平行四边形判定学案
小学四年级平行四边形教案

小学四年级平行四边形教案通过观看、操作等活动,熟识平行四边形以及图形的特征;通过操作活动(折纸)熟识并理解平行四边形的高。
一起看看小学四年级平行四边形教案!欢迎查阅!小学四年级平行四边形教案1教学目标:1、通过观看、操作等活动,熟识平行四边形以及图形的特征;通过操作活动(折纸)熟识并理解平行四边形的高。
2、经历探究平行四边形形状的过程,了解它的基本特征,进一步进展空间观念,培育学生动手操作能力。
3、通过观看、操作、沟通等数学活动,体验数学问题的探究性和挑战性,感受数学思索的条理性。
教学重、难点:让学生在观看、操作、沟通等教学活动中熟识平行四边形。
教具预备:一个长方形方框,多媒体课件。
学具预备:每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。
教学过程:一、谈话引入老师:同学们,在以前的学习中我们已经初步熟识了平行四边形。
事实上,在我们生活中也经常见到平行四边形。
请看大屏幕。
(课件出示主题图)请同学们仔细观看这些物体,你能在这些物体上找出平行四边形吗?(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。
)老师:同学们观看得格外仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢?今日这节课老师就和同学们一起来进一步熟识平行四边形。
板书课题:平行四边形二、探究新知1、熟识平行四边形的特征(1)老师:同学们喜爱看魔术表演吗?(喜爱)现在,老师就给同学们表演一个小魔术。
(老师出示一个长方形方框)这个图形大家熟识吗?(它是长方形) 老师:对!这是一个长方形。
老师握着这个长方形方框的两个对角,轻轻地拉一拉。
变!变!变!这还是长方形吗?(平行四边形)对!这是平行四边形。
老师:你们想玩玩这个魔术吗?(2) 学生自己用硬纸条做的长方形方框来体验平行四边形的不稳定性。
(3)师:同学们观看老师手里的平行四边形,同桌探讨你们发觉了什么?生1:对边平行生2:对边相等同学们真聪慧,真能干通过观看发觉了这么多!同学们,这些发觉对吗?现在我们来验证我们的发觉,请同学们拿出老师发的平行四边形,首先我们用画平行线的方法来验证对边是否平行。
1.1平行四边形学案

1. 1 平行四边形及其性质诸城市辛兴初中臧运建学习目标1、理解平行四边形的概念2、经历探索平行四边形的概念和性质的过程发展探究意识3、能证明平行四边形的三个性质①对边相等②对角相等③对角线互相平分4、进一步培养的分析、综合的思考方法,及表达书写能力.发展演绎推理能力重点:平行四边形的性质证明难点:分析、综合思考的方法二、学法分析法、类比探索,合作讨论式学习过程:课前延伸案知识回顾:1你能画出平行四边形吗?举例说明日常生活中有哪些是平行四边形?2平行四边形有那些性质?你能有所学知识进行证明吗?课内探究案一、自主观察操作自学课本4,完成3个思考题总结概念:平行四边形表示符号:读法:二、合作交流(探究一)1、猜想:指出□ABCD的对边和对角,度量说明对边和对角的关系?2、你的猜想正确吗?能否用所学知识证明你的结论?证明:平行四边形对边相等、对角相等三、学以致用例1、如图在□ABCD 中,∠A=36°,求其他各个角的度数。
四、巩固练习:1、在□ABCD 中,E 、F 分别是AD 、BC 的中点, 求证:BE=DF拓展思考:在上述条件下,当点E 、F 分别在AD 、BC 上满足什么条件时使BE=DF ?探究二:画出□ABCD 平行四边形,作出两条对角线AC 和BD ,若交点为O , (1)猜想:AO 、BO 、CO 、DO 的长常会有什么特征? (2)度量试试你的猜想是否正确?证明:平行四边形对角线互相平分学以致用:如图,□ABCD 的对角线AC 和BD 交点为O ,直线EF 过点O,且与AD,BC 分别交于E 、F ,求证OE=OFFD CB巩固练习:如图,在□ABCD中,点E,F在对角线AC上,且AE=CF.请你以点F为一个端点,和图中已标明字母的某一点连成一条线段,猜想并证明它和图中已有的某一线段相等(只需证明一组线段相等即可)(1)连结_________(2)猜想:________=_________(3)证明:四、课堂小结:学生总结本节课的知识收获(以知识树形式),说出本节困惑,教师补充解决问题的方法、思路,并对学生学习进行评价。
【学案】 平行四边形的性质和判定的应用

平行四边形的性质和判定的应用学习目标:1、探究并掌握平行四边形的对角线的性质。
2、综合应用平行四边形的性质解决问题。
知识复习:1、什么叫平行四边形?2、上节课我们学习了平行四边形的那些性质?3、平行四边形的周长是24cm,两邻边的比是:3:4,则两邻边的长分别是:4、 ABCD,∠B=50°,则∠A=∠C=∠D=新课学习:1、 ABCD的对角线相交于点O,观察OA与OC、OB与OD的关系。
如图,你能证明吗?2、平行四边形的性质定理3平行四边形的对角线互相平分。
几何语言:3、定理证明:已知:求证:证明:试一试:1.如图,ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE 的周长为()A.4cmB.6cmC.8cmD.10cm2.如图,ABCD中,EF过对角线的交点O,如果AB=4cm,AD=3cm,OF=1cm,则四边形BCFE的周长为__________________.第1题第2题第3题3.如图,所示,在ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD例题学习:1、ABCD中,AC与BD相交于点O,过点O作直线分别交AD,BC于点E、F。
求证:OE=OF证明:2、第1题中其它条件不变,将分别交AD,BC于点E、F,改为分别交BA,DC的延长线于点E、F。
上面的结论是否成立?说明理由。
课堂练习:1、ABCD中,AC与BD相交于点O,AB=6、AC=8、BD=12求⊿AOB的周长。
2、ABCD中,AC与BD相交于点O,AE⊥BD、CF⊥BD,垂足分别是点E、F。
(1)找出图中所有的全等三角形,(2)求证:OE=OF,3.如图,在ABCD中,对角线AC,BD交于点O,AC=10,BD=8,则AD的取值范围是_________.第3、4题4.如图,在ABCD 中,对角线AC﹑BD 相交于点O,且AC+BD=20,△AOB 的周长等于15,则CD=______.5.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形, 周长都是18cm,则这条对角线长是_________cm.6.下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为()……图①图②图③图④A.55B.42C.41D.297.如图,平行四边形ABCD 的对角线AC、BD 交于点O,E、F 在AC 上,G、H 在BD 上,AF=CE,BH=DG.求证:GF∥HE.H AC B DO EGF。
1.3。1平行四边形的性质(教学案)

初三数学教学案1. 3.1 平行四边形的性质班级________ 姓名________ 学号________ 等第________学习目标 1、能证明平行四边形的三个性质①对边相等②对角相等③对角线互相平分2、进一步培养的分析、综合的思考方法,及表达书写能力.发展学生演绎推理能力.3、掌握命题的题设、结论 重 点:平行四边形的性质证明难 点:分析、综合思考的方法 过 程: 一、知识回顾:我们曾经探索得到的平行四边形、矩形、菱形、正方形的性质,在下表相应的空格内打“√”(课本13页) 二、探究新知:1、证明:平行四边形对边相等、对角相等.2、证明:平行四边形对角线互相平分三、例题讲解:1、在□ABCD 中,E 、F 分别是AD 、BC 的中点. 求证:BE=DFFD CB拓展思考:在上述条件下,当点E、F分别在AD、BC上满足什么条件时使BE=DF?2、如图,在□ABCD中,点E,F在对角线AC上,且AE=CF.请你以点F为一个端点,和图中已标明字母的某一点连成一条线段,猜想并证明它和图中已有的某一线段相等(只需证明一组线段相等即可).(1)连结_________.(2)猜想:________=_________.(3)证明:四、课堂演练:1.判断题(对的在括号内填“∨”,错的填“×”)(1)平行四边形两组对边分别平行;()(2)平行四边形的四个内角都相等;()(3)平行四边形的相邻两个内角的和等于180°;()()(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm;(5)在平行四边形ABCD中,如果∠A=35°,那么∠B=55°;()2.平行四边形的周长为30,两邻边的差为5,则其较长边是________.※3.在□ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为().(A)AB=4,AD=4 (B)AB=4,AD=7 (C)AB=9,AD=2 (D)AB=6,AD=2 ※4.平行四边形一边长为12cm,那么它的两条对角线的长度可能是().(A)8cm和14cm (B)10cm和14cm (C)18cm和20cm (D)10cm和34cm 3、证明:夹在两条平行线之间的平行线段相等.初三数学教学案1.3.1 平行四边形的性质课后作业班级________ 姓名________ 学号________ 等第________1.已知O是□ABCD的对角线交点,AC=10cm,BD=18cm,AD=•12cm,•则△BOC•的周长是_______.2.已知□ABCD的对角线AC,BD交于点O,△AOB的面积为2,那么□ABCD的面积为_____.3.如图,在□ABCD中,对角线AC,BD交于点O,EF是过点O的一条直线,交AB于点E,•交DC于点F.则OE与OF有什么数量关系,答4.已知平行四边形的两邻边之比为2:3,周长为20cm,•则这个平行四边形的两条邻边长分别为___________.5.如图,在□ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长.6.如图,在□ABCD中,AC⊥AB,AB=6,BC=10,求:(1)AB与CD的距离;(2)AD与BC的距离.7.用三种不同的方法把□ABCD的面积四等分,并简要说明分法.8.已知:如图,在□ABCD中,AC,BD交于点O,EF过点O,分别交CB,AD•的延长线于点E,F,求证:AE=CF .9.如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交AB于点F,∠ADC的平分线DG交边AB于点G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.。
平行四边形学案

B汤原一中八年级数学导学案课题:平行四边形及其性质(一)一、学习目标:1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 二、重点、难点1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、学习过程我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义: 。
(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ABCD ”,读作“平行四边形ABCD ”. 书写格式:①∵AB//DC ,AD//BC ②∵四边形ABCD 是平行四边形∴四边形ABCD 是平行四边形(判定); ∴AB//DC , AD//BC (性质). 2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.同学们根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)平行四边形的对边平行.根据平行线的性质,在平行四边形中,相邻的角互为 . (2)猜想 平行四边形的对边 ,对角 .下面证明这个结论的正确性. 已知:如图ABCD ,求证:AB =CD ,CB =AD ,∠B =∠D ,∠BAD =∠BCD . 分析:作 ABCD 的对角线AC ,它将平行四边形分成△ABC 和△CDA ,证明这两个三角形全等即可得到结论. 证明:由此得到:平行四边形性质1 平行四边形的对边( ). 平行四边形性质2 平行四边形的对角( ). 怎样用几何语言来表示?如图, ∵四边形ABCD 是平行四边形(已知)∴ (平行四边形的对边相等)(平行四边形的对角相等)(三)、例题讲解例1 如图,小明用一根36m 长的绳子围成了一个平行四边形场地,其中边长AB 为8m ,其它三条边各是多少?例2 如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .(四)、随堂练习 1.(1)在 ABCD 中,∠A=60° ,则∠B= 度,∠C= 度,∠D= 度. (2)如果ABCD 中,∠A —∠B=40,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm , 2.如图,在 ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足, 求证:BE =DF .(五)、当堂检测(1) ABCD 中,∠A 比∠B 大30︒,则∠C= (2) ABCD 中,AB=5,BC=3,则周长=(3)平行四边形一个外角是38︒,这个平行四边形每个内角度数分别是(4) ABCD 中,AB=6cm,AB的长是 ABCD 周长的316,则BC=(六)、课后练习1、已知ABCD 中,∠A=80°,∠B= ,∠C= ,∠2、如图2,四边形ABCD 是平行四边形,则∠ADC= ,∠AB= ,BC= 。
八年级数学下册:《1.1平行四边形及其性质(二)》学案 新人教版

课型 执笔人 学 新授 审稿人 习 内 容 授课时间 总第 2 课时 学习随记
学习目标:1、掌握平行四边形对角线互相平分的性质. 自学收获 2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证 明题. 学习过程: 一、 学习新知 如图 , EFGH 中,连接对角线 EG、HF,设它们分别交于点 O.分别度量 OH、OF 的长度, 你发现它们存在的数量关系是_________________. 猜想线段 OG、OE 之间的数量关系是_______________________. 证明你的猜想:
② 已知 AB=2BC,求各边的长
③ 已知对角线AC、BD 交于点 O,△AOD 与△AOB 的周长的差是 10,求各边的长
2、如图, ABCD 中,AE⊥BD,∠EAD=60°, AE=2cm,AC+BD=14cm,则△OBC 的周长 是____ ___cm. 3、 ABCD 一内角的平分线与边相交并把这条边分成 5 cm , 7 cm 的两条线段,则 ABCD 的周长是__ ___ cm . 四、课 堂小结 : 平行四边形的对角线具备的性质 是_________________________. 五、当堂检测 1.判断对错 (1)在 ABCD 中,AC 交 BD 于 O,则 AO=OB=OC =OD. ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC=6、BD=4,则 AB 的范围是__ ______. 3.在平行四边形 ABCD 中,已知 AB、BC、CD 三条边的长度分别为(x+3)(x-4)和 , 16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修 几条笔直的小路,如图, AB=15cm,AD=12cm,AC⊥BC,求小路 BC,CD,OC 的长,并算出绿地的面积.
平行四边形定义及性质学案

OABCO图4-3平行四边形定义及性质学案1、定义理解:(利用P98~99平行四边形定义和性质段落内容,完成下列题目) ①在四边形ABCD 中,∵ , ;∴四边形ABCD 为 。
理由是 ②线段AC 和线段BD 叫做平行四边形ABCD 的两条 。
③平行四边形ABCD 用符号表示为 ;④∵□ABCD ,∴AB CD ,(定义)理由是: 。
AB CD ,(性质)理由是: 。
⑤∵□ABCD ,∴∠ABC=∠ ,∠BAC=∠ ;理由是: 。
⑥∵□ABCD ,∴AD ∥BC,∴∠ABC+∠BAC= 。
理由是: 。
⑦性质: 1、平行四边形的 相等, 2、平行四边形的 相等。
2、牛刀小试(请注意,第④题是让你学习做题格式和思路,) ①□ABCD 中,∠B=60。
,则∠A= ,∠C= ,∠D= 。
②□ABCD 中∠A+∠C=200°.则:∠A= ,∠B= .∠C= , ③□ABCD 中,∠A=120。
,∠ABD=35。
,则∠C= 。
,∠CBD= 。
.④如右下图,四边形ABCD 是平行四边形。
求: ③图 (1)∠D ,∠BCD 的度数。
3、探索平行四边形对角线性质如4-3图,□ABCD 的两条对角线AC ,BD 相交于点O , (1)图中有哪些三角形是全等的?有哪些线段是相等的?全等三角形有 相等的线段有:结论:平行四边形的性质3:平行四边形的对角线 。
数学表达式:∵□ABCD ,∴A0 C0,B0 D0;理由是( )4、模仿P100例1,完成下面题目如图,在□ABCD 中,BD ⊥AD ,AB=20,AD=16,分别求BC,CD 及OD,AO,AC 的长5、如图1,在□ABCD 中,对角线相交于点O ,AC ⊥CD ,AO = 3,BO = 5,则CO =____,CD=____,AD =6、在□ABCD 中,AB 、BC 、CD 的长度分别为2x +1,3x ,x +4,求□ABCD 的周长___ ____,感觉最顺手的几个题是_ _ _,感觉稍微难的题目是_ _ __,需要提醒才能完成的题目是_ __,经过讨论后发现自己做错的题目是_ ____,至今还有问题的题目是_ ____,如果让你给其他同学做些提醒,你最想提醒的是___ ; 你都和哪些同学交流了你的看法___ __ ___; 给你帮助最大(或你给他帮助)的同学是 __;平行四边形判定定理学案(阅读P103、P105、P106,选择合适判定定理,完成下列题目)①如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,理由是②如图,四边形ABCD中,若AB//CD,AD//BC则四边形ABCD是 ,理由是③四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是④图中的四边形ABCD是平行四边形吗?;理由是⑤在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。
验证力的平行四边形定则学案

如何利用大数据分析提升宣传效果在当今数字化的时代,信息传播的速度和范围都达到了前所未有的程度。
宣传工作面临着前所未有的挑战和机遇,如何在海量的信息中脱颖而出,吸引目标受众的注意力,成为了每个宣传者必须思考的问题。
大数据分析的出现,为宣传工作提供了新的思路和方法。
通过对大量数据的收集、整理和分析,我们可以更深入地了解受众的需求和行为,从而制定更精准、更有效的宣传策略,提升宣传效果。
一、大数据分析在宣传中的重要性大数据分析能够帮助我们全面了解受众。
在过去,我们对受众的了解往往是基于有限的样本和主观的判断,这种方式不仅不准确,而且具有很大的局限性。
而通过大数据分析,我们可以收集到大量关于受众的信息,包括他们的年龄、性别、地域、兴趣爱好、消费习惯等,从而构建出一个完整、准确的受众画像。
有了这样的画像,我们就能够更有针对性地制定宣传方案,选择合适的宣传渠道和内容,提高宣传的精准度和效果。
大数据分析可以帮助我们实时监测宣传效果。
在宣传活动进行的过程中,我们可以通过大数据分析工具,实时收集和分析相关的数据,如网站流量、社交媒体的关注度、用户的评论和反馈等。
这些数据能够及时反映出宣传活动的效果,让我们能够及时发现问题,调整策略,优化宣传方案,从而提高宣传的效果和效率。
大数据分析还能够预测受众的需求和行为。
通过对历史数据的分析和挖掘,我们可以发现受众需求和行为的变化趋势,从而提前做好准备,制定相应的宣传策略,抢占市场先机。
二、大数据分析在宣传中的应用场景1、精准定位目标受众通过大数据分析,我们可以对受众进行细分,将其分为不同的群体,每个群体都有其独特的特征和需求。
例如,对于一款新推出的化妆品,我们可以通过大数据分析发现,年龄在 20-30 岁之间、经常在社交媒体上关注美容时尚话题、消费能力较强的女性是最有可能购买的目标受众。
针对这一群体,我们可以制定专门的宣传方案,选择她们经常使用的社交媒体平台进行宣传,发布符合她们兴趣和需求的内容,从而提高宣传的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形的判定》学案1一、课前预习新知(一)预习目标:通过回顾以前所学的平行四边形知识与初步自学课本,感知平行四边形的判定,能写出平行四边形性质的逆命题(二)预习内容:1.平行四边形的定义:2.平行四边形的性质:3.平行四边形性质的逆命题是:【答案】:1.两组对边分别平行的四边形是平行四边形.2.(1)从边看:两组对边分别平行,两组对边分别相等.(2)从角看:两组对角分别相等,四组邻角互补.(3)从对角线看:对角线互相平分.3.两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.二、课内探究新知(一)学习目标1.通过设置问题,建立数学模型,•体会平行四边形的判定来源实际生活.2.掌握平行四边形的判定定理及推论;会用平行四边形的判定方法进行简单的推理.3.理解三角形中位线的概念,掌握三角形中位线定理.能熟练地应用三角形中位线性质进行有关的证明和计算.学习重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法;理解并应用三角形中位线定理.学习难点:平行四边形的判定定理与性质定理的综合应用;理解三角形中位线定理的推导,感悟几何的思维方法.(二)学习过程核对预习学案中的答案,并收集自学中疑问及困惑,掌握学生的学习情况。
平行四边形判定的学习:1.情景问题:我给刚学完平行四边形性质的侄女提了一个问题,你们能解决吗?问题:给你四根木条做边围成一个四边(每两根是等长的),它的形状是固定的吗?2.验证:(1)两组对边相等的四边形是平行四边形吗?已知:如图,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.(2)两组对角分别相等的四边形是平行四边形吗?如图,已知:.求证:.(3)对角线互相平分的四边形是平行四边形吗?已知:如图,OA=OC,OB=OD.求证:四边形ABCD为平行四边形.判定方法:文字语言:(1)定义:(2)(3)(4)符号语言:【答案】:(1)定义:两组对边分别平行的四边形是平行四边形;(2)判定定理一:两组对边分别相等的四边形是平行四边形;(3)判定定理二:两组对角分别相等的四边形是平行四边形;(4)判定定理三:对角线互相平分的四边形是平行四边形.符号语言1.∵AB∥CD,AD∥BC∴四边形ABCD是平行四边形2. ∵AB =CD ,AD =BC ∴四边形ABCD 是平行四边形3. ∵,BAD BCD ABC ADC ∠=∠∠=∠∴四边形ABCD 是平行四边形 4. ∵AO =CO ,BO =DO ∴四边形ABCD 是平行四边形 3.练习: 1.如图(1),若AD=8cm, AB=4cm ,那么BC= cm, CD= cm 时,四边形ABCD 是平行四边形;2.如图(2),AD=BC=16, AB=CD=15,CF=DE=9,图中有哪些互相平行的线段? 3.如图(3),若AC=10cm, BD=8cm ,则AO= cm, DO= cm 时,则四边形ABCD 为平行四边形.【答案】:(1)8、4 (2)AD ∥BC 、 AB ∥CD (3)5、44.例题例1:如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,E 、F 分别是OA OC 与的中点,并且AE =CF .求证:四边形BFDE 是平行四边形.变式(1):由例题中的特殊点E 、F 推广到较一般的,若AE =CF ,结论有改变吗?为什么?变式(2):若E 、F 移至OA 、OC 的延长线上,且AE =CF ,结论有改变吗?为什么?变式(3):若E 、F 、G 、H 分别为AO 、CO 、BO 、DO 的中点,四边形EGFH 为平行四边形吗?为什么?变式(4):若变式(3)的条件成立,那么EF 、GH 有什么位置关系?变式(5):在上题中,以图中的四点为顶点,尽可能多地画出平行四边形.【答案】:例1: ∵四边形ABCD 是平行四边形∴,OA OC OB OD ==∵E 、F 是的OA OC 与的中点 ∴OE OF =∴四边形BFDE 是平行四边形 变式(1):∵四边形ABCD 是平行四边形∴,OA OC OB OD ==∵AE =CF ∴OE OF =∴四边形BFDE 是平行四边形 变式(2):∵四边形ABCD 是平行四边形∴,OA OC OB OD ==∵AE =CF ∴OE OF =∴四边形BFDE 是平行四边形 变式(3):∵四边形ABCD 是平行四边形∴,OA OC OB OD ==∵E 、F 、G 、H 分别为AO 、CO 、BO 、DO 的中点∴OE OF=∴四边形BFDE 是平行四边形 变式(4):互相平分5.巩固练习(答案见课件1):如图,在平行四边形ABCD 中,已知AE 、CF 分别是DAB ∠、BCD ∠的角平分线,试说明四边形AFCE 是平行四边形.探究问题2:取两根等长的木条AB 、CD ,将它们平行放置,再用两根木条BC 、AD 加固,得到的四边形ABCD 是平行四边形吗?(即“一组对边平行且相等的四边形是平行四边形”吗?)CA FDB E1. 已知: 求证: 证明: 2.归纳: 3.几何语言表述:巩固练习:1.能判定一个四边形是平行四边形的条件是( ). (A)一组对边平行,另一组对边相等 (B)一组对边平行,一组对角互补 (C)一组对角相等,一组邻角互补 (D)一组对角相等,另一组对角互补2.□ABCD 的对角线的交点在坐标原点,且AD 平行于x 轴,若A 点坐标为(-1,2),则C 点的坐标为( ).A .(1,-2)B .(2,-1)C .(1,-3)D .(2,-3)3.如图,在□ABCD 中,E 、F 分别是边AD 、BC 上的点,已知AE =CF ,AF 与BE 相交于点G ,CE 与DF 相交于点H ,求证:四边形EGFH 是平行四边形.4.已知:如图,△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连结AE 、CF .求证:CF ∥AE .答案:1.C 2.A3.思路1:根据一组对边平行且相等的四边形是平行四边形得四边形AECF、BEDF是平行四边形,再根据定义判定四边形EGFH 是平行四边形.4.∵AF ∥BE ∴∠FAC =∠ECA ∵D 是AC 的中点∴AD =CD ∴△AFD ≌△CED ∴AF =CE ∴四边形AFCE 是平行四边形.三角形中位线的学习:问题一:1.将任意一个三角形分成四个面积相等的的三角形,你是如何切割的? 关键:(取三边的中点)CBAD由学生代表发表自己的观点,并说明理由.2.连接任意两边中点的线段与第三边间有怎样的位置和大小关系?已知:△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE ∥BC ,DE =21BC . ED CA B3.你能用文字表达这一结论吗?讨论:⑴一个三角形有几条中位线?⑵三角形的中位线与中线一样吗?问题2:如图,a ,b 是两条平行线,从直线a 上的任意一点A 向直线b 作垂线l ,垂足为点B ,我们得到线段AB .按同样的作法,我们作出线段CD .你能发现AB 与CD 的关系吗?aD bABC结论:定义:例1:如图△ABC的边AB=12,BC=10,AC=8,点D,E,F分别是△ABC的三边的中点.⑴求连结各边中点所成的三角形的周长;⑵以这些点为顶点,你能在图中画出多少个平行四边形.C例2:如图,点D,E分别是△ABC的边AB,AC的中点,AF是BC边上的中线,⑴若EF=5cm,则AB=cm;若BC=9cm,则DE=cm.⑵中线AF与中位线DE有什么特殊关系?证明你的结论.FC当堂检测:1.在△ABC中,D、E、F是三边的中点,AB=7,BC=6,AC=10,则四边形DBEF 的周长为.2.已知△ABC中的周长为50cm,D、E、F分别为△ABC中AB、BC、AC边上的中点,且DE=8cm,EF=10cm,则DF的长为cm.3.已知第一个三角形的周长为a,它的三条中位线组成第二个三角形,其周长为;第二个三角形的三条中位线又组成第三个三角形,其周长为;以此类推,第2013个三角形的周长为.4.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF 交AD于F,点E是AB的中点,连接EF.求证:EF∥BC.FAB CD E5.如图,在四边形ABCD 中,E 、F 、G 、H 分别AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.HG FEDABC答案:1.13 2.7 3.12a ,14a ,201212a4.证明:(1)∵CF 平分∠ACB , ∴∠ACF =∠DCF .又∵DC=AC , ∴CF 是△ACD 的中线,∴点F 是AD 的中点.∵点E 是AB 的中点, ∴EF ∥BD ,即EF ∥BC . 5.证明:连接AC ,∵E 、F 分别是边AB 、BC 的中点, ∴EF ∥AC ,EF=12AC , ∵G 、H 分别是边CD 、DA 的中点, ∴GH ∥AC ,GH=12AC , ∴GH ∥EF ,GH=EF ,∴四边形GHEF 是平行四边形.(三)课后练习1.能判定四边形ABCD 是平行四边形的是( )A .AB ∥CD ,AD=BC B .∠A=∠B ,∠C=∠D C .AB=CD ,AD=BC D .AB=AD ,CB=CD2.如图,△ABC 中,∠ABC=∠BAC ,D 是AB 的中点,EC ∥AB ,DE ∥BC ,AC 与DE 交于点O .下列结论中,不一定成立的是( )A .AC=DEB .AB=AC C .AD=ECD .OA=OE3.如图所示,在□ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有________个平行四边形.4.如图所示,在四边形ABCD中,AD∥CB,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则________秒后四边形ABQP为平行四边形.5.如图,在□ABCD中,AM=CN,求证:四边形MBND是平行四边形.6.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.7.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.参考答案:1.C2.B3.4 4.25.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵AM=CN,∴AB-AM=CD-CN,即BM=DN且BM∥DN.∴四边形MBND是平行四边形.6.证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).7.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C,∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°,∴∠C=∠BAD,∴∠3=∠BAD,又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE,∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.。