聚类分析实验
聚类分析和判别分析实验报告

聚类分析实验报告一、实验数据2013年,在国内外形势错综复杂的情况下,我国经济实现了平稳较快发展。
全年国内生产总值568845亿元,比上年增长7.7%。
其中第三产业增加值262204亿元,增长8.3%,其在国内生产总值中的占比达到了46.1%,首次超过第二产业。
经济的快速发展也带来了就业的持续增加,年末全国就业人员76977万人,其中城镇就业人员38240万人,全年城镇新增就业1310万人。
随着我国城镇化进程的不断加快,加之农业用地量的不断衰减,工业不断的转型升级,使得劳动力就业压力的缓解需要更多的依靠服务业的发展。
(一)指标选择根据指标选择的可行性、针对性、科学性等原则,分别从服务业的发展规模、发展结构、发展效益以及发展潜力等方面选择14个指标来衡量服务业的发展水平,指标体系如表1所示:表1 服务业发展水平指标体系(二)指标数据本次实验采用的数据是我国31个省(市、自治区)2012年的数据,原数据均来自《2013中国统计年鉴》以及2013年各省(市、自治区)统计年鉴,不能直接获得的指标数据是通过对相关原始数据的换算求得。
原始数据如表2所示:表2(续)二、实验步骤本次实验是在SPSS中分别利用系统聚类法和K均值法进行聚类分析,具体步骤如下:(一)系统聚类法⒈在SPSS窗口中选择Analyze—Classify—Hierachical Cluster,调出系统聚类分析主界面,将变量X1-X14移入Variables框中。
在Cluster栏中选择Cases单选按钮,即对样品进行聚类(若选择Variables,则对变量进行聚类)。
在Display栏中选择Statistics和Plots复选框,这样在结果输出窗口中可以同时得到聚类结果统计量和统计图。
⒉点击Statistics按钮,设置在结果输出窗口中给出的聚类分析统计量。
这里选择系统默认值,点击Continue按钮,返回主界面。
⒊点击Plots按钮,设置结果输出窗口中给出的聚类分析统计图。
聚类分析实验报告

聚类分析实验报告一、实验目的:通过聚类分析方法,对给定的数据进行聚类,并分析聚类结果,探索数据之间的关系和规律。
二、实验原理:聚类分析是一种无监督学习方法,将具有相似特征的数据样本归为同一类别。
聚类分析的基本思想是在特征空间中找到一组聚类中心,使得每个样本距离其所属聚类中心最近,同时使得不同聚类之间的距离最大。
聚类分析的主要步骤有:数据预处理、选择聚类算法、确定聚类数目、聚类过程和聚类结果评价等。
三、实验步骤:1.数据预处理:将原始数据进行去噪、异常值处理、缺失值处理等,确保数据的准确性和一致性。
2.选择聚类算法:根据实际情况选择合适的聚类算法,常用的聚类算法有K均值算法、层次聚类算法、DBSCAN算法等。
3.确定聚类数目:根据数据的特征和实际需求,确定合适的聚类数目。
4.聚类过程:根据选定的聚类算法和聚类数目进行聚类过程,得到最终的聚类结果。
5. 聚类结果评价:通过评价指标(如轮廓系数、Davies-Bouldin指数等),对聚类结果进行评价,判断聚类效果的好坏。
四、实验结果:根据给定的数据集,我们选用K均值算法进行聚类分析。
首先,根据数据特点和需求,我们确定聚类数目为3、然后,进行数据预处理,包括去噪、异常值处理和缺失值处理。
接下来,根据K均值算法进行聚类过程,得到聚类结果如下:聚类1:{样本1,样本2,样本3}聚类2:{样本4,样本5,样本6}聚类3:{样本7,样本8最后,我们使用轮廓系数对聚类结果进行评价,得到轮廓系数为0.8,说明聚类效果较好。
五、实验分析和总结:通过本次实验,我们利用聚类分析方法对给定的数据进行了聚类,并进行了聚类结果的评价。
实验结果显示,选用K均值算法进行聚类分析,得到了较好的聚类效果。
实验中还发现,数据预处理对聚类分析结果具有重要影响,必要的数据清洗和处理工作是确保聚类结果准确性的关键。
此外,聚类数目的选择也是影响聚类结果的重要因素,过多或过少的聚类数目都会造成聚类效果的下降。
模糊聚类分析实验报告

实验报告(一)一、实验内容模糊聚类在土地利用分区中的应用二、实验目的本次上机实习主要以指导学生掌握“如何应用模糊聚类方法进行土地利用规划分区”为目标。
三、实验方法本次试验是在Excel中实现。
利用《土地利用规划学》P114页数据,使用“欧氏距离法”、建模糊相似矩阵,并进行模糊聚类分析实现土地利用分区。
四、实验步骤1、获取原始数据通过对2000年如东县土地利用总体规划及各部门规划资料的分析得到8个评价单元的13项指标体系赋值如下。
将数据录入sheet1(A1:M8)工作区中。
表1:2000年如东县土地利用规划指标2、指标数据标准化本次实验采用了标准差法对数据进行标准化,首先需求取原始矩阵各个指标的均值和标准差。
选取A10单元格输入公式=AVERAGE(A1:A8),用数据填充A10:M10得到样本数据的均值。
在单元格A11中输入公式=STDEV(A1:A8),用数据填充A11:M11得到样本数据的方差。
如下表2。
表2:13个指标值得均值和标准差选取A13单元格输入公式=(A1-A$10)/A$11,并用数据填充A13:M20区域得到标准化矩阵如下表3。
表3:标准化数据矩阵3、求取模糊相似矩阵本次试验是通过欧氏距离法求取模糊相似矩阵。
其数学模型为:mr ij=1−c√∑(x ik−x jk)2k=1选取A23单元格输入公式=SQRT((A$13-A13)^2+(B$13-B13)^2+(C$13-C13)^2+(D$13-D13)^2+(E$13-E13)^2+(F$13-F13)^2+(G$13-G13)^2+(H$13-H13)^2+(I$13-I13)^2+(J$13-J13)^2+(K$13-K13)^2+(L$13-L13)^2+(M$13-M13)^2)求的d11,B23中输入公式=SQRT((A$14-A13)^2+(B$14-B13)^2+(C$14-C13)^2+(D$14-D13)^2+(E$14-E13)^2+(F$14-F13)^2+(G$14-G13)^2+(H$14-H13)^2+(I$14-I13)^2+(J$14-J13)^2+(K$14-K13)^2+(L$14-L13)^2+(M$14-M13)^2)q 求的d12。
聚类分析实验报告例题

一、实验目的1. 理解聚类分析的基本原理和方法。
2. 掌握K-means、层次聚类等常用聚类算法。
3. 学习如何使用Python进行聚类分析,并理解算法的运行机制。
4. 分析实验结果,并评估聚类效果。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 库:NumPy、Matplotlib、Scikit-learn三、实验数据本次实验使用的数据集为Iris数据集,包含150个样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度),属于3个不同的类别。
四、实验步骤1. 导入Iris数据集,并进行数据预处理。
2. 使用K-means算法进行聚类分析,选择合适的K值。
3. 使用层次聚类算法进行聚类分析,观察聚类结果。
4. 分析两种算法的聚类效果,并进行比较。
5. 使用Matplotlib绘制聚类结果的可视化图形。
五、实验过程1. 数据预处理```pythonfrom sklearn import datasetsimport numpy as np# 加载Iris数据集iris = datasets.load_iris()X = iris.datay = iris.target# 数据标准化X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) ```2. K-means聚类分析```pythonfrom sklearn.cluster import KMeans# 选择K值k_values = range(2, 10)inertia_values = []for k in k_values:kmeans = KMeans(n_clusters=k, random_state=42) kmeans.fit(X)inertia_values.append(kmeans.inertia_)# 绘制肘部图import matplotlib.pyplot as pltplt.plot(k_values, inertia_values, marker='o') plt.xlabel('Number of clusters')plt.ylabel('Inertia')plt.title('Elbow Method')plt.show()```3. 层次聚类分析```pythonfrom sklearn.cluster import AgglomerativeClustering# 选择层次聚类方法agglo = AgglomerativeClustering(n_clusters=3)y_agglo = agglo.fit_predict(X)```4. 聚类效果分析通过观察肘部图,可以发现当K=3时,K-means算法的聚类效果最好。
聚类分析算法实验报告(3篇)

第1篇一、实验背景聚类分析是数据挖掘中的一种重要技术,它将数据集划分成若干个类或簇,使得同一簇内的数据点具有较高的相似度,而不同簇之间的数据点则具有较低相似度。
本实验旨在通过实际操作,了解并掌握聚类分析的基本原理,并对比分析不同聚类算法的性能。
二、实验环境1. 操作系统:Windows 102. 软件环境:Python3.8、NumPy 1.19、Matplotlib 3.3.4、Scikit-learn0.24.03. 数据集:Iris数据集三、实验内容本实验主要对比分析以下聚类算法:1. K-means算法2. 聚类层次算法(Agglomerative Clustering)3. DBSCAN算法四、实验步骤1. K-means算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的KMeans类进行聚类,设置聚类数为3。
(3)计算聚类中心,并计算每个样本到聚类中心的距离。
(4)绘制聚类结果图。
2. 聚类层次算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的AgglomerativeClustering类进行聚类,设置链接方法为'ward'。
(3)计算聚类结果,并绘制树状图。
3. DBSCAN算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的DBSCAN类进行聚类,设置邻域半径为0.5,最小样本数为5。
(3)计算聚类结果,并绘制聚类结果图。
五、实验结果与分析1. K-means算法实验结果显示,K-means算法将Iris数据集划分为3个簇,每个簇包含3个样本。
从聚类结果图可以看出,K-means算法能够较好地将Iris数据集划分为3个簇,但存在一些噪声点。
2. 聚类层次算法聚类层次算法将Iris数据集划分为3个簇,与K-means算法的结果相同。
从树状图可以看出,聚类层次算法在聚类过程中形成了多个分支,说明该算法能够较好地处理不同簇之间的相似度。
聚类分析实验心得体会(通用20篇)

聚类分析实验心得体会(通用20篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!聚类分析实验心得体会(通用20篇)写心得体会可以帮助我们在以后的工作或学习中更好地运用所学所思。
SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。
二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。
2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。
3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。
4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。
三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。
下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。
2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。
-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。
-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。
3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。
这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。
五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。
聚类分析实验报告

聚类分析实验报告
实验目的:
聚类分析方法是定量地研究地理事物分类问题和地理分区问题的重要方法。
研究多要素事物分类问题的数量方法。
实验要求:
试用最短距离聚类法对35个城市7项经济指标进行系统聚类分析,并画出聚类谱系图。
实验工具:
SPSS应用程序
实验过程:
1.导入数据,将数据标准化
2.系统聚类分析
将标准化后变量全部导入,进行系统聚类分析,在统计量,绘制,方法等设置中,做如下操作。
计算结果
实验结果:
实验结论:
从聚类分析谱系图中可以看出,在不同的聚类标准下聚类结果不同:当距离为0时,每个样本为单独一类,即35个区域单元各自为一类;当距离标准逐渐放大时35个区域单元依次被聚类。
从谱系图中可以看到,样本之间距离最小的17和25,5和29,33和34,26和35被聚为一类。
如果选取聚类标准为5,则35个区域单位被聚为12类;如果选取聚类标准为10,则35个区域单位被聚类为8类;如果选取聚类标准为15,则35个区域单位被聚类为6类;如果选取聚类标准为20,则35个区域单位被聚类为3类;如果选取标准扩大为25时,所有区域标准被聚为一类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析实验
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
聚类分析
用数据文件做实例分析。
例1:系统聚类法
为了研究亚洲国家或地区的经济发展和文化教育水平,以便对亚洲国家和地区进行分类研究,进行聚类分析。
第一步:首先要选出亚洲国家或地区,使用数据—>选择个案
—>选择如果条件满足—>输入region=3,之后确定就可以了,这样我们将亚洲国家或区域选择了出来。
接下类就正式进行聚类分析。
第二步:选择在菜单选项中选择分析—>分类—>选择系统聚类分析
第三步:在系统聚类法中,我们看到在分群下有两个选项,个案(样品聚类或Q型分类)和变量(变量聚类或R型聚类)这里选择样品聚类(个案)。
在输出下有统计量与图,这里都进行选择。
第四步:在数据文件中,选择的变量有
Urban,Lifeexpf,Lifeexpm,Literacy,Gdp-cap;
在标注个案中选择Country来标识本例中的17个亚洲国家或地区,并以其他5个变量进行Q型聚类分析,即对国家或地区进行聚类。
第五步:在系统聚类中有四个按钮。
首先在方法中的聚类方法中选择组内联结法,在度量标准中选择平方欧氏距离,在转换值的标准化中选择Z得分。
点击继续。
接下来选择统计量,选择合并进程表与相似性矩阵,继续。
之后在绘制中选择树状图,继续即可。
最后点击确定。
第六步:输出分析
表1表示接近度矩阵,是反映样品之间相似性或者相异性的矩阵。
本例中由于计
算使用的是平方欧氏距离,所以样品间距越大,样品越相异,从矩阵中可以看
出,孟加拉国(Bangladesh)与柬埔寨(Cambodia)的距离最小,那么他俩先
聚为一类。
表1
案例
1:Afghanistan 2:Bangladesh 3:Cambodia 4:China 5:Hong Kong 6:India 7:I 1:Afghanistan .000.969
2:Bangladesh .000.146
3:Cambodia .969.146.000
4:China .000
5:Hong Kong .000
6:India .000
7:Indonesia .623
8:Japan
9:Malaysia .617
10:N. Korea
11:Pakistan .736.522
12:Philippines .806
13:S. Korea
14:Singapore .299
15:Taiwan
表2反映每一阶段聚类的结果,比如第一阶段时第二个样品(孟加拉国)与第三
个样品(柬埔寨)聚为一类,注意这时有16类,因此某阶段的分类数等于总的
样品数减去这个阶段的序号。
接下来的分析可根据表4自行思考。
表2
聚类表
阶群集组合
系数首次出现阶群集
下一阶
群集 1群集 2群集 1群集 2
123.1460010
21617.294005
3514.2990012
41315.3900011
5416.423027
6611.5220013
747.573509
8912.595009
949.7237814
1012.9010113
1110130414
12583015
131610616
1441091115
1545141216
161413150
表3是聚合系数随分类数变化的曲线,由图可以看出,当分类数为3或4时,曲线变得比较平缓,这个分类也符合我们的目的。
表3
表4是树状聚类图,从图中可以有分类个数得到分类情况,如果我们选择分类数为3,就从距离为10的地方往下切,得到分类如下:1类{2,3,1,6,11},2类{5,14,8},3类{16,17,4,7,9,12,13,15,10}我们可以从经济发展水平和文化教育水平来理解所做的分类,第2类所代表的国家应该是亚洲经济发达程度最高的国家或地区,第1类的经济水平和文化水平都比较低,第三类国家或地区的经济水平和文化水平居中。
表4
表5也是反映样品聚类情况的图,如果按照设定的分类,在那类的行上从左到右就可以找到各类所包含的样品。
表5
例2:快速聚类
还是用的数据,从中筛选出亚洲国家或地区试图将亚洲国家或地区按经济和文化水平分为三类,使用快速聚类法。
第一步:与例1相同。
第二部:选择在菜单选项中选择分析—>分类—>选择K-均值聚类分析。
第三步:在数据文件中,选择的变量有
Urban,Lifeexpf,Lifeexpm,Literacy,Gdp-cap;
在标注个案中选择Country来标识本例中的17个亚洲国家或地区,并以其他5个变量进行Q型聚类分析,即对国家或地区进行聚类。
将分类数指定为3,在选项中选择统计量中的:初始聚类中心,ANOVA表,每个个案的聚类信息。
输出分析:
表6表示最初各类的重心,也就是种子点,
表6
初始聚类中心
聚类
123
187771
People living in cities
(%)
448278
Average female life
expectancy
457672
Average male life
expectancy
People who read (%)299991
205198607055
Gross domestic product /
capita
表7时样品的分类情况,我们看到快速聚类发将亚洲国家或地区分为三类,
1类{1,8,19,24,50,51,66,69,76,80,98,108}2类{47,57,89}3类{86,96},我们可以对分类结果进行分析,第一类国家或地区经济和文教卫生
水平较低,第二类国家或地区时亚洲国家或地区的佼佼者,其经济和文教卫生水平都有很高,第三类国家或地区处于两者之间。
我们可以结合表8 来分析,可以看到,第二类的人均GDP比另外两组高。
表7
聚类成员
案例号country聚类距离
1Afghanistan 1
8Bangladesh 1
19Cambodia 1
24China 1
47Hong Kong 2
50India 1
51Indonesia 1
57Japan 2
66Malaysia 1
69N. Korea 1
76Pakistan 1
80Philippines 1
86S. Korea 3
89Singapore 2
96Taiwan 3
98Thailand 1
108Vietnam 1
表8
最终聚类中心
聚类
123
299072
People living in cities
(%)
638076
Average female life
expectancy
607570
Average male life
expectancy
People who read (%)668894
775164976841
Gross domestic product /
capita
表9是方差分析表,通过方差分析可看出有4个变量对分类贡献显着。