最佳平方逼近
第3章数值分析---最佳平方逼近

它可表示为
Tn ( x) cos( n arccos x),
x 1.
(2.10)
若令 x cos , 则 Tn ( x) cos n , 0 .
7
3.3.1
最佳平方逼近及其计算
对 f ( x) C[a, b] 及 C[a, b] 中的一个子集
span{0 ( x), 1 ( x), , n ( x)}
0
(1 x 2 )dx 0.426d1 0.934d 0 0.0026.
0
1
最大误差 ( x)
max
0 x 1
* 1 x 2 S1 ( x) 0.066.
14
3.3.2
用正交函数族作最佳平方逼近
设 f ( x) C[a, b], span{0 ( x), 1 ( x), , n ( x)},
就是在区间 [ , ] 上的正交函数族.
5
勒让德多项式 P59-61
P ,P 利用上述递推公式就可推出 0 ( x) 1 1 ( x) x,
2 P ( x ) ( 3 x 1) / 2, 2
3 P ( x ) ( 5 x 3 x) / 2, 3
4 P 30 x 2 3) / 8, 4 ( x) (35 x
det G(0 , 1 ,, n ) 0 ( P56)
* 于是方程组(3.3)有唯一解 ak ak
(k 0,1, , n),
* * S * ( x) a0 0 ( x ) an n ( x).
10
若取 k ( x) x k , ( x) 1, f ( x) C[0, 1], 则要在 H n
3_最佳平方逼近问题

( 0 , * f ) 0 * ( 1 , f ) 0 ( , * f ) 0 n
yfnie@
5
几何意义
平方逼近误差
f
*
* *
2 2
( f , f )
* *
*
( , ) 2 ( , f ) ( f , f )
yfnie@
8
基于正交基的最佳平方逼近(续)
( 0 , f ) ( 1 , f ) ( n , f ) * C , , , ( , ) ( , ) ( n , n ) 0 0 1 1
*
T
( 0 , f ) ( 0 , 0 )
)
3
0
平方误差计算
直接计算:
b a
* 2x a b sin x 2 ( ) dx ba
2 1
2
间接计算:
ab ba ba * 1 sin( 2 t 2 ) 2 ( t ) dt 2
yfnie@ 16
求 (x ) c 0 0 c 1 1 c n n , 使 得
* * * *
n n n n * * f c i i , f c i i min f c i i , f c i i . i0 i0 ci R i0 i0
c0 ( f , 0 ) c1 ( f ,1 ) cn ( f , n )
即 { i } i 0 是线性空间
的一组正交基。
T
最佳平方逼近的误差

最佳平方逼近的误差
最佳平方逼近是一种数学方法,用于逼近一个函数或数据集。
这种方法通过选择一个简单的函数(如多项式)来逼近目标函数或数据集,使得逼近误差的平方和最小。
最佳平方逼近的误差是指逼近函数与目标函数之间的误差。
这个误差可以通过最小化逼近误差的平方和来获得。
具体来说,对于一个给定的数据集,我们可以选择一个多项式函数来逼近它。
然后,我们可以通过最小化逼近函数与数据集之间的平方误差来找到最佳的逼近多项式。
最佳平方逼近的误差可以通过以下步骤计算:
确定逼近函数的形式,例如多项式函数。
确定逼近函数的系数,使得逼近函数能够最佳地逼近目标函数或数据集。
计算逼近函数与目标函数或数据集之间的平方误差。
最小化平方误差,以获得最佳的逼近效果。
最佳平方逼近的误差通常是一个衡量逼近效果好坏的指标。
如果误差较小,则说明逼近效果较好;如果误差较大,则说明逼近效果较差。
在实际应用中,我们通常会选择一个合适的逼近函数和系数,以使得逼近误差最小化。
最佳平方逼近

n
因为 f p*, p * p cj c j f p*, j 0 及
j0
( p * p, p * p) 0, 故 ( f p, f p) ( f p*, f p*).
2 则 f (x) 1 1 t g(t), 1 x 1
2 先求g(t)在区间 [-1,1] 旳一次最佳平方逼近多项式.
由
c0 *
1 2
(g,
L0 )
1 2
1 1
1 2
1 tdt 2 , 3
c1
3 2
(g,
L1 )
3 2
1 1
t 2
1 tdt 2 . 5
可知
2
2
22
q1(t) 3 L0 (x) 5 L1(x) 3 5 t,
例6 定义内积 ( f , g)
1
f (x)g(x)dx
0
试在H1=Span{1,x}中谋求对于f(x)= x 旳最佳平方逼近
元素p(x).
解 法方程为
1 12
1 2
13
c0
c1
2 2
3 5
解得
c0
4, 15
c1
4 5
所求的最佳平方逼近元素为 p(x) 4 4 x. 0 x 1 15 5
(n
,n
)
cn*
( f ,n )
因为 0x,1x, , nx 线性无关, 能够推得上系数阵是
非奇异旳. 故 (5. 82) 有唯一解 { c*j }.
四、最佳平方逼近旳误差
记 ( f p*, f p*), 称其为最佳平方逼近误差, 利用
最佳平方逼近算例

相应的正规方程组为
(ϕ 0 , ϕ 0 ) (ϕ 0 , ϕ1 ) (ϕ 0 , ϕ 2 ) a 0 ( f , ϕ 0 ) (ϕ1 , ϕ 0 ) (ϕ1 , ϕ1 ) (ϕ1 , ϕ 2 ) a1 = ( f , ϕ1 ) (ϕ , ϕ ) (ϕ , ϕ ) (ϕ , ϕ ) a ( f , ϕ ) 2 2 1 2 2 2 2 0
0
1
可解出 b = −1 , c = ,正规方程组为
* c0 (ϕ0 , ϕ0 )
1 6
c (ϕ1 , ϕ1 )
* 1
= (ϕ0 , f ) = (ϕ1 , f )
* c2 (ϕ 2 , ϕ 2 ) = (ϕ2 , f )
计算可得
1 1 , (ϕ 2 , ϕ 2 ) = 180 12 3−e 7e − 19 , ( f , ϕ2 ) = ( f , ϕ 0 ) = e − 1 , ( f , ϕ1 ) = 2 6 (ϕ 0 , ϕ 0 ) = 1 , (ϕ1 , ϕ1 ) =
ϕ * ( x) = a 0ϕ 0 ( x) + a1ϕ 1 ( x) + a 2ϕ 2 ( x) = 0.83918 x 2 + 0.85113x + 1.01299
平方逼近误差为 δ ( x) 2 = f − p2 2 = f 2 − ∑ ai ( f ,ϕi ) ≈ 2.783545 × 10− 5 .
例:求函数 f ( x) = e x 在[0,1]上的二次最佳平方逼近多项式,并估计平 ,小数点后保留 5 位. 方逼近误差 δ 2 2
解: (解法 1)
2
使用 Legendre 正交多项式
第二章最佳平方逼近

第二章 最佳平方逼近为了便于计算和分析,常常需要用一个简单的函数()x ϕ来近似代替给定的函数()f x ,这类问题称为函数逼近问题。
插值问题以及Taylor 展开问题都属于这类问题。
本章介绍另一种函数逼近问题,即最佳平方逼近。
最佳平方逼近问题的提法是:设()f x 是[],a b 上的连续函数,n H 是所有次数不超过n 的多项式的集合,在n H 中求()n P x *逼近()f x ,使()()()()()1/2222infnb n naP x H f Px f x P x dx f Pρ**∈⎡⎤-=-=-⎣⎦⎰此时称()n P x *为()f x 在[],a b 上的最佳平方逼近多项式。
我们将要研究()n P x *是否存在?是否唯一?如何求得()n P x *?首先介绍正交多项式及其性质。
§1、正交多项式正交多项式是函数逼近的重要工具,在数值积分中也有广泛的应用。
1.1正交函数系的概念定义1 设()x ρ定义在[],a b 上(有限或无限),如果满足条件:(1)()[]0,,x x a b ρ≥∈; (2)()()0,1,bnax x dx n ρ=⎰存在;(3)对非负连续函数()f x ,若()()0ba f x x dx ρ=⎰,则在[],a b 上一定有()0f x ≡那么称()x ρ是区间[],a b 上的权函数。
简称为权函数。
权函数()x ρ的一种解释是物理上的密度函数,相应的()bax dx ρ⎰表示总质量。
当()x ρ=常数时,表示质量分布是均匀的。
下面引进内积定义。
定义2 给定()[]()(),,,,f x g x C a b x ρ∈是[],a b 上的权函数,称 ()()(),()ba f g x f x g x dx ρ=⎰ ()1.1为函数()f x 与()g x 在[],a b 上的内积。
内积具有下列简单性质: ()f g g f (1)、(,)=,;()()()1212,)(,00.f g f g R f f g f g f g f f f ααα∈++≠>(2)、(,)=,;(3)、 (,)=(4)、 当时,, 此外,还有如下Cauchy-Schwarz 不等式()()()2,,,.f g f f g g ≤⋅ ()1.2我们知道,一个向量的长度的几何概念,对于函数空间及逼近有许多自然的应用。
最佳平方逼近

正规方程组一般为病态方程组,当维数 较高时,病态严重,求解困难。 可以采取选择不同的基的方式,来改变 正规方程组的性态。 我们考虑最佳平方逼近多项式,采用正 交多项式做基函数。
2
b
a
函数f ( x)和g ( x)正交 ( f , g ) w( x) f ( x) g ( x)dx 0
a b
设次数不超过n的多项式空间为 n , 显然 是C[a, b]的一个子空间,
n的基为1, x,..., x n , 则,p( x) a0 a1 x ... an x n n 是f ( x)在 n的最佳逼近元的充分必要条件为
否则,就线性无关。 区间[a,b]上c11 ( x) .... cm m ( x) 0成立 就一定有c1 ... cm 0
假定1 ( x),....m ( x)是子空间S的基, 若函数g是最佳逼近元,则
( f g , 1 ( x)) 0,( f g , 2 ( x)) 0 ...., f g , m ( x)) 0 (
w( x) C[a, b],w( x) 0,x [a, b] 称w( x)为权函数。
连续函数空间C[a, b],给定权函数w( x) 对于f , g C[a, b]
最佳平方逼近多项式
给定函数f ( x) C[a, b], 求次数不超过n的 多项式p( x),使得
b
a
w( x)( f ( x) p( x)) dx min
简记为Ax=b
求解这个方程,就能得到a, ,am, .....
从而得到f ( x)在子空间S中的最佳平方 逼近元g ( x) a11 ( x) ..... amm ( x)
最佳平方逼近原理

最佳平方逼近原理
最佳平方逼近原理(Least Squares Principle)是一种常用的数学方法,用于从一组数据中找到最佳的拟合曲线或函数。
该方法的基本思想是,通过最小化数据点到拟合曲线的垂直距离平方和来确定最佳的拟合曲线。
这种距离的平方和被称为残差平方和(residual sum of squares)。
在统计学和数学建模中,最佳平方逼近原理被广泛应用。
它可以用于拟合线性回归模型、多项式拟合、曲线拟合等问题。
通过使用最小二乘法(least squares method),可以计算出最佳拟合曲线或函数的参数,并对其进行优化。
最佳平方逼近原理的优点在于它能够提供一个简单而有效的方法来处理数据拟合问题。
它能够使我们得到一个与数据拟合最好的函数或曲线,并且具有较高的精度和可靠性。
然而,它也有一些限制,例如对于非线性问题,它可能无法提供最优解,需要使用其他方法来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
end
end
A
f=ones(n+1,n);%构造右端f
g=fun;
for i=1:n+1
f(i)=quad(g,a,b);
g=['x.*',g];
end
f
p0=A\f;%开始求解正规方程组
p=[];
for i=1:n+1
p(i)=p0(n-i+2);
end
p
fplot(fun,[a,b])%绘制逼近效果图
hold on
xi=a::b;
yi=polyval(p,xi);
plot(xi,yi,'r:')
2)
fun='abs(x)';
a=-1;b=1;
n=4;
A=zeros(n+1)%构造正规矩阵A
g='x.^0';
px=zeros(1,n+1);
for i=1:2*n+1
px(i)=quad(g,a,b)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
px =
2 0 0 0 0
px =
0 0 0
px =
0 0
px =
0 0
px =
0
px =
0
px =
0
px =
0
px =
0
A =
0
0
0
0
f =
0
p =
经检验结果与答案相同。
教师签名
年 月 日
for i=1:n+1
p(i)=p0(n-i+2);
end
p
fplot(fun,[a,b])%绘制逼近效果图
hold on
xi=a::b;
yi=polyval(p,xi);
plot(xi,yi,'r:')
五.实验结果及实例分析
1)
A =
0
px =
2
A =
2
f =
p =
2)
A =
0 0 0 0 0
0 0 0 0 0
原理:
设 ,若存在 ,使
则称 是 在 中的最佳平方逼近函数。
取 ,则逼近函数为多项式
其中 ,法方程的系数矩阵为Hilbert矩阵
…
算法:
1)给定
2)求出hilbert矩阵。
3)解出多项式拟合法方程的系数a0,a1,…an-1
4)得到多项式拟合的最佳平方逼近方程。
四.实验环境(所用软件、硬件等)及实验数据文件
学 生 实 验 报 告
实验课程名称应用数值分析
开课实验室
学 院数学与统计学院年级
专业班
学 生 姓 名学 号
开 课 时 间2014至2015学年第一学期
总 成 绩
教师签名
数学与统计学院制
开课学院、实验室:实验时间:2014年10月17日
实验项目
名称
用多项式作最佳平方逼近
实验项目类型
验证
演示
综合
设计
其他
软件:matlab
程序:
1)fun='abs(x)';
a=-1;b=1;
n=0;
A=zeros(n+1)%构造正规矩阵A
g='x.^0';
px=zeros(1,n+1);
for i=1:2*n+1
px(i)=quad(g,a,b)
g=['x.*',g];
end
for i=1:n+1
for j=1:n+1
指导教师
王坤
成 绩
一.实验目的
1.了解用多项式作最佳平方逼近的基本方法和整体思想
2.用MATLAB编写程序做最佳平方逼近实验。
3.以例题验证,观察。
二.实验内容
例
在[-1,1]上,分别求函数f(x)=|x|在Φ1=span{1,x,x3}和Φ2={1,x2,x4}中的最佳平方逼近'x.*',g];
end
for i=1:n+1
for j=1:n+1
A(i,j)=px(i+j-1);
end
end
A
f=ones(n+1,n);%构造右端f
g=fun;
for i=1:n+1
f(i)=quad(g,a,b);
g=['x.*',g];
end
f
p0=A\f;%开始求解正规方程组
p=[];