材料加工原理作业答案

合集下载

材料加工原理作业答案

材料加工原理作业答案

作业第一章液态金属的结构与性质1、如何理解实际液态金属结构及其三种“起伏”特征?理想纯金属液态结构能量起伏和结构起伏;实际纯金属液态结构存在大量多种分布不均匀、存在方式(溶质或化合物)不同的杂质原子;金属(二元合金)液态结构存在第二组元时,表现为能量起伏、结构起伏和浓度起伏;实际金属(多元合金)液态结构相当复杂,存在着大量时聚时散,此起彼伏的原子团簇、空穴等,同时也含有各种固态、气态杂质或化合物,表现为三种起伏特征交替;能量起伏指液态金属中处于热运动的原子能量有高有低,同一原子的能量也会随时间而不停变化,出现时高时低的现象。

结构起伏指液态金属中大量不停“游动”着的原子团簇不断分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,这样此起彼伏,不断发生着的涨落过程,似乎团簇本身在“游动”一样,团簇的尺寸及内部原子数量都随时间和空间发生着改变的现象。

浓度起伏指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象2、根据图1-8及式(1-7)说明动力学粘度的物理意义和影响粘度的因素,并讨论粘度在材料成形中的意义动力学粘度的物理意义:表示作用于液体表面的外加切应力大小与垂直于该平面方向上的速度梯度的比例系数。

是液体内摩擦阻力大小的表征影响粘度的因素:1)液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高;2)粘度随原子间距δ增大而降低,与δ3成反比;3)η与温度T 的关系总的趋势随温度T 而下降。

(实际金属液的原子间距δ也非定值,温度升高,原子热振动加剧,原子间距随之而增大,因此η会随之下降。

)4)合金组元(或微量元素)对合金液粘度的影响,如果混合热H m为负值,合金元素的增加会使合金液的粘度上升(H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高)如果溶质与溶剂在固态形成金属间化合物,则合金液的粘度将会明显高于纯溶剂金属液的粘度,这归因于合金液中存在异类原子间较强的化学结合键。

材料加工冶金传输原理习题答案(吴树森版)

材料加工冶金传输原理习题答案(吴树森版)

第一章流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易於流动的物质。

它包括液体和气体。

流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。

2、在图所示的虹吸管中,已知 H1=2m , H2=6m ,管径D=15mm ,如果不计损失,问 S 处的压强应为多大 时此管才能吸水?此时管内流速u 2及流量Q 各为若干?(注意:管B 端并未接触水面或探入水中)解:选取过水断面 1-1、2-2及水准基准面 O-O ,列1-1面(水面)到2-2面的贝努利方程再选取水准基准面 O' -O',列过水断面2-2及3-3的贝努利方程(B) 因V2=V3 由式(B)得(P 1 P 2)用U 形管中液柱表示,所以 Q A 2)2gh(A)—(0.1)2 ;2 9.81 °.2 (13.552103 1 103)0.074 (m 3/s)[1 (A 2)2]4103 (1 (CL)2)&10.15式中 、——被测流体和U 形管中流体的密度如图6-3 17(a)所示,为一连接水泵出口的压力水管,直径 d=500mm 弯管与水准的夹角 45° ,水流流过 弯管时有一水准推力,为了防止弯管发生位移,筑一混凝土镇墩使管道固定。

若通过管道的流量s,断面1-1和2-2中心点的压力 P1相对=108000N/肝,P2相对=105000N/肝。

试求作用在镇墩上的力。

[解]如图6 3 17(b)所示,取弯管前彳爰断面 1 — 1和2-2流体为分离体,现分析分离体上外力和动量变化5、有一文特利管(如下图),已知d 1 15cm, d 2=10cm,水银差压偏亦E 若不计阻力损失,求常温(20 C)下,通过文氏管的水0最1 * I解:在喉部入口前的直管截面1和喉部截面2处测量跚力另2P —const 可建立有关此截面的伯努利方程: 22V 1 2侦 P 22根据连续性方程,截面1和2上的截面积A I 和A 2与流体流速V I 和V 2的关系式为二二二所以V 22( P 1 P 2) A 2 2,° (J图也丁吸管 C/ 、通过管子的流体流量为 Q A 2(P1 P 2)[1 (A 2)2】iA 1设管壁对流体的作用力 R,动量方程在x 轴的投影为:动量方程在x 轴的投影为:镇墩对流体作用力的合力 R 的大小及方向为:流体对镇墩的作用力 P 与R 的大小相等方向相反。

材料加工冶金传输原理习题答案解析

材料加工冶金传输原理习题答案解析

第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。

它包括液体和气体。

流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。

1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。

解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V VK ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。

注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄 板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。

当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0y x νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。

质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。

而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。

材料加工作业3

材料加工作业3

1.比较半固态加工、铸造成型、塑性加工。

答:金属材料,从固态向液态或从液态向固态的转换过程中,均经历着半固态阶段。

特别对于结晶温度区间宽的合金,尤为明显。

由于三个阶段中,金属材料呈现出不同特性,利用这些特性,产生了塑性加工、铸造加工和半固态加工等多种热加工成形方法。

将液态金属浇入与零件形状相适应的铸型空腔中,待其冷却凝固,以获得毛坯或零件的工艺方法,称为铸造。

铸造加工利用了液态金属呈现出良好的流动性,以完成成形过程中的充填、补缩,直至凝固的结束。

为了提高铸件的质量和尺寸精度,不断向快速、精密、高压方向发展,先后出现了高速连续铸造、差压铸造、压力铸造及至双柱塞精密压铸法。

其发展趋势是采用机械压力替代重力充填,从而改善制件内部质量和尺寸精度。

但从凝固机理角度看,铸造加工要想完全消除铸件内部缺陷是极其困难的。

金属塑性成形(传统叫锻压,是锻造和冲压工艺的总称),其本质是利用金属材料所具有的塑性,在工具或模具作用下施加外力,使其发生塑性变形,从而获得具有一定形状、尺寸及力学性能的零件或毛坯的工艺方法,工业生产中一般称为金属塑性加工或压力加工。

塑性加工利用了固态金属在高温下呈现较好的塑性流动性,以完成成形过程充填。

采用塑性加工生产的制件,其质量高于铸造方法生产的制件。

但固态金属变形抗力高,需要消耗较多的能源。

对于稍复杂的零件,往往需要多道工步或工序成形才能完成。

因此降低能耗和成本,减小变形抗力,提高制件的尺寸精度,保证制件的质量,就成为塑性加工的发展方向。

因而先后出现了精密模锻、等温锻造、超塑性加工等。

半固态加工利用了金属从液态向固态或固态向液态过渡(即固液共存)时的特性,具有特殊意义。

金属半固态加工就是在金属凝固过程中,对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生因相的固-液浆料(固相组分一般为50%左右),即流变浆料,利用这种流变浆料直接进行成形加工的方法称之为半固态金属的流变成形。

高分子材料加工原理(1)(1)

高分子材料加工原理(1)(1)

高分子材料加工原理第一章化学纤维人造纤维再生纤维素:黏胶纤维、铜氨纤维、莱赛尔纤维纤维素纤维:二醋酯纤维、三醋酯纤维橡胶纤维其他:甲壳素纤维、海藻纤维合成纤维聚酰胺纤维芳族聚酰胺纤维聚酯纤维生物可降解聚酯纤维聚丙烯腈纤维改性聚丙烯腈纤维聚乙烯醇纤维聚氯乙烯纤维聚烯烃纤维聚氨酯纤维聚氟烯烃纤维二烯类弹性体纤维聚酰亚胺纤维2、工程塑料通用工程塑料聚酰胺()聚碳酸酯()聚甲醛聚苯醚丙烯腈丁二烯苯乙烯共聚物超高分子量聚乙烯()特种工程塑料聚砜芳香族聚酰胺()聚酰亚胺()聚苯硫醚聚芳酯聚苯酯聚醚酮氟塑料()简答及论述1、聚合物熔融有哪几种方式,各方式的主控因素是什么?答:(1)无熔体移走的传导熔融:熔融热=表面热传导,熔融速率仅由热传导决定。

(2)(主要)有强制熔体迁移(由拖拽或压力引起)的传导熔融:熔融热=接触表面的热传导+黏性耗散生热。

熔融效率由热传导率、熔体迁移及黏性耗散生热速率共同决定(3)耗散混合熔融:熔融热=整个体积内将机械能转化为聚合物内能。

耗散混合熔融速率由整个外壁面上和混合物固体-熔体界面上辅热传导决定。

(4)利用电、化学或其他能源的耗散熔融(5)压缩熔融(6)振动诱导挤出熔融过程:熔融的主要能量来源于单纯使用振动力场2、怎样利用溶度参数理论来选择溶剂?答:当溶剂的内聚能密度或溶度参数与聚合物的内聚能密度或溶度参数相等或相近时,溶解过程的混合热焓等于或趋近于零,这时溶解过程能够自发进行。

一般来说,当时,聚合物就不溶于该溶剂。

3、Brodkey的混合理论涉及的混合的基本运动形式有哪些?聚合物成型时熔融物料的混合以哪一种运动形式为主?为什么?答:分子扩散、涡旋扩散、体积扩散以体积扩散为主原因(1)在聚合物加工中,由于聚合物熔体粘度一般很高,熔体与熔体间分子扩散挤满,因而分子扩散无实际意义。

(2)在聚合物加工中,由于物料的运动速度达不到紊流,而且黏度又高,故很少发生涡旋扩散(3)聚合物加工中的混合与一般的混合不同,由于聚合物熔体的粘度通常高于100Pa*s,因此混合只能在层状领域产生层对流混合,即通过层流而使物料变形、包裹、分散,最终达到混合均匀。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过不同的成型工艺,将原料加工成所需形状和尺寸的零部件或制品的原理。

在工程制造领域中,材料成型是非常重要的一环,它直接影响着制品的质量和性能。

下面就材料成型原理的相关问题进行解答。

1. 什么是材料成型原理?材料成型原理是指将原料加工成所需形状和尺寸的零部件或制品的原理。

它是通过对原料进行加工,使其发生形状、尺寸和性能的改变,从而得到符合要求的制品。

材料成型原理是工程制造中的重要环节,它直接关系到制品的质量和性能。

2. 材料成型的基本过程是什么?材料成型的基本过程包括原料的预处理、成型工艺和制品的后处理。

首先,原料需要进行预处理,包括清洁、除杂、干燥等工序,以保证原料的质量和加工的顺利进行。

然后,根据制品的要求,选择合适的成型工艺,如锻造、压铸、注塑等,对原料进行加工成型。

最后,对成型后的制品进行后处理,包括去除余渣、表面处理、热处理等工序,以提高制品的质量和性能。

3. 材料成型原理的影响因素有哪些?材料成型原理的影响因素包括原料的性能、成型工艺、成型设备和操作技术等。

首先,原料的性能直接影响着成型的难易程度和制品的质量。

其次,成型工艺的选择和设计对成型效果起着决定性的作用。

成型设备的性能和精度也会影响成型的质量和效率。

操作技术则是保证成型过程顺利进行的重要因素。

4. 材料成型原理的发展趋势是什么?随着科学技术的不断发展,材料成型原理也在不断创新和完善。

未来,材料成型将更加注重节能环保、智能化和数字化。

新材料、新工艺、新设备的不断涌现,将推动材料成型原理朝着高效、精密、绿色的方向发展。

同时,数字化技术的应用将使成型过程更加智能化和可控化,提高生产效率和产品质量。

5. 如何提高材料成型的质量和效率?要提高材料成型的质量和效率,首先需要加强对原料的质量控制,保证原料的质量稳定。

其次,要优化成型工艺和设备,提高成型的精度和效率。

同时,加强操作技术的培训和管理,确保成型过程的稳定和可控。

材料加工基本原理第五版1至11章课后答案

材料加工基本原理第五版1至11章课后答案

第一章习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏? 答:(1)液体与固体及气体比较的异(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化V m/V为3%〜5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热H m约为气化潜热H b的1/15〜1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距n各表示什么?答:分布函数g(r)的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度p r)对于平均数密度p (=N/V )的相对偏差。

N1表示参考原子周围最近邻(即第一壳层)原子数。

n表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3. 如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1< 晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)岀现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

高分子材料成型加工习题参考答案

高分子材料成型加工习题参考答案

高分子材料成型加工习题参考答案(1~5章)绪论1、高分子材料可应用于哪些方面? 有哪些特点, 答:高分子材料可应用于如下各个方面:结构材料:机械零部件、机电壳体、轴承……电器材料:电缆、绝缘版、电器零件、家用电器、通讯器材…… 建筑材料:贴面板、地贴、塑料门窗、上下水管…… 包装材料:各种瓶罐、桶、塑料袋、薄膜、绳、带、泡沫塑料…… 日用制品:家具、餐具、玩具、文具、办公用品、体育用品及器材……交通运输:道路交通设施、车辆、船舶部件……医疗器械:医疗器具、药品包装、医药附件、人造器官…… 航天航空:飞机、火箭、飞船、卫星零部件……军用器械:武器装备、军事淹体、防护器材…… 交通运输:道路交通设施、车辆、船舶部件……医疗器械:医疗器具、药品包装、医药附件、人造器官…… 航天航空:飞机、火箭、飞船、卫星零部件……军用器械:武器装备、军事淹体、防护器材…… 化纤类:布、线、服装、……高分子材料具有如下特点:优点: a.原料价格低廉; b.加工成本低; c.重量轻; d.耐腐蚀;e.造型容易;f.保温性能优良;g.电绝缘性好。

缺点: a.精度差; b.耐热性差; c.易燃烧; d.强度差; e.耐溶剂性差; f.易老化2、塑料制品生产的完整工序有哪五步组成,答:成型加工完整工序共五个1.成型前准备:原料准备:筛选,干燥,配制,混合 ?2.成型:赋预聚合物一定型样 ?3.机械加工:车,削,刨,铣等。

?4.修饰:美化制品。

?5.装配: 粘合,焊接,机械连接等。

?说明:a 并不是所有制品的加工都要完整地完成此5个工序b 五个次序不能颠倒3、学习本课程的重点是什么,答:本课程的重点是:高分子材料方面:应掌握高分子材料定义,高分子材料工程特征,高分子材料及其制品的制备方法,高分子材料的组成,添加剂的作用、机理、品种及其选择,高分子材料配方设计原则,配方分析,影响高分子材料性能的化学因素和物理因素。

成型加工方面:应掌握高分子材料制品各种成型方法,成型加工过程,成型工艺特点,成型工艺的适应性,成型工艺流程,成型设备结构及作用原理,成型工艺条件及其控制,成型工艺在橡胶、塑料、纤维加工中的共性和特殊性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业第一章液态金属的结构与性质1、如何理解实际液态金属结构及其三种“起伏”特征?理想纯金属液态结构能量起伏和结构起伏;实际纯金属液态结构存在大量多种分布不均匀、存在方式(溶质或化合物)不同的杂质原子;金属(二元合金)液态结构存在第二组元时,表现为能量起伏、结构起伏和浓度起伏;实际金属(多元合金)液态结构相当复杂,存在着大量时聚时散,此起彼伏的原子团簇、空穴等,同时也含有各种固态、气态杂质或化合物,表现为三种起伏特征交替;能量起伏指液态金属中处于热运动的原子能量有高有低,同一原子的能量也会随时间而不停变化,出现时高时低的现象。

结构起伏指液态金属中大量不停“游动”着的原子团簇不断分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,这样此起彼伏,不断发生着的涨落过程,似乎团簇本身在“游动”一样,团簇的尺寸及内部原子数量都随时间和空间发生着改变的现象。

浓度起伏指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象2、根据图1-8及式(1-7)说明动力学粘度的物理意义和影响粘度的因素,并讨论粘度在材料成形中的意义动力学粘度的物理意义:表示作用于液体表面的外加切应力大小与垂直于该平面方向上的速度梯度的比例系数。

是液体内摩擦阻力大小的表征影响粘度的因素:1)液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高;2)粘度随原子间距δ增大而降低,与δ3成反比;3)η与温度T 的关系总的趋势随温度T 而下降。

(实际金属液的原子间距δ也非定值,温度升高,原子热振动加剧,原子间距随之而增大,因此η会随之下降。

)4)合金组元(或微量元素)对合金液粘度的影响,如果混合热H m为负值,合金元素的增加会使合金液的粘度上升(H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高)如果溶质与溶剂在固态形成金属间化合物,则合金液的粘度将会明显高于纯溶剂金属液的粘度,这归因于合金液中存在异类原子间较强的化学结合键。

通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高粘度在材料成形中的意义:1)粘度对铸件轮廓的清晰程度将有很大影响:在薄壁铸件的铸造过程中,流动管道直径较小,雷诺数值小,流动性质属于层流。

此时,为提高铸件轮廓清晰度,可降低液体粘度,此时应适当提高过热度或者加入表面活性物质等;2)影响热裂、缩孔、缩松的形成倾向:由于凝固收缩形成压力差而造成的自然对流均属于层流性质,此时粘度对流动的影响就会直接影响到铸件的质量;3)影响精炼效果及夹杂或气孔的形成:粘度η较大时,夹杂或气泡上浮速度较小,会影响精炼效果;铸件及焊缝的凝固中,夹杂物和气泡难以上浮排除,易形成夹杂或气孔;4、影响钢铁材料的脱硫、脱磷、扩散脱氧:而金属液和熔渣中的动力学粘度η低则有利于扩散的进行,从而有利于脱去金属中的杂质元素;5、熔渣及金属液粘度降低对焊缝的合金过渡的进行有利;6、对缩孔、缩松、晶粒大小和偏析的影响,即η愈大,铸件内部缩孔或缩松倾向增大。

另外,η大时,将使凝固过程中对流困难而造成晶粒粗化;影响凝固界面前端的熔点物质向后扩散而导致区域偏析3、简述表面张力的实质及影响表面张力的因素表面张力是由于物体在表面上的质点受力不均所造成。

1)原子间的结合力,物体内部原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑;2)温度的影响:随温度升高而下降。

因为原子间距随温度升高而增大;3)溶质元素自由电子数目的影响,自由电子数目多的溶质元素,其表面双电层的电荷密度大,对金属表面的压力也大,从而使系统表面张力增加。

化合物表面张力之所以较低,是因其自由电子较少的缘故;4)合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变向系统中加入削弱原子间结合力的组元,会使u0 减小,使表面内能降低,这样,将会使表面张力降低,溶质与溶剂的原子体积之差表面活性元素均降低熔体的表面张力;影响液体表面张力的因素:内因:无机液体的表面张力比有机液体的表面张力大得多;水的表面张力72.8mN/m(20℃);有机液体的表面张力都小于水;含氮、氧等元素的有机液体的表面张力较大;含F、Si的液体表面张力最小;水溶液:如果含有无机盐,表面张力比水大;含有有机物,表面张力比水小。

外因:温度升高表面张力减小;压力和表面张力没有关系。

注:液体(0度以上时)表面张力最弱的是酒精4、试述表面张力在材料成形中的意义1)表面张力引起的曲面两侧压力差及其相关作用,在铸造和焊接中的意义,铸造过程中为防止粘砂,通常要求金属液与砂型不润湿。

但毛细管直径D和金属液静压头H越大,越易粘砂;焊接和铸造熔炼过程中高温下会产生融入到金属液中的气体,为加速凝固过程中气体的逸出,表面张力起重要作用;CO2气保焊熔滴过渡中易产生飞溅也可由表面张力引起的曲面两侧压力差得到解释。

焊丝含碳量越高,飞溅倾向越大2)液膜拉断临界力及表面张力对凝固热裂的影响,在凝固的后期,不同晶粒之间存在着液膜,由于表面张力的作用,液膜将其两侧的晶体紧紧地吸附在一起,液膜厚度越小,其吸附力量就越大。

液膜拉断时若无外界液体补充,那么晶粒间或枝晶间便形成了凝固热裂纹。

可见,液膜的表面张力越大,液膜越薄,则液膜的拉断临界应力f max 越大,裂纹越难形成。

3)表面张力对熔滴过渡的影响,熔化极电弧焊,颗粒状熔滴向熔池中过渡时,表面张力大的熔滴形成细颈的阻力大,致使熔滴颗粒增大,熔滴过渡频率降低而导致电弧稳定性较差,飞溅增多;改善熔滴过渡状态的途径在于降低其表面张力,主要有两措施:增大焊接电流,使熔滴温度上升,表面张力降低,熔滴颗粒减小(电流增大到一定程度时,由熔滴过渡转为细颗粒高速喷射过渡);适当增强电弧气氛的氧化性可降低表面张力,细化熔滴5、什么是液态金属的充型能力?影响充型能力的因素有哪些?液态金属充型能力:铸造过程中,液态金属充满铸型型腔,获得形状完整、轮廓清晰铸件的能力,即液态金属充填铸型的能力。

影响液态金属充型能力的因素:内因—金属本身的流动性,外因—铸型性质、浇注条件、铸件结构等因素的影响,1)金属性质方面的因素(流动性的高低),具有宽结晶温度范围的合金:流动性不好,结晶温度范围ΔT = T L-T S ↑→充型能力(流动性L)↓;合金液的比热、密度越大,导热系数越小,停止流动前的时间越长,充型能力好;2)铸型性质方面的因素,蓄热系数b2 越大,铸型激冷能力越强,金属液保持液态的时间就越短,充型能力下降;预热铸型能减小金属与铸型的温差,从而提高充型能力,具有发气能力的铸型,可减少流动的摩擦阻力而有利于充型;3、浇铸条件方面的因素,浇注温度越高、充型压头越大,则液态金属的充型能力越好;4、铸件结构方面的因素,在铸件材质、铸型性质及浇铸条件相同的条件下,同体积铸件模数越大,由于与铸型接触的表面积小,散热较缓慢,因而液态金属的充型能力越好。

铸件结构越复杂,厚薄过渡面越多,则型腔结构越复杂,流动阻力越大,充型能力也越差。

(可以认为合金的流动性是在确定条件下的充型能力。

灰口铸铁、硅黄铜的流动性最好;铸钢的流动性最差)6、试述液态金属停止流动的两种主要机理液态金属停止流动机理,随金属的结晶特性(取决于结晶温度范围)可分:①窄温度范围,在金属的过热热量未散失尽以前为纯液态流动,为第Ⅰ区,金属液继续流动,冷的前端在型壁上凝固结壳,而后的金属液是在被加热了的管道中流动,冷却强度下降。

由于液流通过Ⅰ区终点时,尚具有一定的过热度,将已凝固的壳重新熔化,为第Ⅱ区。

故,该区是先形成凝固壳,又被完全熔化。

第Ⅲ区是未被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热能量。

在第Ⅳ区,液相和固相具有相同的温度——结晶温度。

由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。

此类金属的流动性与固体层内表面的粗糙度、毛细管阻力及在结晶温度下的流动能力有关;②宽结晶温度合金停止流动机理,对于宽结晶温度范围的合金,试验表明,在液态金属的前端析出15-20%的固相量时,流动就停止。

结晶温度范围越宽,枝晶就越发达,液流前端析出相对较少的固相量,即在相对较短的时间内,液态金属便停止流动。

具有最大溶解度的合金流动性最小第二章凝固温度场1、名词解释:等温面;等温线;温度梯度;热流密度;铸件凝固时间;模数;焊接线能量等温面:温度场中在同一时刻下相同温度各点所组成的空间曲面。

等温线:某个特殊平面与等温面相截的交线。

温度梯度:对于一定温度场,沿等温面或等温线某法线方向的温度变化率。

温度梯度越大,图上反映为等温面(或等温线)越密集,具有方向性的物理量(所谓温度梯度就是两相邻等温面之间的温度,温度梯度是向量,其方向垂直于等温面,其正方向是指向温度增加的方向)。

热流密度:单位时间内通过单位面积的热量。

铸件的凝固时间:是指从液态金属充满型腔后至凝固完毕所需要的时间。

模数:将V1与A1推广理解为一般形状铸件的体积与表面积,并令 R= V1/A1。

R-为铸件的折算厚度。

[原意:V1-为铸件凝固层的体积(而并非是铸件体积),A1-铸件与铸型的接触面积]。

焊接线能量:单位长度焊件上的热输入,即E=q/v,q-为焊接热源的有效输入功率,v-为焊接速度。

2、什么是初始条件和边界条件?常见边界条件有哪几类?初始条件:是指物体开始导热时(即t = 0 时)的瞬时温度分布;边界条件:是指导热体表面与周围介质间的热交换情。

第一类边界条件:给定物体表面温度Tw随时间t的变化关系,表达式为Tw=f(t);第二类边界条件:给出通过物体表面的比热流随时间t的变化关系,表达式为;第三类边界条件:给出物体周围介质温度以及物体表面与周围介质的换热系数,表达式为:。

以第三类边界条件最为常见。

3、从界面阻热的变化讨论铸件凝固过程温度场分布①金属铸件与绝热型铸型—类型:砂型、石膏型、陶瓷型等多数非金属铸型属此类,铸型导热系数远小于凝固金属;特点:凝固铸件内及液态金属中温度分布可认为是近似均匀的。

此时铸件内的凝固、散热速度主要取决于铸型的热物理性能,界面热阻可忽略;铸型内表面温度接近铸件温度,铸型内温度梯度很大,当铸型足够厚时,其外表面温度保持起始温度。

②界面热阻较大的金属铸型---当金属型内耐高温涂层较厚或涂层导热性较差时,界面涂层的热阻较铸件与铸型的热阻大得多,此时铸件的凝固、散热速度主要取决于涂层的厚度与导热性能;铸件与金属型中的温度梯度可忽略不计,温度降集中在界面上③界面热阻很小的金属铸型--当金属型的表面涂层很薄涂层材料的导热性能很好时,界面热阻相对于金属铸型、铸件内的热阻可忽略不计,此时铸件的凝固、散热速度主要取决于铸件与铸型的热物理性能;可近似认为界面上没有温度降④非金属铸件与金属铸型—类型:注塑、熔模金属铸造中压制腊模;特点:非金属铸件导热性差,界面热阻和金属型热阻可忽略,铸件的凝固、散热速度主要取决于铸件自身的热物理性能,温度降主要发生在铸件一侧4、常见铸件凝固方式分为几类?影响凝固方式的因素有哪些?分为三类:当固液两相区很窄时称为逐层凝固方式,反之为糊状凝固方式(体积凝固方式),固液两相区宽度介于两者之间的称为“ 中间凝固方式”,铸件凝固方式对凝固液相的补缩能力影响很大。

相关文档
最新文档