带电粒子在磁场中的运动解题技巧

合集下载

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。

电荷在磁场中运动的圆心、半径、运动时间的基本求解方法

电荷在磁场中运动的圆心、半径、运动时间的基本求解方法

电荷在磁场中运动的圆心、半径、运动时间的基本求解方法大家知道,当带电粒子进入匀强磁场的速度方向与磁场垂直时,带电粒子做匀速圆周运动。

那么,圆周运动的圆心、半径、以及粒子在磁场中运动的时间都该怎么求呢?下面我们来对这个问题进行总结。

首先来找圆心,常见的有三种不同的情况。

第一种情况,已知粒子运动轨迹上两点的速度方向。

因为速度方向就是轨迹的切线方向,而半径一定与切线垂直,所以做出两速度方向的两条垂线,两垂线的交点就一定是圆心。

第二种情况,已知粒子运动轨迹上一点的速度方向和另一点的位置。

还是要先做出这个速度方向的垂线,这样圆心一定在这条线上。

接着还要找一条线,那就先连接这两点,形成圆的一条弦,接着做出这条弦的中垂线,圆心也一定在这条中垂线上。

两垂线的交点就是圆心。

第三种情况,已知粒子运动轨迹上的三点位置,分别连接两点,得到两条弦,两条弦的中垂线的交点就是圆心。

这就是找圆心时常见的三种情况,解题时要根据具体情况选择方法。

圆心找到以后,半径就很容易确定了。

半径一方面满足公式r=mνqB,另一方面也可以在图中利用几何知识来求。

最后就是粒子运动的时间,关键有两点,先根据公式T=2πm qB求出粒子圆周运动的周期,接着根据几何关系,计算出粒子运动的圆心角θ,然后就可以根据比例关系求时间t 。

再详细说一下圆心角θ的计算。

如图粒子运动的轨迹是一段劣弧,α为弦切角,θ为圆心角,β为偏转角。

圆心角θ就是弦切角α的2倍,也就是θ=2α。

在这个四边形中圆心角θ和β的补角互补,所以θ=β。

如果换一种情况,粒子运动的轨迹是一段优弧,图形跟轨迹是劣弧时几乎完全一样,只是θ和β都换了位置。

这种情况的θ等于2π-2α,但θ和β依然相等。

下面我们来看一个例子,图中是垂直纸面向里的匀强磁场,磁感应强度B=1T,一电子从x轴上与x轴成300角方向以ν=3.2x107m/s速度出发。

已知电子的质量是m=9.0x10-31kg,电荷量大小q=1.6x10-19c。

18.4带电粒子在磁场中运动的临界及多解问题(原卷版)

18.4带电粒子在磁场中运动的临界及多解问题(原卷版)

18.4.带电粒子在磁场中运动的临界、多解问题要点一. 带电粒子在磁场中运动的临界问题1.临界问题的特点带电粒子在磁场中运动,由于速度或大小的变化,往往会存在临界问题,如下所示为常见的三种临界草图。

临界特点:(1)粒子刚好穿出磁场的条件:在磁场中运动的轨迹与边界相切.(2)根据半径判断速度的极值:轨迹圆的半径越大,对应的速度越大.(3)根据圆心角判断时间的极值:粒子运动转过的圆心角越大,时间越长.(4)根据弧长(或弦长)判断时间的极值:当速率一定时,粒子运动弧长(或弦长)越长,时间越长.2.解题思路分析思路:以临界问题的关键词“恰好”“最大”“至少”“要使......”等为突破口,寻找临界点,确定临界状态,画出临界状态下的运动轨迹,建立几何关系求解.往往采用数学方法和物理方法的结合:1.利用“矢量图”“边界条件”结合“临界特点”画出“临界轨迹”。

2.利用“三角函数”“不等式的性质”“二次方程的判别式”等求临界极值。

一般解题流程:3.探究“临界轨迹”的方法1. “伸缩圆”动态放缩法定点粒子源发射速度大小不同、方向相同的同种带电粒子时,其轨迹半径不同,相当于定点圆在“伸缩”。

特点:1.速度越大,轨迹半径越大。

2.各轨迹圆心都在垂直于初速度方向的直线上。

应用:结合具体情境根据伸缩法,可以分析出射的临界点,求解临界半径。

2. “旋转圆”旋转平移法定点粒子源发射速度大小相同、方向不同的同种带电粒子时,其轨迹半径相同,相当于定点圆在“旋转”特点:1.半径相同,方向不同。

2.各轨迹圆心在半径为R的同心圆轨迹上。

旋转圆的应用:结合具体情境,可以分析圆心角、速度偏向角、弦切角、弧长、弦长的大小;求解带电粒子的运动时间.应用情景1.(所有的弦长中直径最长)速度大小相同、方向不同的同种带电粒子,从直线磁场边界上P点入射。

M点是粒子打到直线边界上的最远点(所有的弦长中直径最长).应用情景2.(所有的弦长中直径最长)速度大小相同方向不同的同种带电粒子,从圆形磁场边界上的P射入磁场;①若轨迹半径>磁场半径当PM距离为磁场直径时,粒子出射点与入射点之间的距离最远、共有弦最长、时间最长。

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
荣成四中高二物理组
一、带电粒子在匀强磁场中的运动规律
1、带电粒子以一定的初速度进入匀强磁场, 带电粒子将做怎样的运动?
(1)当v//B , F=0 ,带电粒子以速度v做匀速直线运 动 (2)当v⊥B,带电粒子以入射速度v做匀速圆周运动
洛伦兹力提供向 心力:
周期:
qvB mv 2 / r T 2r 2m
① 粒子进出单一直边界磁场, 入射角等于出射角。 ② 粒子进出圆边界磁场沿半径方向入,沿半径方向出。
作业题答案:
• 1D 2BD 3B 4C 5B 6A 7ABC 8ABCD 9D 10 ACD 11C
• 12 3.2X10-7m/s (π/96)X10-6S
• 0.2 0.1 3 m
• 13 V>Bqd/m t= m/2Bq
• 14 v>dBq/m( 1 cos ) • 15 U=B2L2e/2msin2
第11题、
t
2
T
T 2r 2m
v qB
R tan300 r
a VR o
r
600
c V
600
v qB
半径:
r
mv qB
2、粒子在磁场中运动的解题思路:
找圆心
利用v⊥R 利用弦的中垂线
画轨迹 利用轨迹和V相切
求半径 求时间
几何法求半径
向心力公式求半径
t
2
T
T 2r 2m
v qB
⑴粒子在磁场中运动的角度关系
偏向角 弦切角 圆心角
角度关系:2vຫໍສະໝຸດ A BvO
⑵粒子进入有界磁场的特点

带电粒子在磁场中运动问题的解题思路.

带电粒子在磁场中运动问题的解题思路.

s=2r=
例2.如图5所示,在半径为r的圆形区域内,有一 个匀强磁场。一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心。当 ∠MON=120°时,求:带电粒子在磁场区的偏转 半径R及在磁场区中的运动时间。
例2.如图5所示,在半径为r的圆形区域内,有一 个匀强磁场。一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心。当 ∠MON=120°时,求:带电粒子在磁场区的偏转 半径R及在磁场区中的运动时间。
如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度 为B的匀强磁场中,速度方向与x轴、y轴均成45°。已知该粒子电 量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?
45
45
O
(二)利用互余或互补和关系
如图所示,一束电子流以一定速率通过一个处于矩形空间的磁感应 强度为B匀强磁场,速度方向与磁感线垂直。且平行于矩形空间的其 中一边,矩形空间边长为 3 a和a电子刚好从矩形的相对的两个顶 点间通过,求电子入射速度V和在磁场中的飞行时Байду номын сангаас。
60
30
60
O
例1.如图3所示,直线MN上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O以与MN成 30°角的同样速度v射入磁场(电子质量为m,电 荷为e),它们从磁场中射出时相距多远?
例1.如图3所示,直线MN上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O以与MN成 30°角的同样速度v射入磁场(电子质量为m,电 荷为e),它们从磁场中射出时相距多远?
熟记 于心
mv r qB
互推
灵活 应用
直角三角形 三角函数 勾股定理
T t 2 T

带电粒子在磁场中的多解问题

带电粒子在磁场中的多解问题

应旳圆心角为 或 3
B
22
设圆弧旳半径为R,则有2R2=x2,可得:
R L 2n
v2 qvB m
R
v qBL 2m n
n=1、2、3、……(
n取奇数
⑶当n取奇数时,微粒从P到Q过程中圆心角旳总和为
1
n
2
n 3
2
2n
t1
2n
m qB
2 m
qB
n
其中n=1、3、5、……
当n取偶数时,微粒从P到Q过程中圆心角旳总和为
mv0 a 2mv0 L<b。试求磁场旳左边界距坐标原点 旳e可B能距离.(eB成果可用反三角函数表达)
解: 设电子在磁场中作圆周运动旳轨道半径为r, 则
解得
eBv0 r
m mv 0
v02 r


eB
y P v0
x
0
Q
⑴当r>L时,磁场区域及电子运动轨迹如图1所示,
由几何关系有 sin L eBL③
v0
c
(2)当v0最大时:
R1
R1
cos 60
L 2
得R1 = L

vmax
qBR1 m
qBL m
当v0最小时: R2 R2 sin 30
L 2
得R2 = L/3

vmin
qBR2 m
qBL 3m
a
600
O
qBL
qBL
b B
3m v0 m
300
d
v0
c
带电粒子从ab边射出磁场,当速度为 vmax 时,
运动时间最短,
150 5m
t min
T 360
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在磁场中的运动带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

下面举几种确定带电粒子运动轨迹的方法。

一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

例3.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?解析:由于粒子从同一点向各个方向发射,粒子的轨迹为绕S点旋转的动态圆,且动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9所示,最高点为动态圆与MN的相切时的交点P,最低点为动态圆与MN相割,且SQ为直径时Q为最低点,带电粒子在磁场中作圆周运动,由洛仑兹力提供向心力,由得:SQ为直径,则:SQ=2L,SO=L ,由几何关系得:P为切点,所以OP=L,所以粒子能击中的范围为。

例4.(2010全国新课程卷)如图10所示,在0≤x≤A.0≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。

坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内。

己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y轴正方向夹角正弦。

解析:设粒子的发射速度为v,粒子做圆周运动的半径为R,由牛顿第二定律和洛仑兹力公式得:,解得:。

从O点以半径R(<R<a)作“动态圆”,如图11所示,由图不难看出,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切。

设该粒子在磁场中的运动时间为t,依题意,所以∠OCA=。

设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系得:,,再加上,解得:,,三、缩放圆法带电粒子以大小不同,方向相同的速度垂直射入匀强磁场中,作圆周运动的半径随着速度的变化而变化,因此其轨迹为半径缩放的动态圆(如图12),利用缩放的动态圆,可以探索出临界点的轨迹,使问题得到解决。

例5.如图13所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为θ,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。

解析:如图14所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,设此时的速率为v0,带电粒子在磁场中作圆周运动,由几何关系得:r+r cosθ=d①电子在磁场中运动时洛伦兹力提供向心力:,所以:②联立①②解得:,所以电子从另一侧射出的条件是速度大于。

例6.(2010全国II卷)如图15所示,左边有一对平行金属板,两板的距离为d,电压为U,两板间有匀强磁场,磁感应强度为B0,方面平行于板面并垂直纸面朝里。

图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直纸面向里。

假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板间的区域,并经EF 边中点H射入磁场区域。

不计重力。

(1)已知这些离子中的离子甲到达边界EG后,从边界EF穿出磁场,求离子甲的质量;(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为3a/4,求离子乙的质量;(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达?解析:由题意知,所有离子在平行金属板之间做匀速直线运动,则有:qvB0=qU/d,解得离子的速度为:v=U/B0d(为一定数值)。

虽然离子速度大小不变,但质量m改变,结合带电离子在磁场中做匀速圆周运动的半径公式R=mv/qB分析,可画出不同质量的带电离子在磁场中的运动轨迹,如图16中的动态圆。

(1)由题意知,离子甲的运动轨迹是图17中的半圆,半圆与EG边相切于A点,与EF 边垂直相交于B点,由几何关系可得半径:R甲=a cos30°tan15°=()a,从而求得离子甲的质量m甲=。

(2)离子乙的运动轨迹如图18所示,在ΔEIO2中,由余弦定理得:,解得R乙=a/4,从而求得乙离子的质量m乙=。

(3)由半径公式R=mv/qB可知R∝m,结合(1)(2)问分析可得:①若离子的质量满足m甲/2≤m≤m甲,则所有离子都垂直EH边离开磁场,离开磁场的位置到H的距离介于R甲到2R甲之间,即~;②若离子的质量满足m甲<m≤m乙,则所有离子都从EG边离开磁场,离开磁场的位置介于A到I之间,其中AE的距离AE=,IE距离IE=。

四、临界法以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径r和速度v 以及磁场B之间的约束关系进行动态轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,画出临界点的轨迹是解题的关键。

例7.长为L的水平极板间,有垂直纸面向内的匀强磁场,如图19所示,磁感应强度为B,板间距离也为L,两极板不带电,现有质量为m电量为q的带负电粒子(不计重力)从左边极板间中点处垂直磁感线以水平速度v射入磁场,欲使粒子打到极板上,求初速度的范围。

解析:由左手定则判定受力向下,所以向下偏转,恰好打到下板右边界和左边界为两个临界状态,分别作出两个状态的轨迹图,如图20、图21所示,打到右边界时,在直角三角形OAB中,由几何关系得:解得轨道半径电子在磁场中运动时洛伦兹力提供向心力因此打在左侧边界时,如图21所示,由几何关系得轨迹半径电子在磁场中运动时洛伦兹力提供向心力,所以所以打在板上时速度的范围为≤v≤例8.如图22,一足够长的矩形区域abcd内充满磁感应强度为B,方向垂直纸面向里的匀强磁场,现从矩形区域ad边中点O射出与Od边夹角为30°,大小为v0的带电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力忽略不计。

求:(1)试求粒子能从ab边上射出磁场的v0的大小范围;(2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。

解析:(1)画出从O点射入磁场的粒子运动轨迹的动态圆,能够从ab边射出的粒子的临界轨迹如图23所示,轨迹与dc边相切时,射到ab边上的A点,此时轨迹圆心为O1,则轨道半径r1=L,由得最大速度。

轨迹与ab边相切时,射到ab边上的B点,此时轨迹圆心为O2,则轨道半径r2=L/3,由得最小速度。

所以粒子能够从ab边射出的速度范围为:<v0<。

(2)当粒子从ad边射出时,时间均相等,且为最长时间,因转过的圆心角为300°,所以最长时间:,射出的范围为:OC=r2=L/3。

通过以上分析不难发现,对于带电粒子在磁场中的运动问题,解题的关键是画出带电粒子在匀强磁场中的运动轨迹,如果能够熟练掌握带电粒子在磁场中运动轨迹的上述四种画法,很多问题都可以迎刃而解。

相关文档
最新文档