第4章 函数
中职教育-数学(基础模块)上册课件:第4章 指数函数与对数函数.ppt

接下来,我们再用描点法作出函数y log 1 x 和y log 1 x
的图像.
2
3
对数函数的定义域为(0,+∞),在定义域内取若干个x 值,分别求出对应的y值,然后列表,如表4-8、表4-9所示.
表4-8
x
… 1/4 1/2 1
2
4
…
y
…
2
1
0 -1 -2 …
表4-9
x
… 1/9 1/3 1
3
9
…
y
…
2
1
0 -1 -2 …
以表中的x值为横坐标,对应的y值为纵坐标,在直角坐标
系中依次描出相应的点(x,y),然后用光滑的曲线依次连接
这些点,即可得到函数y log 1 x 和 y log 1 x 的图像,如图4-7
所示.
2
3
图4-7
一般地,对数函数 y loga x (a 0 且 a 1)具有下列性质:
第4章 指数函数与对数函数
4.1 • 实数指数幂 4.2 • 指数函数 4.3 • 对数 4.4 • 对数函数
内容简介:本章完成了由正整数指数幂到实数指数幂 及其运算的逐步推广过程,介绍了指数函数的概念、图像和 性质,引入了对数概念及运算法则,并在此基础上介绍了对 数函数的概念、图像和性质。
学习目标:理解有理数指数幂;掌握实数指数幂及其 运算法则;了解幂函数,理解指数函数的图像和性质;了解 指数函数的实际应用,理解对数的概念;掌握利用计算器求 对数值;了解积、商、幂的对数、对数函数的图像和性质及 对数函数的实际应用。
m
an
1 n am
计算器辅助求值
下面,我们以用CASIO
fx-82ES
湘教版高中数学必修第一册课后习题 第4章 幂函数、指数函数和对数函数 4.1.1--4.1.2

第4章 幂函数、指数函数和对数函数4.1 实数指数幂和幂函数4.1.1 有理数指数幂 4.1.2 无理数指数幂必备知识基础练1.(天津滨海新区高一期中)下列运算正确的是( ) A.a 2·a 3=a 6 B.(3a)3=9a 3 C.√a 88=aD.(-2a 2)3=-8a 62.若a<0,则化简a √-1a得( ) A.-√-a B.√-a C.-√aD.√a3.(福建福州三中高一期中)已知x 2+x -2=3,则x+x -1的值为( ) A.√5B.1C.±√5D.±14.(112)0-(1-0.5-2)÷(278)23的值为( )A.-13B.13C.43D.735.若√4a 2-4a +1=1-2a,则a 的取值范围是 .关键能力提升练6.(河北张家口张垣联盟高一联考)将根式√a √a √aa(a>0)化简为指数式是( ) A.a -18B.a 18C.a -78D.a -347.已知x 2+x -2=2√2,且x>1,则x 2-x -2的值为( ) A.2或-2 B.-2 C.√6D.28.(多选题)下列根式与分数指数幂的互化正确的是( ) A.-√x =(-x )12B.√y 26=y 12(y<0)C.x-13=√x3(x≠0)D.[√(-x )23]34=x 12(x>0)9.若a>0,b>0,则化简√b 3a√a2b6的结果为 .10.化简:(2-a)[(a-2)-2(-a )12]12= . 11.化简求值:(1)0.125-13−(98)0+[(-2)2]32+(√2×√33)6;(2)(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1.学科素养创新练12.(黑龙江大庆实验中学高一期末)已知实数x 满足3×16x +2×81x =5×36x ,则x 的值为 . 答案:1.D a 2·a 3=a 5,故A 错误;(3a)3=27a 3,故B 错误;√a 88=|a|={a ,a ≥0,-a ,a <0,故C错误;(-2a 2)3=-8a 6,故D 正确.故选D.2.A ∵a<0,∴a √-1a=-√a 2×√-1a=-√a 2(-1a)=-√-a .故选A.3.C 由(x+x -1)2=x 2+x -2+2=5,可得x+x -1=±√5.故选C.4.D 原式=1-(1-22)÷(32)2=1-(-3)×49=73.故选D.5.(-∞,12] ∵√4a 2-4a +1=√(2a -1)2=|2a-1|=1-2a,∴2a-1≤0,即a≤12.6.A√a √a √aa=a 12+14+18-1=a -18,故选A.7.D (方法1)∵x>1,∴x 2>1. 由x -2+x 2=2√2,可得x 2=√2+1, ∴x 2-x -2=√2+1-√2+1=√2+1-(√2-1)=2.(方法2)令x 2-x -2=t,① ∵x -2+x 2=2√2,②∴由①2-②2,得t 2=4.∵x>1,∴x 2>x -2, ∴t>0,于是t=2,即x 2-x -2=2,故选D. 8.CD 对于选项A,因为-√x =-x 12(x≥0), 而(-x )12=√-x (x≤0),所以A 错误;对于选项B,因为√y 26=-y 13(y<0),所以B 错误; 对于选项C,x-13=√x3(x≠0),所以C 正确;对于选项D,[√(-x )23]34=x 2×13×34=x 12(x>0),所以D 正确.9.1 √b 3a√a 2b 6=√b 3a(a 2b 6)12=√b 3a ab 3=1. 10.(-a )14由已知条件知a≤0, 则(a-2)-2=(2-a)-2,所以原式=(2-a)[(2-a)-2·(-a )12]12=(2-a)(2-a)-1(-a )14=(-a )14.11.解(1)根据指数幂与根式的运算,化简可得0.125-13−(98)0+[(-2)2]32+(√2×√33)6=[(2)-3]-13−(98)0+(22)32+(212×313)6=2-1+8+(212)6(313)6=2-1+8+8×9 =81.(2)由分数指数幂及根式的运算,化简可得(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1=[(32)4]0.5+10-2√3×(33)16-4×34=94+10-2√3×√3-3 =94+10-6-3=134.12.0或12因为3×16x +2×81x =5×36x ,所以3×24x +2×34x =5×(2×3)2x ,则3×24x +2×34x =5×22x ×32x ,所以3×24x +2×34x -5×22x ×32x =0,即(3×22x -2×32x )(22x -32x )=0,所以3×22x -2×32x =0,或22x -32x =0,解得x=12或x=0.。
第4章 三角函数、解三角形 第1节 任意角和弧度制及任意角的三角函数

因此 cos 2θ=2cos 2θ-1=25-1=-35.
索引
(3)函数 y= 2cos x-1的定义域为__2__k_π_-__π3_,__2_k_π_+__π3__(k_∈__Z__) _.
解析 ∵2cos x-1≥0, ∴cos x≥21. 由三角函数线画出x满足条件的终边范围(如图阴 影部分所示), ∴x∈2kπ-π3,2kπ+π3 (k∈Z).
索引
2.弧度制的定义和公式 (1)定义:把长度等于__半__径__长__的弧所对的圆心角叫做1弧度的角,弧度记作
rad. (2)公式
角 α 的弧度数公式 角度与弧度的换算
|α|=rl(弧长用 l 表示)
1°=1π80
180° rad;1 rad=___π___
弧长公式 扇形面积公式
弧长 l=_|_α_|_r_ S=__12_lr__=__12_|_α_|r2
索引
感悟提升
应用弧度制解决问题时应注意: (1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
索引
训练1 (1)(2021·长沙质检)已知弧长4π的弧所对的圆心角为2弧度,则这条弧所
在的圆的半径为( D )
A.1
B.2
C.π
D.2π
解析 ∵弧长4π的弧所对的圆心角为2弧度,
∴4rπ=2,解得 r=2π, ∴这条弧所在的圆的半径为2π.
索引
10π (2)在单位圆中,200°的圆心角所对的弧长为______9__,由该弧及半径围成的
5π 扇形的面积为______9__. 解析 单位圆半径 r=1,200°的弧度数是 200×1π80=109π. ∴l=109π,S 扇形=12lr=21×109π×1=59π.
第4章 二元函数的偏导数及其应用 总结

Fx 2( y z) yz 0
解联立方程组
Fy
2(x
z)
xz
0
消去
,解得 x y z 3 1000
10
Fz
2(
y
x)
xy
0
xyz 1000 0
所以,根据问题的实际意义,当长方体的长、宽、高都等于10米时
(正方体),箱子所用的材料最省。
注:体积一定的长方体中,以立方体的表面积为最小。
2
2
即有
f (x, y) 2xy x2 y2
例3 求函数 z x2 3xy y 2 3x 5y 在点(1, 2 ) 处的偏导数。
解: 把 y 看作常数,对x 求导,得到
f x(x, y) 2x 3y 3
把 x 看作常数,对 y 求导,得到
f y(x, y) 3x 2 y 5
cos y ( y cos x) (x cos y) ( y sin x) ( y cos x)2
cos y(cos x x sin x)
y cos2 x
z y
(
x y
cos cos
y x
)y
(x
cos
y)y
(y
cos x) (x cos ( y cos x)2
y) ( y
cos
x)y
例6 求函数 f (x, y) x3 y3 3x2 3y 2 9x 的极值。
解:先解方程组 f x(x, y) 3x2 6x 9 0
f y(x,
y)
3y 2
6y
0
,
得驻点 (1, 0) (1, 2) (3, 0) (3, 2) 又f xx (x, y) 6x 6 f xy (x, y) 0 f yy (x, y) 6 y 6 在点 (1, 0)处, B2 AC 12 6 0 ,又 A 0 ,故点 (1, 0) 是极小 值点,极小值为 f (1,0) 5 在点(1, 2),(3, 0) 处, B2 AC 12 6 0,故函数在这两点处没有极值。 在点(3, 2) 处, B2 AC (12) (6) 0 ,又 A 0 ,故函数
第四章可测函数

fn
(x)
G(x)
lim n
fn (x)
也在E上可测,特别当
F ( x)
lim n
fn(x) 存在时,
它也在可测。
4、简单函数及其性质
(1)定义:设f (x) 的定义域E可分为有限个互不相交的可测集
s
E1,..., Es 即 E Ei ,使 f (x)在每个 Ei上都等于某常数 c ,则称 f (x)
则称 fn在E上几乎一致收敛于 f ,记为 fn f a.u.于E
注:1°”一致收敛”强于“收敛”, “收敛”强于“几乎处处收敛” 2°叶果洛夫定理得逆命题就是若 fn f a.u.于E ,则 fn f a.e.于E 3°叶果洛夫定理揭示了可测函数列几乎处处收敛与一致收敛的关系, 根据这个定理,对于任意几乎处处收敛的可测函数列,都可在E的一 个子集 上E当 作一致收敛的函数列来处理。
黎斯条件下的子列在叶果洛 夫条件下
(3)著名的勒贝格微分定理:若 f (x) 是[a,b]上的单调函数,则 f (x) 在[a,b]上几乎处处可导。 (4)[0,1]上的狄利克雷函数 D(x) 0 a.e.于 [0,1]
性质:
(1)1 a.e.于E
且 2
a.e.于E
,则 1
或 2
a.e.于E
,
且
1
2
a.e.于E
.
(2)f和g是定义在可测集E上几乎处处相等的函数,如果f是E的可测函
1 f (x), f (x) g(x),(g(x) 0 集中在零测集上)可测集。
可 测
定理 5:设 fn(x) 是E上一列(或有限个)可测函数,则
函 数
(x) inf n
fn (x)与
第4章 函数(GAI)

(4)有时为了明确表示函数无返回值,可以将函 数定义为“void”类型。但应注意:一旦函数定义为 “void”类型,就不能再使用被调用函数的返回值。
函数的调用
一个函数被另一个函数调用的过程称为函数的 调用。 一、函数调用的一般形式 函数调用的一般形式 所谓函数调用(function call),是指使程序流 程转向所定义的函数。 1.函数调用的一般形式如下: 函数名(实际参数表列) 其中,“函数名”必须与函数定义、函数声明 时的函数名同名;
一、内部函数 static 类型标识符 函数名(形参表列) 例如: static int function(int x,int y) 内部函数又称静态函数。
二、外部函数 外部函数 在需要调用外部函数的文件中,用extern声明的函数是外 部函数。
编译预处理
一、C语言提供的预处理主要有以下3种: (1)宏定义。 (2)文件包含。 (3)条件编译。 1. 宏定义可分为不带参数的宏定义和带参数的宏定义两种。 1.不带参数的宏定义 不带参数的宏定义的一般形式如下: #define 宏名 宏体
C语言中用来说明变量存储类别(属性)关键字有4个:auto (自动),static(静态),register(寄存器)和extern (外部)。 在定义局部变量时,如果不赋初值,则对于静态局部变 量来说,编译时,系统自动赋初值0或可以重新赋值;而对 于自动变量来说,它的值是一个不确定的数。
内部函数和外部函数
第4章
重点内容总结 1.函数的定义与声明 2.函数的调用 3.变量的存储类别 4.内部函数与外部函数 5.编译预处理
函数
函数的定义与声明
一、从定义的角度看,函数可以分为系统库函 数和用户自定义函数。 1.系统库函数(标准库函数)。系统库函数用户无 须定义。 库函数从功能上可分为以下几种: 1)字符分类函数:用于对字符按ASCII码分 类(分为字母、数字、控制字符、分隔符、 大小写字母等)。
第4章 指数函数与对数函数(二)(含答案)
2020-2020学年高一数学必修一第一册提优卷第4章指数函数对数函数(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四人赛跑,假设他们跑过的路程f i (x )(其中i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x ,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x2.下列各函数中,值域为(0,)+∞的是()A .22xy -=B.y =C .21y x x =++D .113x y +=3.已知2log 3x =,则13x -等于()A .2B .12C.D4.已知a =512,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的关系为()A .m +n<0B .m +n>0C .m>nD .m<n5.已知函数12log ,0()2,0xx x f x x >⎧⎪=⎨⎪≤⎩,若关于x 方程()f x k =有两不等实数根,则k 的取值范围()A .(0,+∞)B .(,0-∞)C .(1,+∞)D .(0,1]【6.若函数(01,1)x y a a a m =>-≠+的图像在第一、三、四象限内,则()A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<7.若1x 是方程4x xe =的解,2x 是方程ln 4x x =的解,则12x x 等于()A .4B .2C .eD .18.(2020全国III 卷).已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则()A .a b c<<B .b a c<<C .b c a<<D .c a b<<9.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .109310.若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤⎥⎝⎦11.【2020年高考全国Ⅱ卷理数】设函数()ln |21|ln |21|f x x x =+--,则f (x )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减12.设a 、b 、c 依次表示函数()121f x x x =-+,()12log 1g x x x =-+,()112xh x x ⎛⎫=-+ ⎪⎝⎭的零点,则a 、b 、c 的大小关系为().A .a b c<<B .c b a<<C .a c b<<D .b c a<<二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13..若lg 2m =,31log 10=n,则用m ,n 表示5log 6等于________.14.已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=-++= ⎪⎝⎭则________.15.当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.(提示:910.001952=)16.若函数()2,1,x a x af x x x a +≥⎧=⎨-<⎩只有一个零点,则实数a 的取值范围为_______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求函数f (x )=2x +lg(x +1)-2的零点个数.18.(本小题满分12分).已知函数()2x f x =,x A ∈的值域为,函数2222()(log )log g x x x =-.(1)求集合A ;(2)求函数()y g x =,x A ∈的值域.19(本小题满分12分).函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >.(1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422xxf -<.20(本小题满分12分).已知函数()()lg 101xf x =-.(Ⅰ)求函数()f x 的定义域和值域;(Ⅱ)设函数()()()lg 101xg x f x =-+,若关于x 的不等式()g x t <恒成立,求实数t 的取值范围.21(本小题满分12分).某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a 亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到6a 亩至少需要植树造林多少年?(参考数据:lg 20.3010=,lg30.4771=)22.(本小题满分12分)已知函数xy a =(0a >且1a ≠)在区间[1,2]上的最大值与最小值之和为20,记()2xxa f x a =+.(1)求a 的值;(2)证明:()(1)1f x f x +-=;(3)求1232016()()()()2017201720172017f f f f ++++ 的值.2020-2020学年高一数学必修一第一册提优卷第4章指数函数对数函数(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四人赛跑,假设他们跑过的路程f i (x )(其中i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x ,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x【答案】D 【解析】由函数的增长趋势可知,指数函数增长最快,所以最终最前面的具有的函数关系为()42xf x =,故选D .2.下列各函数中,值域为(0,)+∞的是()A .22x y -=B .y =C .21y x x =++D .113x y +=【答案】A 【解析】A ,y =(22)x的值域为(0,+∞).B ,因为1-2x ≥0,所以2x ≤1,x ≤0,y (-∞,0],所以0<2x ≤1,所以0≤1-2x <1,所以y [0,1).C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞),D ,因为11x +∈(-∞,0)∪(0,+∞),所以y =113x +的值域是(0,1)∪(1,+∞).选A .3.已知2log 3x =,则13x -等于()A .2B .12C.D【答案】B 【解析】由2log 3x =知328x ==,所以()1131331222x---===,故选B .4.已知a=12,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的关系为()A .m +n<0B .m +n>0C .m>nD .m<n【答案】D 【解析】∵0<512-<1∴f (x )=a x 在R 上单调递减,又∵f (m )>f (n ),∴m <n ,故选D .5.已知函数12log ,0()2,0xx x f x x >⎧⎪=⎨⎪≤⎩,若关于x 方程()f x k =有两不等实数根,则k 的取值范围()A .(0,+∞)B .(,0-∞)C .(1,+∞)D .(0,1]【答案】D 【解析】作出函数()y f x =和y k =的图象,如图所示由图可知当方程()f x k =有两不等实数根时,则实数k 的取值范围是(0,1]故选D6.若函数(01,1)x y a a a m =>-≠+的图像在第一、三、四象限内,则()A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<【答案】B 【解析】因为函数x y a =的图像在第一、二象限内,所以欲使其图像在第三、四象限内,必须将x y a =向下移动,因为当01a <<时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限,所以只有当1a >时,图像向下移动才可能经过第一、三、四象限,故1a >,因为图像向下移动小于一个单位时,图像经过第一、二、三象限,而向下移动一个单位时,图像恰好经过原点和第一、三象限,所以欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故11m -<-,0m <,故选:B .7.若1x 是方程4x xe =的解,2x 是方程ln 4x x =的解,则12x x 等于()A .4B .2C .eD .1【答案】A 【解析】因为1x 是方程4x xe =的解,所以1x 是函数x y e =与4y x=交点P 的横坐标;又2x 是方程ln 4x x =的解,所以2x 是函数ln y x =与4y x=交点Q 的横坐标;因为函数x y e =与ln y x =互为反函数,所以函数x y e =与ln y x =图像关于直线y x =对称,又4y x=的图像关于直线y x =对称,因此,P ,Q 两点关于直线y x =对称,所以有1221x y x y =⎧⎨=⎩,因此12114==x x x y .故选:A8.(2020全国III 卷).已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】A 【解析】::易知,,(0,1)a b c ∈,由2225555558log 3(log 3log 8)(log 24)2log 3log 8log 54144a b +==⋅<==<知a b <,因为8log 5b =,13log 8c =,所以85,138b c ==,即554485,138b c ==,又因为544558,138<<,所以445541385813c b b =>=>,即b c <,综上所述:a b c <<.故选:A .9.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D【解析】:设36180310M x N ==,两边取对数,36136180803lg lg lg 3lg10361lg 38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D .10.若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤⎥⎝⎦【答案】B 【解析】当1x <时,()1,212xf x ⎛⎫∈+∞⎛ ⎪⎝⎫= ⎪⎭⎭⎝当1≥x 时,()114,4xf x a a a ⎛⎤∈+⎛⎫=+ ⎪⎝⎭ ⎥⎝⎦ 函数()f x 的值域为(),+∞a 114212a a ⎧+≥⎪⎪∴⎨⎪≤⎪⎩,即11,42a ⎡⎤∈⎢⎥⎣⎦故选:B11.【2020年高考全国Ⅱ卷理数】设函数()ln |21|ln |21|f x x x =+--,则f (x )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D .12.设a 、b 、c 依次表示函数()121f x x x =-+,()12log 1g x x x =-+,()112xh x x ⎛⎫=-+ ⎪⎝⎭的零点,则a 、b 、c 的大小关系为().A .a b c <<B .c b a<<C .a c b<<D .b c a<<【答案】D 【解析】依题意可得,12121,log ,()2xy x y x y ===的图象与1y x =-的图象交点的横坐标为,,a b c ,作出图象如图:由图象可知,b c a <<,故选:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13..若lg 2m =,31log 10=n,则用m ,n 表示5log 6等于________.【答案】1+-m n m【解析】因为31log 10=n,所以11lg 3=n ,得到lg3n =.5lg 6lg 2lg 3log 6lg 5lg10lg 21++===--m nm .故答案为:1+-m n m14.已知函数())()1ln 31,.lg 2lg 2f x x f f ⎛⎫=-++= ⎪⎝⎭则________.【答案】2【解析】设lg 2a =,则1lgln 22a =-=-,()())ln 31f a f a a +-=++()22ln 31ln 1992ln122a a a ⎫++=+-+=+=⎪⎭,所以()1lg 2lg 22f f ⎛⎫+= ⎪⎝⎭,所以答案为215.当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.(提示:910.001952=)【答案】10【解析】设生物组织内原有的碳14含量为x ,需要经过n 个“半衰期”才不能测到碳14,则1121000n x x ⋅<,即10.0012n<,由参考数据可知,910.001950.0012=>,10110.001950.0009750.00122=⨯=<,所以10n =,故答案为:10.16.若函数()2,1,x a x a f x x x a +≥⎧=⎨-<⎩只有一个零点,则实数a 的取值范围为_______.【答案】(](],10,1-∞- 【解析】函数21y x =-的零点为±1.①当1a ≤-时,函数()y f x =在区间(),a -∞上无零点,则函数()y f x =在区间[),a +∞上有零点a -,可得a a -≥,解得0a ≤,此时1a ≤-;②当11a -<≤时,函数()y f x =在区间(),a -∞上有零点1-,则函数()y f x =在区间[),a +∞上无零点,则a a -<,解得0a >,此时01a <≤;③当1a >时,函数()y f x =在区间(),a -∞上的零点为±1,不合乎题意.综上所述,实数a 的取值范围是(](],10,1-∞- .故答案为:(](],10,1-∞- .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求函数f (x )=2x +lg(x +1)-2的零点个数.【解析】解法一:∵f (0)=1+0-2=-1<0,f (2)=4+lg 3-2>0由零点存在性定理,f (x )在(0,2)上存在实根又f (x )=2x +lg(x +1)-2在(0,+∞)为增函数,故f (x )有且只有一个零点.解法二:(数形结合)在同一坐标系中作出g (x )=2-2x 和h (x )=lg(x +1)的图象(如图所示),由图象可知有且只有一个交点,即函数f (x )有且只有一个零点.18.(本小题满分12分).已知函数()2x f x =,x A ∈的值域为[2,16],函数2222()(log )log g x x x =-.(1)求集合A ;(2)求函数()y g x =,x A ∈的值域.【答案】(1)1[,4]2;(2)[1,3]-【解析】(1)因为函数()2xf x =的值域为⎤⎦216x ≤≤,所以142x ≤≤,即函数()f x 的定义域1,42A ⎡⎤=⎢⎥⎣⎦.(2)令2log t x =,因为142x ≤≤,所以21log 2x -≤≤,即12t -≤≤,所以函数()y g x =,x A ∈可以化为()22u t t t =-(12t -≤≤),所以()()min 11u t u ==-,()()max 13u t u =-=,即函数()y g x =,x A ∈值域为[]1,3-.19(本小题满分12分).函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >.(1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x x f -<.【答案】(1)证明见解析;(2)证明见解析;(3){}|1x x <【解析】(1)证明:令0m n ==,则()()()()000020f f f f +=+=,∴()00=f .(2)证明:令n m =-,则()()()f m m f m f m -=+-,∴()()()00f f m f m =+-=,∴()()f m f m -=-,∴对任意的m ,都有()()f m f m -=-,即()y f x =是奇函数.在(),-∞+∞上任取1x ,2x ,且12x x <,则210x x ->,∴()()()()()2121210f x x f x f x f x f x -=+-=->,即()()12f x f x <,∴函数()y f x =在(),-∞+∞上为增函数.(3)原不等式可化为()()()()4211112x x f f f f -<+=+=,由(2)知()f x 在(),-∞+∞上为增函数,可得422x x -<,即()()12022x x +<-,∵210x +>,∴220x -<,解得1x <,故原不等式的解集为{}|1x x <.20(本小题满分12分).已知函数()()lg 101x f x =-.(Ⅰ)求函数()f x 的定义域和值域;(Ⅱ)设函数()()()lg 101x g x f x =-+,若关于x 的不等式()g x t <恒成立,求实数t 的取值范围.【答案】(Ⅰ)定义域为()0,x ∈+∞.值域为R .(Ⅱ)0t ≥【解析】(Ⅰ)∵1010x ->,∴01010x >,∴()f x 的定义域为()0,x ∈+∞.又∵1010x ->,∴()f x 的值域为R .(Ⅱ)()()()()()lg lg 1101l 0101g 1x x xg x f x =-+=--+1012lg lg 1101101x x x ⎛⎫-⎛⎫==- ⎪ ⎪++⎝⎭⎝⎭.∵100x >,∴1011x +>,∴202101x <<+,∴220101x -<-<+,∴2011101x <-<+,∴2lg 10101x ⎛⎫-< ⎪+⎝⎭,∴()g x 的值域为(),0-∞.∵关于x 的不等式()g x t <恒成立,∴0t ≥.21(本小题满分12分).某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a 亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到6a 亩至少需要植树造林多少年?(参考数据:lg 20.3010=,lg30.4771=)【答案】(1)11021x =-;(2)5年;(3)至少还需要26年.【解析】解:(1)设增长率为x ,依题意可得()1012a x a +=所以()1110101012x ⎡⎤+=⎣⎦即11012x +=,解得11021x =-(2)设已经植树造林n 年,则110121n a ⎛⎫+-= ⎪⎝⎭即1110222n =解得5n =,故已经植树造林5年.(3)设至少还需要m 年,则1101216m a a ⎛⎫+-≥ ⎪⎝⎭即11026m ≥即2221log 6log 2log 310m ≥=+解得lg 3101025.8lg 2m ≥+≈故至少还需要26年22.(本小题满分12分)已知函数x y a =(0a >且1a ≠)在区间[1,2]上的最大值与最小值之和为20,记()2xx a f x a =+.(1)求a 的值;(2)证明:()(1)1f x f x +-=;(3)求1232016()()()()2017201720172017f f f f ++++ 的值.【答案】(1)20;(2)见答案(3)1008【解析】(1)函数x y a =(0a >且1a ≠)在[1,2]上的最大值与最小值之和为20,∴220a a +=,得4a =或5a =-(舍去).(2)由(1)知4()42xx f x =+,∴1144444()(1)442424224x x xx x x x x f x f x --+-=+=+++++2044421422444242x x x x x x =+=+=+⋅+++.(3)由(2)知12016(()120172017f f +=,22015()(120172017f f +=, ,10081009()(120172017f f +=,∴123201612016(()(([()(201720172017201720172017f f f f f f ++++=+ 2201510081009[(()][(()]11110082017201720172017f f f f +++++=+++=。
数学物理方程课件第四章拉普拉斯方程的格林函数法
r M 0 M
M 1
1
4 xx02 y y02 zz02
解:
1
4 xx02 y y02 zz02
u(M 0)G (M n,M 0)f(M )dS G(M z,M0)|z0 f(x,y)dS
数学物理方程与特殊函数
第4章格林函数法
1
1
G ( M , M 0 ) 4 x x 0 2 y y 0 2 z z 0 2 4 x x 0 2 y y 0 2 z z 0 2
调和函数的积分表达式
k
拉 普l1r拉n 斯1
1 方x程2的基y本2 解z
ln 1
2
r
x2 y2
三维 二维
1 1 1 u
u (M 0)4 S(u n(r)r n)d S
调和函数在区域内任一点的值可以通过积分表达式用这个
函数在区域边界上的值和边界上的法向导数来表示。
2 牛曼内问题有解的必要条件
V (u 2 v v 2 u )d V S (u n v v u n )d S
一 拉普拉斯方程边值问
题 的 1提 第法一边值问题(狄氏问题)
第四章
拉普 u f
2 第二边值问题(牛曼问题)
拉斯方程的格 u f 林函数法 n
3 内问题与外问题
4 调和函数:具有二阶偏导数并且满足拉普拉斯方程 的连续函数。
二 格林公式及其结论
V (u 2 v )d V S u n vd S V u v d V 格V 林(u 公 2 式v 的v 结 2 论u ):d V S (u n v v u n )d S
半空间的格林函数
1 1 1
G(M,M0)4rM
r M 0 M
M 1
M0q d
第4章 利用函数编程
9
4.1.2 函数的定义
2. 无参函数的定义格式 无参函数的定义格式是传统格式。定义无参函数的语句 格式有以下两种形式 :
[<类型标识符>] <函数名>() [< 类 型 标 识 符 >] < 函 数 名 > { (void) 函数体 { 或 return语句 函数体 } return语句 }
〘格式说明〙与有参函数的定义格式相比,函数名后 面的括号中没有参数,是空的,即函数名(void)与函数名( ) 是一样的涵义。
2
4.1.1 函数的引出
〘问题描述4-1〙在这之前的程序设计中,我们多次使 用系统提供的函数,如使用printf()实现数据的输出,用sqrt() 进行开方运算等。这些函数功能单一,使用方便,有效地减 少了程序设计的工作量。但在程序设计中,经常遇到多次运 用同一算法的程序实现问题,此时需要编写实现该算法的自 定义函数,通过反复调用来实现最终目的,这不仅能避免程 序重复编码,而且使得程序结构清晰,实现功能共享。现讨 论求以下组合数的编程问题。
21
4.2.2 函数调用声明
{ int a,b,c; printf(“Please input two integer numbers:”); scanf(“%a,%b\n”,&a,&b); c=max(a,b); //函数调用语句 printf(“max is%d\n”,c); }
[问题点拨] 函数声明方式不同,会使程序结构完全不一样。 因此,在复杂的调用中,必须考虑好定义与调用的先后顺序, 否则将发生错误。
6
4.1.1 函数的引出
float factorial (int x) //函数定义说明,求x的阶乘 { int i; float f=1; for(i=1;i<=x;i++) f=f*i; return (f); //返回计算结果 } 我们把这种程序设计称为模块化程序设计,也是结构化 程序设计的一条重要原则。由于C语言采用了函数模块化的 结构,因而易于实现结构化程序设计,使得程序层次结构清 晰,便于程序的编写、阅读、调试,这就是采用函数模块化 (自定义函数)的目的意义。
第4章模糊函数
2
2
∫
∞
−∞
u (t )u (t + τ )e
∗
− j 2πξt
dt =
2
∫
∞
−∞
u ( f )u ( f − ξ )e
∗
j 2πfτ
2
df
4.4 模糊函数的主要性质
一、本身的性质 1、原点对称性 2、峰值在原点 3、体积不变性 4、自变换性
χ (τ , ξ ) = χ ( −τ , −ξ )
体积是固定的,与能量有关,与信号形式无关 不同信号形式只能改变模糊图表面形状
二、模糊函数与二维分辨力的关系
χ (τ , ξ ) χ (0,0)
2 2
<< 1
组合时间-频率分辨常数:
∫ ∫ χ (τ , ξ ) ∆(τ , ξ ) =
∆(τ , ξ ) ≡ 1
2
dτdξ
2
χ (0,0)
雷达模糊原理:改变发射信号形式→ 改变模糊曲面→ 不能改变组合分辨常数→即距离速度组合分辨力受限→ 模糊图体积无论哪个轴减小另一必增大!
n=0
N −1
χ µ (τ , ξ ) =
N −1
e j 2πξ mT ⋅ χ µ 1 (τ + mT , ξ ) ⋅ ∑
m =1 N −1− m i=0
N −1
N −1− m i=0
c i c i*+ m e j 2πξ iT ∑
+ ∑ χ µ 1 (τ − mT , ξ ) ⋅
m =0
c i c i*+ m e j 2πξ iT ∑
χ (τ , ξ ) =
=
∫
u ( t ) u ∗ ( t + τ ) e j 2 πξ t dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章函数学习目标◆了解函数的定义与声明◆掌握函数的调用方式◆掌握外部函数与内部函数◆掌握局部变量与全局变量在前面的章节中已经接触过一些简单的函数,如程序的主函数main()、标准输出函数printf()。
在C语言中,大多数功能都是依靠函数来实现的。
本章将针对函数的定义、内部函数与外部函数等相关知识进行详细地讲解。
4.1 初识函数4.1.1函数的定义假设有一个游戏程序,程序在运行过程中,要不断地发射炮弹。
发射炮弹的动作需要编写100行的代码,在每次实现发射炮弹的地方都需要重复地编写这100行代码,这样程序会变得很臃肿,可读性也非常差。
为了解决代码重复编写的问题,可以将发射炮弹的代码提取出来放在一个{}中,并为这段代码起个名字,这样在每次发射炮弹的地方通过这个名字来调用发射炮弹的代码就可以了。
上述过程中,所提取出来的代码可以被看作是程序中定义的一个函数,程序在需要发射炮弹的地方调用该函数即可。
在C语言中,定义一个函数的具体语法格式如下:返回值类型函数名([[参数类型参数名1],[参数类型参数名2],……,[参数类型参数n]]){执行语句………return 返回值;}为了让读者更好地理解函数的各个组成部分,接下来对上述语法格式进行简要说明,具体如下:●返回值类型:用于限定函数返回值的数据类型;●函数名:表示函数的名称,该名称可以根据标识符命名规范来定义;●参数类型:用于限定调用方法时传入参数的数据类型;●参数名:用于接收调用方法时传入的数据;●return关键字:用于结束函数,并返回函数指定类型的值;1返回值:被return 语句返回的值,该值会返回给调用者。
如果函数没有返回值,则返回值类型要声明为void ,此时,函数体中的return 语句可以省略不写。
在上面的语法格式中,函数中的“[[参数类型 参数名1],[参数类型 参数名2],…,[参数类型 参数n]]”被称作参数列表,它用于描述函数在被调用时需要接收的参数。
如果函数不需要接收任何参数,则参数列表为空,这样的函数被称为无参函数。
相反地,参数列表不为空的函数就是有参函数。
接下来分别讲解这两种函数。
1、无参函数在C 语言中,无参函数的定义很简单,先来看一个定义无参函数的示例代码,具体如下:void func() { printf("这是我的第一个函数!\n");}上述示例代码中,func()函数就是一个无参函数,在定义时参数列表为空。
要想执行这个函数,需要在main()函数中调用它,接下来通过一个案例来演示,如例4-1所示。
例4-11#include <stdio.h> 2 void func() 3 { 4 printf("这是我的第一个函数!\n");5 }6 void main()7 {8 func();9 }运行结果如图4-1所示。
图4-1 运行结果从图4-1中可以看出,func()函数被成功调用了。
在程序中,第2行代码定义了一个无参函数func(),第4行代码将字符串打印到控制台,第8行代码在main()函数中调用该无参函数。
下面通过一张流程图来说明上面例子中函数的调用过程,具体如图4-2所示。
图4-2 主函数中调用子函数func()的流程图3从图4-2可以看出程序是由上至下按顺序执行的,程序首先从主函数开始执行,遇到“func();”语句后跳转到func()函数,执行func()函数体。
执行完func()函数后返回到原来的调用点(即“func()”语句),接着执行调用点后面的其他语句,如果后面没有其他语句,则主函数执行结束。
2、有参函数与无参函数相比,有参函数需要在函数定义时,在函数名称后面的括号中填写参数。
所谓的参数是一个变量,用于接收调用函数传入的数据。
定义有参函数的示例代码如下:void func(int x,int y) { int sum=x+y;printf("x+y=%d\n",sum);}上述代码中,定义了一个实现加法运算的函数func(),并指定了两个int 类型的参数。
为了让读者更好地掌握有参函数的用法,接下来在main()函数中调用func(int x,int y)函数,如例4-2所示。
例4-21 #include <stdio.h> 2void func(int x, int y) 3 { 4 int sum = x + y;5 printf("x+y=%d\n", sum);6 }7 void main() 8 { 9 func(3, 5); 10 }运行结果如图4-3所示。
图4-3 运行结果在例4-2中,第2~6行代码定义了一个函数func(),该函数包含两个参数,分别是x和y 。
当在main()函数中调用func()函数时,由于传入的参数是3和5,因此,程序打印的结果为“x+y=8”。
下面通过一张图来描述func()函数的调用过程,具体如图4-4所示。
图4-4 主函数中调用子函数func()的流程图从图4-4可以看出,有参函数和无参函数的调用过程类似,只不过在调用有参函数时,需要传入实参,并将传入的实参赋值给形参,然后在函数体中执行x+y操作,最终将结果输出到控制台。
值得一提的是,在定义有参函数时指定的参数x和y是形式参数,简称形参,它们只在形式上存在,并不是真正存在的参数。
调用函数时传入的参数(如案例中的3和5)是实际参数,简称实参,与形参相对,实参则是指实际存在的参数。
4.1.2函数的返回值通过前面的讲解可知,函数的返回值是指函数被调用之后,返回给调用者的值。
函数返回值的具体语法格式如下:return 表达式;对于返回值为空的函数,可以直接在return语句后面加分号,具体语法格式如下:return;为了让读者更好的学习如何使用return语句,接下来对例4-2进行改写,使func(int x, int y)函数能够返回求和计算的结果,修改后的具体代码如例4-3所示。
例4-31#include <stdio.h>2int func(int x, int y)3{4int sum = x + y;5return sum;6}7void main()8{9int sum = func(3, 5);10printf("x+y=%d\n", sum);11}运行结果如图4-5所示。
图4-5运行结果从图4-5中可以看出,例4-3与例4-2实现了同样的功能。
接下来通过一个图例来演示func()函数的整个调用过程以及return语句的返回过程,如图4-6所示。
图4-6func()函数的调用过程从图4-6可以看出,在程序运行期间,参数x和y相当于在内存中定义的两个变量。
当调用func(int x,int y)函数时,传入的参数3和5分别赋值给变量x和y,并将x+y的结果通过return语句返回,整个方法的调用过程结束,变量x和y被释放。
需要注意的是,return后面表达式的类型和函数定义返回值的类型应保持一致。
如果不一致,就有可能会报错。
如果函数没有返回值,返回值类型要声明为void。
为保证程序的可读性和逻辑性,没有返回值的函数都应定义为void。
4.1.3printf()函数和scanf()函数在C语言开发中,经常会进行一些输入输出操作,为此,C语言提供了printf()和scanf()函数,其中,printf()函数用于向控制台输出字符,scanf()函数用于读取用户的输入,下列将分别讲解这两个函数的用法。
1、printf()函数在前面的章节中,经常使用printf()函数输出数据,它可以通过格式控制字符输出多个任意类型的数据。
表4-1列举了printf()函数中常用的格式控制字符。
表4-1常用printf()格式字符表4-1中列举了很多格式控制字符,使用这些格式控制符可以让printf()输出指定类型的数据,接下来通过一个具体的案例来演示这些格式控制符的使用,如例4-4所示。
例4-41#include <stdio.h>52void main()3{4printf("%c %c", 'H', '\n');5printf("%s", "Hello, world!\n");6printf("%d %d %d \n", 1, 2, 3);7printf("%f %f \n", 2.1, 2.2);8}运行结果如图4-7所示。
图4-7运行结果在例4-4的printf()函数中,通过格式控制字符“%c”、“%s”、“%d”、“%f”,分别输出了字符、字符串、整数、浮点数。
2、scanf()函数scanf()函数负责从控制台上接收用户的输入,它可以灵活接收各种类型的数据,如字符串、字符、整型、浮点数等,scanf()函数也可以通过格式控制字符控制用户的输入,其用法与printf()函数一样。
接下来,通过一个获取字符串的案例讲解scanf()函数的用法,如例4-5所示。
例4-51#include <stdio.h>2void main()3{4char str[256]; // 字符数组保存得到的字符串5scanf("%s", str);6printf("%s\n", str);7}运行结果如图4-8所示。
图4-8运行结果在例4-5中,首先定义了一个长度为256的字符数组str,然后利用scanf()函数获得用户从控制台输入的字符,最后使用printf()函数将得到的字符串打印在控制台上。
本例中用户从控制台上输入了Helloworld,并按回车符,此时scanf()函数会把回车符看做是字符串终止的标志(也称为终止符),将整个Helloworld 读取到str字符数组中。
脚下留心:C语言中的终止符在使用scanf()函数获取用户输入的信息时,如果输入的信息中包含某个终止符,scanf()函数就认为输入结束,接下来就列举一些常见的终止符,具体如表4-2所示。
7表4-2scanf()输入字符串的终止符接下来,以例4-5为例,当程序运行后,如果输入的字符串包含空格,例如“Hello world ”,此时程序的运行结果如图4-9所示。
图4-9 运行结果从图4-9可以看出,尽管输入的字符串是Hello world ,但是程序只打印了Hello 。
这是因为Hello world 中包含一个空格,空格也是一个终止符,因此scanf()只能读到空格之前的内容。