二叉树的遍历算法实验报告

合集下载

二叉树的遍历实验报告

二叉树的遍历实验报告

二叉树的遍历实验报告二叉树的遍历实验报告引言:二叉树是一种常见的数据结构,它由节点和连接节点的边组成。

在实际应用中,我们经常需要对二叉树进行遍历,以便对其中的节点进行访问和操作。

本次实验旨在探索二叉树的遍历算法,并通过实验验证其正确性和效率。

一、二叉树的定义和基本操作二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

根据节点的访问顺序,二叉树的遍历可以分为前序遍历、中序遍历和后序遍历三种方式。

前序遍历是指先访问根节点,然后按照左子树、右子树的顺序递归地进行遍历;中序遍历是指先按照左子树、根节点、右子树的顺序递归地进行遍历;后序遍历是指先按照左子树、右子树、根节点的顺序递归地进行遍历。

二、实验设计和方法为了验证二叉树的遍历算法的正确性和效率,我们设计了以下实验方案:1. 构建二叉树:我们首先构建一个具有一定规模的二叉树,以模拟实际应用中的情况。

为了方便起见,我们选择随机生成一棵二叉树,并确保其结构合理。

2. 实现遍历算法:我们根据前文所述的遍历方式,实现了相应的遍历算法。

在实现过程中,我们考虑到了递归和迭代两种方式,并分别进行了实验比较。

3. 遍历实验:我们使用不同规模的二叉树进行遍历实验,并记录遍历的结果和所花费的时间。

通过对比不同规模下不同遍历方式的结果和时间,我们可以评估遍历算法的效率和准确性。

三、实验结果和分析在实验中,我们构建了一棵具有1000个节点的二叉树,并分别使用前序、中序和后序遍历算法进行遍历。

通过实验结果的比较,我们得出以下结论:1. 遍历结果的正确性:无论是前序、中序还是后序遍历,我们都能够正确地访问到二叉树中的每个节点。

这表明我们所实现的遍历算法是正确的。

2. 遍历算法的效率:在1000个节点的二叉树中,我们发现中序遍历算法的执行时间最短,后序遍历算法的执行时间最长,前序遍历算法的执行时间居中。

这是因为中序遍历算法在访问节点时可以尽可能地减少递归次数,而后序遍历算法需要递归到最深层才能返回。

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告篇一:二叉树的建立及遍历实验报告实验三:二叉树的建立及遍历【实验目的】(1)掌握利用先序序列建立二叉树的二叉链表的过程。

(2)掌握二叉树的先序、中序和后序遍历算法。

【实验内容】1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。

如:输入先序序列abc###de###,则建立如下图所示的二叉树。

并显示其先序序列为:abcde中序序列为:cbaed后序序列为:cbeda【实验步骤】1.打开VC++。

2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。

至此工程建立完毕。

3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。

给文件起好名字,选好路径,点OK。

至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码5.编译->链接->调试#include#include#define OK 1#define OVERFLOW -2typedef int Status;typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild, *rchild;}BiTNode,*BiTree;Status CreateBiTree(BiTree &T){TElemType ch;scanf("%c",&ch);if (ch=='#')T= NULL;else{if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))return OVERFLOW;T->data = ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); }return OK;} // CreateBiTreevoid PreOrder(BiTree T) {if(T){printf("%c",T->data); PreOrder(T->lchild); PreOrder(T->rchild);}}void InOrder(BiTree T) {if(T){InOrder(T->lchild);printf("%c",T->data);InOrder(T->rchild);}}void PostOrder(BiTree T){if(T){PostOrder(T->lchild); PostOrder(T->rchild);printf("%c",T->data);}}void main(){BiTree T;CreateBiTree(T);printf("\n先序遍历序列:"); PreOrder(T);printf("\n中序遍历序列:"); InOrder(T);printf("\n后序遍历序列:"); PostOrder(T);}【实验心得】这次实验主要是通过先序序列建立二叉树,和二叉树的先序、中序、后续遍历算法。

二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告

二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告

实验目的编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。

实验内容编程序并上机调试运行。

编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。

编写程序/***********二叉树的遍历**************/#include<stdio.h>#include<stdlib.h>typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;/*************************************************///按先序次序构建的二叉树链表void CreatBiTree(BiTree *T){char ch;if((ch=getchar())==' ')*T=NULL;else{*T=(BiTNode*)malloc(sizeof(BiTNode));if(!(*T))exit(1);(*T)->data=ch;CreatBiTree(&(*T)->lchild);CreatBiTree(&(*T)->rchild);}}/*************************************************/ //先序遍历--递归算法void PreOrderTraverse(BiTree T){if(T){printf("%c",T->data);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}/*************************************************/ //中序遍历--递归算法void InOrderTraverse(BiTree T){if(T){InOrderTraverse(T->lchild);printf("%c",T->data);InOrderTraverse(T->rchild);}}/*************************************************/ //后序遍历--递归算法void PostOrderTraverse(BiTree T){if(T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%c",T->data);}}/*************************************************/ //main函数void main(){BiTree T;printf("请按先序次序输入二叉树中结点的值,空格字符表示空树:\n" );CreatBiTree(&T);printf("\n");printf("先序遍历为:\n");PreOrderTraverse(T);printf("\n\n");printf("中序遍历为:\n");InOrderTraverse(T);printf("\n\n");printf("后序遍历为:\n");PostOrderTraverse(T);printf("\n\n");getchar();}运行程序:结果分析:按先序输入的二叉树为ABC^^DE^G^^F^^^(^为空格)该二叉树画成树形为:其先序遍历为:ABCDEGF其中序遍历为:CBEGDFA其后序遍历为:CGEFDBA可以看出运行结果是正确的。

二叉树的遍历算法实验报告

二叉树的遍历算法实验报告

二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。

在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。

本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。

一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。

具体的实现可以通过递归或者使用栈来实现。

我们以递归方式实现前序遍历算法,并进行实验验证。

实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。

2. 实现前序遍历算法的递归函数,函数的输入为根节点。

3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。

4. 调用前序遍历函数,输出遍历结果。

实验结果:经过实验,我们得到了正确的前序遍历结果。

这证明了前序遍历算法的正确性。

二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。

同样,我们可以使用递归或者栈来实现中序遍历算法。

在本实验中,我们选择使用递归方式来实现。

实验步骤:1. 继续使用前面创建的二叉树。

2. 实现中序遍历算法的递归函数,函数的输入为根节点。

3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。

4. 调用中序遍历函数,输出遍历结果。

实验结果:通过实验,我们得到了正确的中序遍历结果。

这证明了中序遍历算法的正确性。

三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。

同样,我们可以使用递归或者栈来实现后序遍历算法。

在本实验中,我们选择使用递归方式来实现。

实验步骤:1. 继续使用前面创建的二叉树。

2. 实现后序遍历算法的递归函数,函数的输入为根节点。

3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。

4. 调用后序遍历函数,输出遍历结果。

二叉树遍历的实习报告

二叉树遍历的实习报告

实习报告实习内容:二叉树遍历实习时间:2023实习单位:某高校计算机实验室一、实习目的本次实习的主要目的是通过实现二叉树的遍历,加深对二叉树数据结构的理解,掌握二叉树的常见操作,提高编程能力。

二、实习内容1. 理解二叉树的基本概念和性质,包括节点之间的关系、树的深度、高度等。

2. 掌握二叉树的存储结构,包括顺序存储和链式存储。

3. 实现二叉树的前序遍历、中序遍历和后序遍历。

4. 通过实际编程,验证二叉树遍历的正确性。

三、实习过程1. 二叉树的基本概念和性质:二叉树是一种非线性的数据结构,每个节点最多有两个子节点。

节点之间的关系包括父子关系、兄弟关系等。

树的深度是指从根节点到最远叶子节点的最长路径上的边数,高度是指从根节点到最远叶子节点的最长路径上的边数加1。

2. 二叉树的存储结构:二叉树可以用顺序存储结构或链式存储结构表示。

顺序存储结构使用数组来实现,每个节点存储在数组的一个位置中,节点之间的父子关系通过数组下标来表示。

链式存储结构使用链表来实现,每个节点包含数据域和两个指针域,分别指向左子节点和右子节点。

3. 二叉树的遍历:二叉树的遍历是指按照一定的顺序访问树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是指先访问根节点,然后递归遍历左子树,最后递归遍历右子树。

中序遍历是指先递归遍历左子树,然后访问根节点,最后递归遍历右子树。

后序遍历是指先递归遍历左子树,然后递归遍历右子树,最后访问根节点。

4. 编程实现:根据二叉树的存储结构和遍历方法,编写C语言程序实现二叉树的前序遍历、中序遍历和后序遍历。

程序中使用递归函数来实现遍历操作,通过建立链式存储结构,验证遍历的正确性。

四、实习心得通过本次实习,我对二叉树的数据结构有了更深入的了解,掌握了二叉树的存储方式和常见操作。

在实现二叉树遍历的过程中,我学会了如何使用递归函数解决问题,提高了编程能力。

同时,通过实际编程验证了二叉树遍历的正确性,增强了对算法理解的信心。

二叉树的遍历实验报告

二叉树的遍历实验报告

二叉树的遍历实验报告实验报告:二叉树的遍历(先序遍历、中序遍历、后序遍历)一、引言二叉树是一种非常常见的数据结构,在计算机领域有着广泛的应用。

对二叉树进行遍历操作是其中最基本的操作之一、本实验旨在通过对二叉树的先序遍历、中序遍历和后序遍历的实践,加深对二叉树遍历算法的理解和掌握。

二、目的1.掌握二叉树先序遍历的算法原理和实现方法;2.掌握二叉树中序遍历的算法原理和实现方法;3.掌握二叉树后序遍历的算法原理和实现方法;4.使用递归和非递归两种方式实现以上三种遍历算法;5.进行正确性验证和性能评估。

三、方法1.算法原理:1.1先序遍历:先访问根节点,然后递归遍历左子树,再递归遍历右子树;1.2中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树;1.3后序遍历:先递归遍历左子树,再递归遍历右子树,最后访问根节点。

2.实现方法:2.1递归实现:采用函数递归调用的方式,实现对二叉树的遍历;2.2非递归实现:采用栈的数据结构,模拟递归的过程,实现对二叉树的遍历。

四、实验步骤1.数据结构设计:1.1定义二叉树的节点结构,包括节点值和两个指针(分别指向左子节点和右子节点);1.2定义一个栈结构,用于非递归实现时的辅助存储。

2.先序遍历:2.1递归实现:按照先序遍历的原理,通过递归调用遍历左子树和右子树,再输出根节点;2.2非递归实现:通过栈结构模拟递归的过程,先将根节点入栈,然后循环将栈顶节点弹出并输出,再将其右子节点入栈,最后将左子节点入栈,直到栈为空。

3.中序遍历:3.1递归实现:按照中序遍历的原理,通过递归调用先遍历左子树,再输出根节点,最后遍历右子树;3.2非递归实现:先将根节点入栈,然后循环将左子节点入栈,直到左子节点为空,然后弹出栈顶节点并输出,再将其右子节点入栈,重复以上过程直到栈为空。

4.后序遍历:4.1递归实现:按照后序遍历的原理,通过递归调用先遍历左子树,再遍历右子树,最后输出根节点;4.2非递归实现:通过栈结构模拟递归的过程,先将根节点入栈,然后重复以下步骤直到栈为空。

遍历二叉树实验报告

遍历二叉树实验报告

遍历二叉树实验报告遍历二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

在实际应用中,对二叉树进行遍历是一项重要的操作。

本实验旨在通过实际操作,探索二叉树的遍历算法,并分析其时间复杂度和空间复杂度。

一、实验目的通过实际操作,掌握二叉树的前序遍历、中序遍历和后序遍历算法,并分析它们的特点和适用场景。

二、实验环境本实验使用C++语言进行编程,运行环境为Windows操作系统。

三、实验过程1. 创建二叉树首先,我们需要创建一个二叉树作为实验的基础数据结构。

在本实验中,我们选择手动创建一个简单的二叉树,以便更好地理解遍历算法的实现过程。

2. 前序遍历前序遍历是一种深度优先遍历算法,它的遍历顺序是先访问根节点,然后递归地遍历左子树和右子树。

通过实际操作,我们可以发现前序遍历的结果是根节点在最前面。

3. 中序遍历中序遍历也是一种深度优先遍历算法,它的遍历顺序是先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。

通过实际操作,我们可以发现中序遍历的结果是根节点在中间。

4. 后序遍历后序遍历同样是一种深度优先遍历算法,它的遍历顺序是先递归地遍历左子树和右子树,最后访问根节点。

通过实际操作,我们可以发现后序遍历的结果是根节点在最后面。

5. 分析与总结通过对前序遍历、中序遍历和后序遍历的实际操作,我们可以得出以下结论:- 前序遍历适合于需要先处理根节点的场景,例如树的构建和复制。

- 中序遍历适合于需要按照节点值的大小顺序进行处理的场景,例如搜索二叉树的构建和排序。

- 后序遍历适合于需要先处理叶子节点的场景,例如树的销毁和内存释放。

四、实验结果通过实际操作,我们成功实现了二叉树的前序遍历、中序遍历和后序遍历算法,并得到了相应的遍历结果。

这些结果验证了我们对遍历算法的分析和总结的正确性。

五、实验总结本实验通过实际操作,深入探索了二叉树的遍历算法,并分析了它们的特点和适用场景。

二叉树的遍历实验报告

二叉树的遍历实验报告

二叉树的遍历实验报告一、需求分析在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。

对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。

二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。

本次实验要实现先序、中序、后序三种遍历。

基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。

二、系统总框图三、各模块设计分析(1)建立二叉树结构建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。

本实验用的是先序遍历的规则进行建树。

二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。

因此要先定义一个结构体。

此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。

最后,还需要一个链表的头指针指向根结点。

要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。

当它遇到该标志时,就指向为空。

建立左右子树时,仍然是调用create()函数,依此递归进行下去,直到遇到结束标志时停止操作。

(2)输入二叉树元素输入二叉树时,是按上面所确定的遍历规则输入的。

最后,用一个返回值来表示所需要的结果。

(3)先序遍历二叉树当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。

(4)中序遍历二叉树当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。

(5)后序遍历二叉树当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树实验报告
09信管石旭琳 20091004418
一、实验目的:
1、理解二叉树的遍历算法及应用
2、理解哈夫曼树及其应用。

3、掌握哈夫曼编码思想。

二、实验内容:
1、建立二叉树二叉链表
2、实现二叉树递归遍历算法(中序、前序、后序)
3、求二叉树高度
4、求二叉树结点个数
5、求二叉树叶子个数
6、将序号为偶数的值赋给左子树
三、主要程序:
#include<stdio.h>
#include<stdlib.h>
typedef int ElemType;
struct BiTNode
{
ElemType data;
struct BiTNode *lch,*rch;
}BiTNode,*BiTree;
struct BiTNode *creat_bt1();
struct BiTNode *creat_bt2();
void preorder (struct BiTNode *t);
void inorder (struct BiTNode *t);
void postorder (struct BiTNode *t);
void numbt (struct BiTNode *t);
int n,n0,n1,n2;
void main()
{
int k;
printf("\n\n\n");
printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树");
printf("\n\n 4.中序递归遍历二叉树");
printf("\n\n 5.后序递归遍历二叉树");
printf("\n\n 6.计算二叉树结点个数");
printf("\n\n 7.结束程序运行");
printf("\n==================================="); do
{
printf("\n请输入你要执行的操作(1,2,3,4,5,6,7)");
scanf("%d",&k);
printf("\n");
switch(k)
{
case 1:{
printf("你选择的是操作1,现用方法1进行建立二叉树\n");
BiTree=creat_bt1(); /* 调用性质5建立二叉树算法*/
break;
}
case 2:{
printf("你选择的是操作2,现用方法2进行建立二叉树\n");
BiTree=creat_bt2(); /* 调用递归建立二叉树算法*/
break;
}
case 3:{
printf("你选择的是操作3,现进行先序递归遍历二叉树\n结果为:");
preorder(BiTree);
break;
}
case 4:{
printf("你选择的是操作4,现进行中序递归遍历二叉树\n结果为:");
inorder(BiTree);
break;
}
case 5:{
printf("你选择的是操作5,现进行后序递归遍历二叉树\n结果为:");
postorder(BiTree);
break;
}
case 6:{ n=0,n0=0,n1=0,n2=0; /*全局变量置0 */
printf("你选择的是操作6,现进行计算二叉树结点个数\n结果为:");
numbt(BiTree);
printf("\n 二叉树结点总数是:%d",n);
printf("\n 二叉树叶子结点数是:%d",n0);
printf("\n 度为1的结点数是:%d",n1);
printf("\n 度为2的结点数是:%d",n2);
break;
}
case 7:{
printf("你选择的是操作8,将结束本程序运行,谢谢你的使用,再见!\n");
break;
}
}
}
while(k>=1&&k<7);
}
struct BiTNode *creat_bt1()
{
struct BiTNode *v[50],*p,*t;
int i,j;
ElemType e; /*输入结点的序号i、结点的数据e */
printf("\n i,data=");
scanf("%d,%d",&i,&e);
while(i!=0&&e!=0)
{
p=(struct BiTNode *)malloc(sizeof(struct BiTNode));
p->data=e;
p->lch=NULL;
p->rch=NULL;
v[i]=p;
if (i==1) /*序号为1的结点是根*/
t=p;
else
{
j=(i+1)/2;
if(i%2==0) /*序号为偶数,做左孩子*/
v[j]->lch=p;
else
v[j]->rch=p;
}
printf("\n i,data=");
scanf("%d,%d",&i,&e);
}
return t;
}
struct BiTNode *creat_bt2()
{
struct BiTNode *t;
int e;
printf("\n data=");
scanf("%d",&e);
if(e==0) t=NULL; /*对于0值,不分配新结点*/
else
{
t=(struct BiTNode *)malloc(sizeof(struct BiTNode));
t->data=e;
t->lch=creat_bt2(); /*左孩子获得新指针值*/
t->rch=creat_bt2();
}
return (t);
}
void preorder (struct BiTNode *t)
{
if(t)
{
printf("%d ",t->data);
preorder(t->lch);
preorder(t->rch);
}
}
void inorder (struct BiTNode *t)
{
if(t)
{
inorder(t->lch);
printf("%d ",t->data);
inorder(t->rch);
}
}
void postorder(struct BiTNode *t)
{
if(t)
{
postorder(t->lch);
postorder(t->rch);
printf("%d ",t->data);
}
}
void numbt(struct BiTNode *t)
{
if(t)
{
numbt(t->lch);
{
n++;
if(t->lch==NULL&&t->rch==NULL)
n0++;
if((t->lch==NULL&&t->rch!=NULL)||(t->lch!=NULL&&t->rch==NUL L))
n1++;
if(t->lch!=NULL&&t->rch!=NULL)
n2++;
}
numbt(t->rch);
}
}
四、测试结果:
五、小结:
实操后还是会搞不清楚数据域及指针域的定义类型的不同。

但是二叉树的先序、中序、后序输出都是递归算法,用起来并没有想象中复杂。

相关文档
最新文档