-C.D.-4.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的质量是一个香蕉的质量的()A.倍B.倍C.2倍D.3倍5.(1)如果-3(x+3)=6,那么x+3=,变形依据是.(2)如果3a+7b=4b-3,那么a+b=,变形依据是.6.若2a-b=5,a-2b=4,则a-b的值为.7.小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,解得方程的解x=-2,则原方程的解为.8.将等式5a-3b=4a-3b变形,过程如下:因为5a-3b=4a-3b,所以5a=4a(第一步),所以5=4(第二步).上述过程中,第一步的依据是,第二步得出错误的结论,其原因.9.已知等式(a-2)x2+ax+1=0是关于x的一元一次方程,求这个方程的解.★10.某旅客携带了30 kg的行李从南京禄口国际机场乘飞机去天津.按民航的规定,旅客最多可免费携带20 kg的行李,超重部分每千克按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,求他的飞机票价格是多少元.创新应用★11.能不能由(a+3)x=b-1得到等式x=?为什么?反之,能不能由x=得到(a+3)x=b-1?为什么?参考答案知能演练·提升能力提升1.D2.A等式a-b-1=1的两边都加1,得a-b=2,两边再同乘2,得2a-2b=4,所以2a-2b-3=4-3=1.3.D由题意可列出方程5x-4=-6,根据等式的性质,得x=-.4.B5.(1)-2等式的性质2(2)-1等式的性质1和等式的性质2(1)根据等式的性质2,等式两边都除以-3,得x+3=-2.(2)先根据等式的性质1,等式两边都减去4b,得3a+3b=-3.再根据等式的性质2,等式两边同除以3,得a+b=-1.6.3将两等式左右两边分别相加,得2a-b+a-2b=9,即3a-3b=9,等式两边同时除以3,得a-b=3.7.x=2把x=-2代入5a+x=13,得a=3.所以原方程5a-x=13为15-x=13,根据等式的性质,得x=2.8.等式的性质1等式的两边同除以了一个可能等于0的数a9.解因为(a-2)x2+ax+1=0是关于x的一元一次方程,所以a-2=0,即a=2.所以原方程变为2x+1=0,根据等式的性质,得x=-.10.解设他的飞机票价格是x元.由题意,得(30-20)×1.5%x=120,即0.15x=120.根据等式的性质,得x=800.答:他的飞机票价格是800元.创新应用11.解不能由(a+3)x=b-1得到x=,因为当a=-3时,a+3=0,而0不能为除数,即不符合等式的性质2的规定.由x=可以得到(a+3)x=b-1,因为x=是已知条件,已知条件中已经隐含着条件a+3≠0,等式的两边乘同一个数,等式仍成立.11。
七年级数学《数轴》教案三篇

七年级数学《数轴》教案三篇规定了原点,正方向和单位长度的直线叫数轴。
其中,原点、正方向和单位长度称为数轴的三要素。
下面就是我给大家带来的七年级数学《数轴》教案三篇,希望能帮助到大家!七年级数学教案1一、教学目标【知识与技能】了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。
【教学难点】数形结合的思想方法。
三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。
我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:课后练习题第二题;思考:到原点距离相等的两个点有什么特点?七年级数学教案2一、教学内容分析1.2有理数1.2.2数轴。
用数轴上的点表示有理数

3、选择一个适当的长度作为单位长度,从原点开始,在直线上原点的两侧,连续截取和单位长度相等的线段,可以得到多个分点。
4、在原点的右侧的各分点的下面顺次写出1、2、3、4‥‥;在原点的左侧的各分点下面顺次写出-1、-2、-3、-4‥‥;我们得到的就是一条用来表示数的直线:
(2)会读出数轴上的一些点表示的有理数.
作业:P32/9、10
学生独立完成找一名学生板书
学生思考回答
学生独立完成找两名学生板书教师抽查
学生阅读
并总结
课时授课计划
章节题目
2.2用数轴上的点表示有理数
授课日期
年9月9日
教学目标
1、会正确画出数轴,知道数轴的三要素
2、初步了解和会找出有理数与数轴上点的对应关系。学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来
3、使学生初步理解数形结合的思想方法
教学重点
初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
1.数轴的定义规定了正方向、原点和单位长度的直线叫做数轴。
2.数轴的三要素:正方向、原点、单位长度
3.学习数轴的要求:
(1)会在数轴上确定表示有理数的点.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上A,B,C,D,E各点分别表示什么数.
回答下列问题:
1..数轴上会不会有两个不同的点表示的却是同一个数?
2.数轴上会不会有一个点表示两个不同数?
2.2用数轴上的点表示有理数(1)s

3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)
A.7 B.-3 C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是(D)
A.正数B.负数C.不是负数D.不是正数
5.数轴上表示5和-5的点离开原点的距离是5,但它们分别在原点的两边.
例3如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?表示-a的点在原点的什么位置上呢?
【提示】由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.
【答案】所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.
【点评】数与数轴上的点结合,这是一种重要的数学思想,数形结合.
三.动手动脑学用新知
例1下列所画数轴对不对?如果不对,指出错在哪里.
【答案】①错.没有原点②错.没有正方向③正确④错.没有单位长度⑤错.单位长度不统一⑥正确⑦错.正方向标错
例2试一试:用你画的数轴上的点表示4,1.5,-3,- ,0
Байду номын сангаас【答案】
图中A点表示4,B点表示1.5,C点表示-3,D点表示- ,E点表示0.
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容──数轴.
二.合作交流探究新知
点拨(1)引导学生学会画数轴.
第一步:画直线定原点
第二步:规定从原点向右的方向为正(左边为负方向)
第三步:选择适当的长度为单位长度(据情况而定)
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2用数轴上的点表示有理数
目的与要求 能正确地画出数轴,掌握数轴的三要素。
知识与技能 会用数轴上的点表示一个数,并能将已知数在数轴上表示出来。
情感、态度与价值观 感受“数形结合”的思想方法,并能用其解决问题。
教学过程
一、创设情境引入
当10个人站成一排,如何用数学知识快速地指出所要指的人。
一条街道,每户的门牌号码有什么意义?
二、探索知识
从上述方法中,你是否启发出,如何将我们所学过的数进行排列呢?
在小学里我们曾经用以下方法表示正数与零。
我们可以模仿上述表示方法,依次加入负数,步骤如下:
1、画一条水平的直线,并在这条直线上任取一点表示0,称为原点(origin).
2、把从原点向右的方向规定为正方向(用箭头表示),向左的方向规定为负方向。
3、取适当的长度(如0.5cm )为单位长度,在直线上从原点向右每隔一个单位长度取一点,依次表示1,2,3,…。
从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3,…
像这样规定了原点、正方向、单位长度的直线叫做数轴(number axis)。
你了解数轴了吗?你认为在数轴上可以表示多少个数?所有的有数是否都可以在数轴
例1、判断图中的数轴画得是否正确,请指出错误原因。
解答:(1)(2)(3)(4)(5)都不正确(注意数轴的三要素缺一不可)。
例2、指出下面数轴上A 、B 、C 各点表示什么数,并把
各数用数轴上的点表示。
例3在数轴上,原点与原点右边的点表示的数是( )
A 、正数
B 、负数
C 、整数
D 、非负数
例4、通过数轴判断,下面的说法错误的是( )
● ● ● ● ● ● ● ● ● ● 3 2 1 7 6 5 4 0 9
8 0 2 4.5 ●
A、数轴上的点表示一个数
B、数轴上表示+3的点只有一个
C、数轴上到原点的距离等于2个单位长度的点表示的数是2
D、-5是可以用数轴上原点左边第5个单位长度的点表示。
例5、请利用数轴回答下列问题
(1)在数轴上,到原点的距离为5的点有___个,它们表示的数是___
(2)在数轴上,从表示2的点出发,先向右移动3个单位长度,再向左移动6个单位长度,最后的终点表示的数是_____
(3)在数轴上,点M表示数2,那么与点M相距4个单位的点表示的数是____
三、随堂练习
1、判断题
(1)直线就是数轴()
(2)数轴是一条直线()
(3)任何有理数都可以用数轴上的点表示()
(4)数轴上到原点的距离等于3的点表示的数是3()
2、如果数轴上点A到原点的距离为3,点B到原点的距离为5,则点A、点B各代表什么数?
A、B两点间的距离是多少?
解答:±3、±5、8或2
3、一个点从数轴上表示数-2的点出发,先向左移动5个单位长度,再向右移动3个单位后,终点所表示的数是什么?
4、在数轴上有A、B、C三个点,看样移动其中的两个点,才能使三个点表示同一个数?
解答:分类讨论
①B向右移动4个单位长度,点C向左移动3个单位长度②点A向左4,点C向左7③点A 向右3,点B向右7。
四、课堂小结
这节课你学会了什么?
五、课堂作业
习题2.2
六、课后反馈。