2019年江苏省泰州市姜堰市溱潼实验中学中考数学二模试卷(解析版)

合集下载

2019年江苏省泰州市中考数学二模名师精编试题附解析

2019年江苏省泰州市中考数学二模名师精编试题附解析

2019年江苏省泰州市中考数学二模名师精编试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知OA 垂直于直线l 于点A ,OA =3,⊙O 的半径为2,若将直线l 沿AO 方向平移,使直线l 与⊙O 相切,则平移距离可以是( ) A .1 B .5 C .2D .1或52. 已知函数y =ax 2+bx +c 的图像如图(1)所示,则函数y =ax +b 的图像只可能是图(2)中的( )3.抛物线2321y x x −=−与x 轴的交点坐标是( )A . (13−,0)(1,0) B .(13,0)(-1,0) C .(3,0)(1,0) D .(-3,0)(-1,0)4.数据3,19,35,26,26,97,96的极差为( ) A .94B .77C .9D .无法确定5.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示 的是该位置上立方体的个数,则这个几何体的主视图是( )A .B .C .D .6.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数7. 一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )8.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a −−;②256(5)a a a −−−;③265(6)a a a −−−;④25630a a a −−+其中正确的有( ) A .1 个B . 2 个C .3 个D . 4 个9.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x二、填空题10.双曲线y =kx 和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,m), 则a +2b =____________.11.如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为_____cm .12.已知等腰梯形的上、下底边长分别是2,10,腰长是5,则这个梯形的面积是 . 13.如图,在正方形ABCD 中,EF ⊥GH ,若∠AFE=30°,则∠GHC= .14.如图,在三角形纸片ABC 中,将么A 沿DE 翻折.使A 落在A ′处.根据图中所标数据, 则∠l+∠2= .15. 32a −中,a 的取值范围是 .16.某批零件的质量如下(单位:千克): 201, 207,199,204,201,191,206, 205,184,214,192,206,199,217, 209,200,213,217,186,214,194, 208,219,226,215.求这批零件的平均质量是 (结果精确到个位).17.某人乘电梯从1楼到5楼,这一运动过程可以看作 变换. 18.观察下表: 通过以上信息,用你发现的规律得出 182008的个位数字是 .19.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯.已知这种地毯每平方米售价30元,主楼梯宽2 m ,其侧面如图所示,则购买地毯至少需要 元.20.下面方程的解法错在 (填解题步骤序号),正确钓结果是x = . 解方程12x 1224x−+=− . 解:去分母,得2(12x}2(1)x −=−+ . ① 去括号,得2421x x −=−− . ② 移项、合并同类项.得31x −=− ③ 解得13x = . ④21.如图,∠AOC=50°,∠BOD=40°,∠AOD=60°.则∠l= ,∠2= ,∠3= .三、解答题22.铁道口的栏杆如图,短臂OD 长1.25 m ,长臂OE 长 16.5 m ,当短臂端点下降0.85m (AD 长) 时,求长臂端点升高多少m (BE 的长)? (不计杆的高度)幂的运算 18 182 183 184 185 186 187 188 … 结果的个位数字84268426…ODA EB23.已知圆锥的全面积为12πcm2,侧面积为8πcm2,试求圆锥的高与母线之间的夹角.24.如图所示,四边形ABCD中,∠B=90°,AB=4,BC=3,CD=12.AD=13,求四边形ABCD的面积.25.已知等腰三角形△ABC中,AB=AC,AC边上的中线BD将它的周长分成9 cm和8 cm两部分,求腰长.26.如图所示的四个图形是不是轴对称图形(不考虑颜色)?如果是,请画出它的对称轴.这四个图形能不能经过旋转与自身重合?如果能,在图中标出旋转中心,并说明分别需要旋转多少度?27.如图,四边形A′B′C′D′是由四边形ABCD旋转得到的,请找出旋转中心,并量出旋转角的度数.28.在第26届国际奥林匹克运动会上,获得金牌前七名的国家的奖牌情况如下:国家金牌银牌铜牌美国443225俄罗斯262116德国201827中国162212法国15715意大利131012澳大利亚9923(1)统计员通过什么方法得到表中的数据?(2)你从这些数据中获得了关于比赛的哪些信息和结论?29.先化简,再求值:3x2+4x-(2x2+x)+(x2-3x-1) 其中x=-3.30.在如图所示的数轴上表示数-3、0、52−、1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.A5.A6.B7.A8.D9.D二、填空题10.-2512.1813.120°14.60°15.32a ≤16. 20517.平移18.619.48020.①,53−21.10°,30°,20°三、解答题 22.∵∠DAO=∠EBO=90°,∠AOD=∠BOE ,∴△AOD ∽△BOE. ∴DO AD EO BE =,即1.250.8516.5BE=, ∴BE=11.22.答:长臂端点升高 11.22 m .23.高与母线之间的夹角为30°24.连结AC ,根据勾股定理得∠ACD=90°,S 36ABCD S =四边形6cm或163cm26.轴对称图形:①③④,画图略;①②③④都是能经过旋转与自身重合,旋转中心都是中间一点,旋转角度分别为90°,60°,90°,72°27.略28.(1)统计员通过观察或调查得到表中的数据 (2)例:金牌最多的国家为美国,奖牌数最多的国家为美国,按金牌数的排序前三名依次为美国、俄罗斯、德国29.原式=2x2-1,当x=-3时,原式=1730.在数轴上表示如图所示.各数的大小关系为53012−<−<<。

姜堰初三数学二模试卷答案

姜堰初三数学二模试卷答案

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 1,若f(x) > 0,则x的取值范围是()A. x > 0.5B. x < 0.5C. x > 0D. x < 1答案:A解析:由f(x) > 0得2x - 1 > 0,解得x > 0.5。

2. 下列选项中,不是一次函数图象的是()A. y = 2x + 3B. y = -x + 4C. y = x^2 - 1D. y = 3答案:C解析:一次函数的图象是一条直线,而C选项中的函数是二次函数,其图象是抛物线。

3. 若m + n = 5,m - n = 1,则mn的值为()A. 12B. 10C. 8D. 6答案:A解析:由m + n = 5和m - n = 1,可得m = 3,n = 2,因此mn = 3 × 2 = 6。

4. 在等腰三角形ABC中,AB = AC,AD是底边BC上的高,若∠BAC = 40°,则∠ADB的度数是()A. 40°B. 50°C. 60°D. 70°答案:B解析:在等腰三角形ABC中,∠BAC = ∠ACB = 40°,因为AD是高,所以∠ADB = 90° - ∠BAC = 90° - 40° = 50°。

5. 下列选项中,不是勾股数的是()A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 25答案:C解析:勾股数满足勾股定理a^2 + b^2 = c^2,而6^2 + 8^2 ≠ 10^2,所以C选项不是勾股数。

二、填空题(每题5分,共20分)6. 若x^2 - 3x + 2 = 0,则x的值为______。

答案:1或2解析:因式分解x^2 - 3x + 2 = (x - 1)(x - 2) = 0,解得x = 1或x = 2。

泰州市姜堰区中考二模数学试卷及答案

泰州市姜堰区中考二模数学试卷及答案

2019年中考适应性考试(二)数学试题(考试时间:120分钟 总分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的倒数是 ( ▲ )A .―2B .2C .21D .±2 2. 下列图形中既是中心对称图形,又是轴对称图形的是 ( ▲)A B C D3. 估算7的值 ( ▲ ) A .在2和3之间B .在3和4之间C .在4和5之间D .无法确定4. 下列命题中,其中正确命题的个数为( )个. ( ▲ ) ①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .4 5. 如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC = ( ▲ ) A .55°B .110°C .125°D .70°6. 已知过点(1,2)的直线y =ax +b (a ≠0)不经过第四象限,设S =a +2b ,则S 的取值范围为( ▲ )A .2<S <4B .2≤S <4C .2<S ≤4D .2≤S ≤4第5题图第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相....应位置...上) 7. PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表 示为 ▲ .8. 如果代数式3+x 有意义,则实数x 的取值范围是 ▲ . 9. 一组数据1,0,2,1的方差S 2= ▲ . 10. 计算:(-y 2)3÷y 5= ▲ . 11. 分解因式:4a 3- a = ▲ .12. 圆锥的母线长为8cm ,底面圆半径为3cm ,则这个圆锥的侧面积为 ▲ cm 2. 13. 飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数关系式为: s =80t -2 t 2,则飞机着陆后滑行的最远距离是 ▲ m.14. 如图,在Rt △ABC 中,∠C =90°,AB =42,以AB 的中点O 为圆心作圆,圆O 分别与AC 、BC 相切于点D 、E 两点,则弧DE 的长为 ▲ .第14题图E第15题图BC第16题图DC15. 如图,G 为△ABC 的重心,过点G 作DE ∥BC ,交AB 、AC 分别于D 、E 两点, 若△ADE 的面积为2,则△ABC 的面积为 ▲ .16. 已知:直线l 经过等边△ABC 的顶点A ,点B 关于直线l 的对称点为点D ,连接CD 交直线l 于点E ,若∠ACD =20°,则∠EAB = ▲ °.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分) (1)计算:(2+3)0+3tan30°-23-+1)21(- (2)解方程:13+=-x xx x18.(本题满分8分) 先化简,再求值:)69(39222++÷--aa a a a ,其中a 2-4a +3=0.19.(本题满分8分)为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求. 学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题. (1)求m 、n 的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?20.(本题满分8分)一个不透明的口袋中有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,小明将球搅匀后从中摸出一个球是红球的概率是0.25. (1)求口袋中红球的个数;(2)若小明第一次从中摸出一个球,放回搅匀后再摸出一个球,请通过树状图或者列表的方法求出小明两次均摸出红球的概率.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元. (1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.(本题满分10分)如图,在平面直角坐标系中,一次函数y =x +b 的图象经过点A (0,1),与反比例函数xky =(x >0)的图象交于B (m ,2). (1)求k 和b 的值; (2)在双曲线xky =(x>0)上是否存在点C ,使得△ABC 为等腰直角三角形,若存在,求出点C 坐标;若不存在,请说明理由.一游客步行从宾馆C 出发,沿北偏东60°的方向行走到1000米的人民公园A 处,参观后又从A 处沿正南方向行走一段距离到达位于宾馆南偏东45°方向的净业寺B 处,如图所示.(1)求这名游客从人民公园到净业寺的途中到宾馆的最短距离;(2)若这名游客以80米/分的速度从净业寺返回宾馆,那么他能在10分钟内到达宾馆吗?请通过计算说明理由.(假设游客行走的路线均是沿直线行走的)24.(本题满分10分)如图,在Rt △ABC 中,∠ACB =90°,点O 为△ABC 外接圆的圆心,将△ABC 沿AB 翻折后得到△ABD .(1)求证:点D 在⊙O 上;(2)在直径AB 的延长线上取一点E ,使DE 2=BE ·AE .①求证:直线DE 为⊙O 的切线;②过点O 作OF ∥BD 交AD 于点H ,交ED 的延长线 于点F . 若⊙O 的半径为5,cos ∠DBA =53,求FH 的长.第24题图AC如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴上,点C 在y 轴上,点B 的坐标为(8,4),动点D 从点O 向点A 以每秒两个单位....的速度运动,动点E 从点C 向点O 以每秒一个单位....的速度运动,设D 、E 两点同时出发,运动时间为t 秒,将△ODE 沿DE 翻折得到△FDE .(1)若四边形ODFE 为正方形,求t 的值; (2)若t =2,试证明A 、F 、C 三点在同一直线上;(3)是否存在实数t ,使△BDE 的面积最小?若存在,求出t 的值;若不存在,请说明理由.x26.(本题满分14分)已知二次函数y 1=ax 2+bx +c (a >0)的图像与x 轴交于A (-1,0)、B (n ,0)两点,一次函数y 2=2x +b 的图像过点A .(1)若a =21, ①求二次函数y 1=ax 2+bx +c (a >0)的函数关系式;②设y 3=y 1-my 2,是否存在正整数m ,当x ≥0时,y 3随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由;(2)若13<a <25,求证:-5<n <-4.2019年中考适应性考试(二)数学参考答案一、选择1-6 C D A C C B 二、填空7. 2.5×10-6 8. x ≥-3 9. 2110. –y 11. a (2 a +1)(2 a -1) 12. 24π 13. 800 14. π 15. 2916. 40°或100°三、解答题17. (1)解:原式=1+3×2)32(33+-- =1+2323++-=321+ (2)解:3222--=x x x 32=-x 23-=x 经检验:23-=x 是原方程的解 18. 解:原式=)3()3)(3(--+a a a a ·962++a a ax 2-4a +3=0=a a 3+·2)3(+a a a 1=1 a 2=3(舍去) =31+a ∴原式=4119. 解:(1)70÷35%=200(人)n=200×30%=60 m=200-70-60-40=40(2)2000×40200=400 (人) 答:略. 20. 解:(1)设红球有x 个,依题意得:0.2521xx=++x =1经检验:x =1是原方程的解 答:略.∴P (红,红)=1621.(1)设商品每件进价x 元,乙商品每件进价y 元,得 ⎩⎨⎧=+=+13022403y x y x解得:⎩⎨⎧==7030y x答:甲商品每件进价30元,乙商品每件进价70元(2)设甲商品进a 件,乙商品(100-a )件,由题意得 a ≥4(100-a ) a ≥80设利润为y 元,则y=10 a +20(100- a ) =-10 a +2000∵y 随a 的增大而减小∴要使利润最大,则a 取最小值 ∴a =80∴y=2000-10×80=1200答:甲商品进80件,乙商品进20件,最大利润是1200元. 22.(1)将A(0,1)代入y =x +b 中 0+b=1 ∴b=1将B(m,2)代入y=x+1中 m+1=2 ∴m=1 ∴B(1,2)将B(1,2)代入xk y =中 k =1×2=2 ∴k =2,b =1 (2)分情况讨论:△ABC 是等腰直角三角形当∠CAB=90°时,C 为(-1,2)或(1,0),均不在x y 2=上 当∠ACB=90°时,C 为(1,1)或(0,2),均不在x y 2=上当∠ABC=90°时,C 为(2,1)或(0,3),代入xy 2=中,C(2,1)满足∴C(2,1)23.(1)过点C 作CH ⊥AB 交AB 于点H 在Rt △ACH 中 ∵∠ACH=30° ∴CH=1000·cos30°=1000×23=5003 答:到宾馆的最短距离为5003米.(2)方法一:在Rt △CHB 中,∠BCH=45°,CH=5003 ∴BC=CH÷cos45°=5003×2=5006∴t=6425806500=>10 ∴不能到达宾馆 方法二:80106500> ∴不能到达宾馆 方法三:=5006>80×10∴不能到达宾馆24.(1)证明:连OD ,∵∠ACB=90°,∴AB 为直径,由翻折可知△ADB ≌△ACB ,∴∠ADB=90° ∵O 为AB 中点,∴OD=21AB ,∴D 在⊙O 上 (2)∵DE 2=BE·AE ,∴AEDEDE BE =,∠E=∠E ,∴△EBD ∽△EDA, ∴∠EDB=∠DAE ∵OD=OB, ∴∠ABD=∠ODB ∵∠ADB=90°, ∠DAB+∠DBA=90°, ∴∠EDB+∠ODB=90°, ∴∠EDO=90° ∴DE 为⊙O 切线(3)在Rt △ADB 中,∵cos ∠DBA=53=AB BD ,AB=10,∴BD=6 ∴AD=22BD AB -=22610-=8,∵∠ADB=90°,OF ∥BD ,∴∠FHD=∠ADB=90° ∵OH ⊥AD ,∴HD=21AD=4,又∵OA=OB ∴OH=21BD=3 ∵∠HOD=∠ODB=∠ABD ,∴cos ∠HOD=53,即53=FO OD ∴FO=325,∴FH=FO-HO=325-3=316 25.(1)∵矩形OABC 中,B(8,4)∴OA=8,OC=4∵四边形ODEF 为正方形,∴OE 平行且等于DF ∵△ODE 沿DE 翻折得到△FDE ,∴OD=DF ∵OD=2t,OE=4-t∴2t=4-t,t=34 (4分) (2)方法一 t=2, ∴OE=4-2=2=21OC OD=2t=4=21OA ∴DE 平行且等于21AC ∵△ODE 沿DE 翻折得△FDE∴OE=EF=2,DF=OD=4∴DE 垂直平分OF连OF 交DE 于H ,∴OH=FH∵S △ODE =21OH·DE=21OE·OD ∴OH=554,OF=558 过F 作FM ⊥OC ,FN ⊥OA ,M 、N 为垂足∴∠MFN=∠EFD=90°,∠MFN=∠DFN ∵∠FME=∠FND=90°,∴△MFB ∽△NFD∴FN FM =FD EF =21,∴FN=2FM ∵FN 2+FM 2=OF 2=564 ∴FM 2=564 ∴FM=58,FN=516 ∴F(58,516) 设直线AC 的解析式为y=kx+b(k≠0)⎩⎨⎧==+408b b k ,k=-21 ∴y=-21x+4 ∵当x=58时,y=-21×58+4=516 ∴点F 在直线AC 上,即A 、C 、F 三点共线 方法二:过O 作OG ⊥AC 交DE 于H∵t=2, ∴OE=BE=2,OD=DE=4,∴DE 平等且等于21AC ∴OG OH =OC OE =21 ∴DE 垂直平分OF∴G 与F 点重合即A 、C 、F 三点在同一条直线(用其它方法证明也行)(3)∵S △BDE = S △ABC -S △BCE -S △ABD -S △ODE =32-21t×8-21×4×(8-2t)- 21×2t(4-t) =32-4t-16+4t-4t+t 2=t 2-4t+16t=2时,S △BDE 有最小值为1226. 解:∵y 1=ax 2+bx+c(a >0)过点A∴a-b+c=0∵y 2=2x+b 的图像过点A∴b=2∴c=2-a(1)①∵a=21 ∴c=2-21=32∴y 1=21x 2+2x+32 ②y 3=21x 2+2x+32-m (2x+2) =21x 2+(2-2m )x+(32-2m ) ∵在x ≥0时,y 3随x 的增大而增大 ∴对称轴22220122m x m -=-=-≤⨯ ∴m ≤1∵m 是正整数∴m=1(2)∵y 1=ax 2+2x+(2-a )的对称轴为212x a a=-=- 又∵13<a <25∴15-3-2a -<< 又∵A(-1,0)、B (n ,0)两点关于对称轴对称 ∴11-1--=--n a a ()∴211(n n a=-+=-或舍) ∴-5<n <-4方法二:用求根公式直接算出B 的坐标为(210n a=-+,) 由a 的范围确定n 的范围.。

2019年江苏省泰州市姜堰区中考数学二模试卷(解析版)

2019年江苏省泰州市姜堰区中考数学二模试卷(解析版)

2019年江苏省泰州市姜堰区中考数学二模试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2的倒数是()A.﹣2B.2C.D.﹣2.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)估算的值()A.在2和3之间B.在3和4之间C.在4和5之间D.无法确定4.(3分)下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.45.(3分)如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°6.(3分)已知过点(1,2)的直线y=ax+b(a≠0)不经过第四象限,设S=a+2b,则S 的取值范围为()A.2<S<4B.2≤S<4C.2<S≤4D.2≤S≤4二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.8.(3分)若代数式有意义,则实数x的取值范围是.9.(3分)一组数据1,0,2,1的方差S2=.10.(3分)计算:(﹣a2)3÷a5=.11.(3分)分解因式:4a3﹣a=.12.(3分)已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.13.(3分)飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:s)的函数关系式是S=80t﹣2t2,飞机着陆后滑行的最远距离是m.14.(3分)如图,在Rt△ABC中,∠C=90°,AB=4,以AB的中点O为圆心作圆,圆O分别与AC、BC相切于点D、E两点,则弧DE的长为.15.(3分)如图,G为△ABC的重心,过点G作DE∥BC,交AB、AC分别于D、E两点,若△ADE的面积为2,则△ABC的面积为.16.(3分)已知:直线l经过等边△ABC的顶点A,点B关于直线l的对称点为点D,连接CD交直线l于点E,若∠ACD=20°,则∠EAB=°.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(2+)0+3tan30°﹣+(2)解方程:18.(8分)先化简,再求值:,其中a2﹣4a+3=0.19.(8分)为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.(1)求m、n的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?20.(8分)一个不透明的口袋中有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,小明将球搅匀后从中摸出一个球是红球的概率是0.25.(1)求口袋中红球的个数;(2)若小明第一次从中摸出一个球,放回搅匀后再摸出一个球,请通过树状图或者列表的方法求出小明两次均摸出红球的概率.21.(10分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.(10分)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(0,1),与反比例函数y=(x>0)的图象交于B(m,2).(1)求k和b的值;(2)在双曲线y=(x>0)上是否存在点C,使得△ABC为等腰直角三角形?若存在,求出点C坐标;若不存在,请说明理由.23.(10分)一游客步行从宾馆C出发,沿北偏东60°的方向行走到1000米的人民公园A 处,参观后又从A处沿正南方向行走一段距离到达位于宾馆南偏东45°方向的净业寺B 处,如图所示.(1)求这名游客从人民公园到净业寺的途中到宾馆的最短距离;(2)若这名游客以80米/分的速度从净业寺返回宾馆,那么他能在10分钟内到达宾馆吗?请通过计算说明理由.(假设游客行走的路线均是沿直线行走的)24.(10分)如图,在Rt△ABC中,∠ACB=90°,点O为△ABC外接圆的圆心,将△ABC 沿AB翻折后得到△ABD.(1)求证:点D在⊙O上;(2)在直径AB的延长线上取一点E,使DE2=BE•AE.①求证:直线DE为⊙O的切线;②过点O作OF∥BD交AD于点H,交ED的延长线于点F.若⊙O的半径为5,cos∠DBA=,求FH的长.25.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,点B的坐标为(8,4),动点D从点O向点A以每秒两个单位的速度运动,动点E从点C向点O以每秒一个单位的速度运动,设D、E两点同时出发,运动时间为t秒,将△ODE沿DE翻折得到△FDE.(1)若四边形ODFE为正方形,求t的值;(2)若t=2,试证明A、F、C三点在同一直线上;(3)是否存在实数t,使△BDE的面积最小?若存在,求出t的值;若不存在,请说明理由.26.(14分)已知二次函数y1=ax2+bx+c(a>0)的图象与x轴交于A(﹣1,0)、B(n,0)两点,一次函数y2=2x+b的图象过点A.(1)若a=,①求二次函数y1=ax2+bx+c(a>0)的函数关系式;②设y3=y1﹣my2,是否存在正整数m,当x≥0时,y3随x的增大而增大?若存在,求出正整数m的值;若不存在,请说明理由;(2)若<a<,求证:﹣5<n<﹣4.2019年江苏省泰州市姜堰区中考数学二模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填涂在答题卡相应位置上)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:2的倒数是,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、是中心对称图形,也是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据的范围,即可得出答案.【解答】解:∵,∴,故在2和3之间.故选:A.【点评】本题考查了估算无理数的大小的应用,解此题的关键是熟练掌握二次根式的性质.4.【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【解答】解:①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.【分析】根据圆周角定理求出∠B,根据圆内接四边形的性质计算即可.【解答】解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.【分析】根据一次函数图象与系数的关系可得a>0,b≥0,将点(1,2)代入y=ax+b,得到a+b=2,即b=2﹣a.由a>0,b≥0得出不等式组,解不等式组求出a 的范围,再根据不等式的性质即可求出S的取值范围.【解答】解:∵过点(1,2)的直线y=ax+b(a≠0)不经过第四象限,∴a>0,b≥0,a+b=2,∴b=2﹣a,∴,解得:0<a≤2,所以S=a+2b=a+2(2﹣a)=4﹣a,∴﹣2≤﹣a<0,∴2≤4﹣a<4,即S的取值范围为:2≤S<4,故选:B.【点评】本题考查的是一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式组,以及不等式的性质.掌握一次函数y=kx+b(k≠0)中,当k>0,b≥0时函数的图象不经过第四象限是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式有意义,∴x+3≥0,即x≥﹣3.故答案为:x≥﹣3.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键9.【分析】利用方差的计算公式计算即可.【解答】解:=(1+0+2+1)=1,则S2=[(1﹣1)2+(0﹣1)2+(2﹣1)2+(1﹣1)2]=0.5,故答案为:0.5.【点评】本题考查的是方差的计算,掌握方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x2]是解题的关键.n﹣)10.【分析】根据同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.【解答】解:原式=﹣a6÷a5=﹣a.故答案为﹣a.【点评】本题考查了同底数幂的乘除法以及积的乘方和幂的乘方,是基础知识要熟练掌握.11.【分析】先提取公因式a,再利用平方差公式继续分解.【解答】解:4a3﹣a,=a(4a2﹣1),=a(2a+1)(2a﹣1).【点评】本题考查了提公因式法与公式法分解因式,分解因式时,有公因式的,先提公因式,再考虑运用何种公式法来分解.12.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×8=24πcm2.故答案为24π.【点评】本题利用了圆的周长公式和扇形面积公式求解.解题的关键是了解圆锥的有关元素与扇形的有关元素的对应.13.【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【解答】解:∵﹣2<0,∴函数有最大值.当t=﹣=20时,s最大值==800(米),即飞机着陆后滑行800米才能停止.故答案为:800.【点评】此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.14.【分析】连接OE,OD,根据切线的性质得到OE⊥BC,OD⊥AC,推出矩形OECD是正方形,得到CE=CD,∠EOD=90°,根据全等三角形的性质得到BE=OD,OE=AD,求得BE=OE=OD=AD,根据等腰直角三角形的性质得到AB=4,求得OE=OD=2,根据弧长公式即可得到结论.【解答】解:连接OE,OD,∵圆O分别与AC、BC相切于点D、E两点,∴OE⊥BC,OD⊥AC,∵∠C=90°,∴四边形OECD是矩形,∵OE=OD,∴矩形OECD是正方形,∴CE=CD,∠EOD=90°,∴∠B+∠BOE=∠BOE+∠AOD=90°,∴∠B=∠AOD,∵∠BEO=∠ADO=90°,OB=OA,∴△BOE≌△OAD(AAS),∴BE=OD,OE=AD,∴BE=OE=OD=AD,∴∠B=∠A=45°,∵AB=4,∴OE=OD=2,∴弧DE的长==π,故答案为:π.【点评】本题考查了切线的性质,正方形的判定和性质,等腰直角三角形的判定和性质,弧长的计算,正确的作出辅助线是解题的关键.15.【分析】延长AG交BC于H,根据三角形的重心的性质得到AG=2GH,根据平行线的性质、相似三角形的性质计算即可.【解答】解:如图,延长AG交BC于H,∵G为△ABC的重心,∴AG=2GH,∵DE∥BC,∴==,∵DE∥BC,∴△ADE∽△ABC,相似比为,∴△ADE与△ABC的面积之比为,∵△ADE的面积为2,∴△ABC的面积为.故答案为.【点评】本题考查的是三角形的重心的概念、相似三角形的判定和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.【分析】分两种情形分别画出图形,利用等腰三角形以及等边三角形的性质求解即可.【解答】解:如图1中,当射线CD在AC的下方时,∵AD=AC,∴∠ACD=∠ADC=20°,∴∠ADC=180°﹣20°﹣20°=140°,∵∠BAC=60°,∴∠DAC=140°﹣60°=80°,由翻折可知:∠EAB=∠EAD=∠DAB=40°.如图2中,当射线CD在AC的上方时,同法可得:∠DAC=140°,∠EAD=∠EAB=(60°+140°)=100°,故答案为40°或100.【点评】本题考查等边三角形的性质,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1+3×﹣2++2=1+2;(2)去分母得:x2=x2﹣2x﹣3,移项合并得:﹣2x=3,解得:x=﹣1.5,经检验x=﹣1.5是原方程的解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=•=∵a2﹣4a+3=0,∴a 1=1 a 2=3(舍去)∴原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.【分析】(1)根据喜爱篮球的人数÷其所占的百分比得到总人数,再由总人数乘以喜爱排球的人数所占百分比得到n,用总人数﹣喜爱篮球人数﹣喜爱排球的人数﹣喜爱其他人数,即可确定出m的值;(2)求出喜欢踢足球的学生人数所占的百分比,乘以2000即可得到结果.【解答】解:(1)70÷35%=200(人)n=200×30%=60,m=200﹣70﹣60﹣40=40;(2)2000×=400 (人)答:该校喜欢踢足球的学生人数是400人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20.【分析】(1)设红球有x个,根据概率公式列出方程,然后求解即可;(2)根据题意列出图表得出所有等情况数和小明两次均摸出红球的个数,再根据概率公式即可得出答案.【解答】解:(1)设红球有x个,依题意得:=0.25,解得:x=1,经检验:x=1是原方程的解答:口袋中红球有1个.(2)根据题意列表如下:共有16种等情况数,其中两次均摸出红球的有1种,所以小明两次均摸出红球的概率:P(红,红)=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.【解答】(1)设商品每件进价x元,乙商品每件进价y元,得,解得:,答:甲商品每件进价30元,乙商品每件进价70元;(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,a≥4(100﹣a),a≥80,设利润为y元,则,y=10 a+20(100﹣a)=﹣10 a+2000,∵y随a的增大而减小,∴要使利润最大,则a取最小值,∴a=80,∴y=2000﹣10×80=1200,答:甲商品进80件,乙商品进20件,最大利润是1200元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.【分析】(1)将点A坐标代入直线y=x+b中求出b,进而求出点B坐标,最后代入反比例函数解析式中,求出k;(2)先求出AB的长,再分三种情况,利用等腰直角三角形的性质求出点C的坐标,判断即可得出结论.【解答】解:(1)将A(0,1)代入y=x+b中得,0+b=1∴b=1将B(m,2)代入y=x+1中得,m+1=2∴m=1∴B(1,2)将B(1,2)代入中得,k=1×2=2∴k=2,b=1;(2)∵A(0,1),B(1,2),∴AB=,由(1)知,b=1,∴直线AB的解析式为y=x+1,分情况讨论:△ABC是等腰直角三角形①当∠CAB=90°时,AC=AB,∴直线AC的解析式为y=﹣x+1,设C(c,﹣c+1),∴AC==,∴c=±1,∴C为(﹣1,2)或(1,0),将点C代入中判断出都不在双曲线上,.②当∠ABC=90°时,同①的方法得,C为(2,1)或(0,3),将点C坐标代入中得,判断出点C(2,1)在双曲线上,③当∠ACB=90°时,∵A(0,1),B(1,2),易知,C为(1,1)或(0,2),将点C代入中判断出都不在双曲线上,∴C(2,1).【点评】此题是反比例函数综合题,主要考查了待定系数法,两点间的距离公式,等腰直角三角形的性质,用分类讨论的思想解决问题是解本题的关键.23.【分析】(1)过点C作CH⊥AB交AB于点H,根据三角函数的定义即可得到结论;(2)根据三角函数的定义得到BC=CH÷cos45°=500×=500,求得t=>10,于是得到结论.【解答】解:(1)过点C作CH⊥AB交AB于点H,在Rt△ACH中,∵∠ACH=30°,∴CH=1000•cos30°=1000×=500,答:到宾馆的最短距离为500米;(2)在Rt△CHB中,∠BCH=45°,CH=500,∴BC=CH÷cos45°=500×=500,∴t=>10,∴不能到达宾馆.【点评】本题考查了解直角三角形的应用﹣﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.24.【分析】(1)连接OD,由圆周角定理得出AB为直径,由翻折可知△ADB≌△ACB,得出∠ADB=90°,证出OD=AB即可;(2)①先证明△EBD∽△EDA,得出∠EDB=∠DAE,由等腰三角形的性质得出∠ABD =∠ODB,由∠DAB+∠DBA=90°,得出∠EDB+∠ODB=90°,证出∠EDO=90°,即可得出结论;②由三角函数得出BD=6,由勾股定理得出AD=8,证出HD=AD=4,由三角形中位线定理得出OH=BD=3,由三角函数求出FO=,即可得出结果.【解答】(1)证明:连接OD,如图所示:∵∠ACB=90°,∴AB为直径,由翻折可知△ADB≌△ACB,∴∠ADB=90°,∵O为AB中点,∴OD=AB,∴D在⊙O上;(2)①证明:∵DE2=BE•AE,∴,∠E=∠E,∴△EBD∽△EDA,∴∠EDB=∠DAE,∵OD=OB,∴∠ABD=∠ODB,∵∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠EDB+∠ODB=90°,∴∠EDO=90°,∴DE为⊙O切线;②解:在Rt△ADB中,∵cos∠DBA=,AB=10,∴BD=6,∴AD===8,∵∠ADB=90°,OF∥BD,∴∠FHD=∠ADB=90°,∵OH⊥AD,∴HD=AD=4,又∵OA=OB,∴OH=BD=3,∵∠HOD=∠ODB=∠ABD,∴cos∠HOD=,即,∴FO=,∴FH=FO﹣HO=﹣3=.【点评】本题是圆的综合题目,考查了圆周角定理、翻折变换的性质、相似三角形的判定与性质、三角形中位线定理、勾股定理、三角函数、等腰三角形的性质等知识;本题综合性强,熟练掌握圆周角定理和翻折变换的性质,证明三角形相似是解题的关键.25.【分析】(1)由正方形的性质得出OE∥DF,OE=DF由折叠的性质得出OD=DF,由OD=2t,OE=4﹣t,得出方程2t=4﹣t,解方程即可;(2)连接AC,作OG⊥AC于G,由t=2,得出OE=CE=2,OD=DA=4,由三角形中位线定理得出DE∥AC,且DE=AC,由平行线得出==,得出DE垂直平分OF,得出G与F点重合,即可得出结论;(3)由题意得出S△BDE=S矩形OABC﹣S△BCE﹣S△ABD﹣S△ODE=t2﹣4t+16,由二次函数的性质即可得出结果.【解答】(1)解:∵矩形OABC中,B(8,4),∴OA=8,OC=4,∵四边形ODEF为正方形,∴OE∥DF,OE=DF,∵△ODE沿DE翻折得到△FDE,∴OD=DF,∵OD=2t,OE=4﹣t,∴2t=4﹣t,t=;(2)证明:连接AC,作OG⊥AC于G,如图1所示:∵t=2,∴OE=BE=2,OD=DE=4,∴DE是△OAC的中位线,∴DE∥AC,且DE=AC,∴==,∴DE垂直平分OF,由折叠的性质得:DE垂直平分OF,∴G与F点重合,即A、C、F三点在同一条直线;(3)解:存在,理由如下:如图2所示:∵S△BDE=S△ABC﹣S△BCE﹣S△ABD﹣S△ODE=32﹣t×8﹣×4×(8﹣2t)﹣×2t(4﹣t)=32﹣4t﹣16+4t﹣4t+t2=t2﹣4t+16=(t﹣2)2+12,∴t=2时,S△BDE有最小值为12;即存在实数t,使△BDE的面积最小,t=2秒.【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、正方形的性质、折叠变换的性质、三角形中位线定理、三角形面积的计算、二次函数等知识;本题综合性强,熟练掌握正方形和翻折变换的性质是解题的关键.26.【分析】(1)①a=,c=2﹣=,即可求解;②y3=x2+2x+﹣m(2x+2)=x2+(2﹣2m)x+(﹣2m),即可求解;(2)y1=ax2+2x+(2﹣a)的对称轴为,而<a<,即:,又A(﹣1,0)、B(n,0)两点关于对称轴对称,则:,即可求解.【解答】解:∵y1=ax2+bx+c(a>0)过点A,∴a﹣b+c=0,∵y2=2x+b的图象过点A,∴b=2,∴c=2﹣a;(1)①∵a=∴c=2﹣=,∴y1=x2+2x+,②y3=x2+2x+﹣m(2x+2)=x2+(2﹣2m)x+(﹣2m),∵在x≥0时,y3随x的增大而增大,∴对称轴,∴m≤1,∵m是正整数,∴m=1;(2)∵y1=ax2+2x+(2﹣a)的对称轴为,又∵<a<,∴,又∵A(﹣1,0)、B(n,0)两点关于对称轴对称,∴,∴,∴﹣5<n<﹣4.【点评】本题考查的是二次函数综合运用,涉及到不等式的解法,重点确定对称轴的表达式及其范围.。

江苏省泰州市2019-2020学年中考数学二模试卷含解析

江苏省泰州市2019-2020学年中考数学二模试卷含解析

江苏省泰州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC V ≌DEF V 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC2.如果t>0,那么a+t 与a 的大小关系是( )A .a+t>aB .a+t<aC .a+t≥aD .不能确定3.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解4.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③5.下列运算中,正确的是( )A .(a 3)2=a 5B .(﹣x )2÷x=﹣xC .a 3(﹣a )2=﹣a 5D .(﹣2x 2)3=﹣8x 66.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h7.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( )A .B .C .D . 8.2-的相反数是( )A .2-B .2C .12D .12- 9.若一次函数=y ax b +的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +< B .0a b -> C .0ab > D .0b a< 10.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )A .4B .6C .16πD .8 11.如图,不等式组1010x x +⎧⎨-≤⎩f 的解集在数轴上表示正确的是( ) A .B .C .D .12.下列各式中计算正确的是( )A .x 3•x 3=2x 6B .(xy 2)3=xy 6C .(a 3)2=a 5D .t 10÷t 9=t二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为______.14.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 15.在ABC V 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 16.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.17.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.18.有一组数据:2,3,5,5,x ,它们的平均数是10,则这组数据的众数是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.20.(6分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?21.(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=kx(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=kx(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=92时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.22.(8分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.23.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程s A、s B;(2)在A出发后几小时,两人相距15km?24.(10分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:2EF=4BP•QP.25.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A 1,A 2两名男生,B 1,B 2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.26.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.27.(12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.(2)求至少有一辆汽车向左转的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】A.添加E ABC ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故A 选项不符合题意.B.添加DE AB =与原条件满足SSA ,不能证明ABC V ≌DEF V ,故B 选项符合题意;C.添加AB//DE ,可得E ABC ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故C 选项不符合题意;D.添加DF//AC ,可得DFE ACB ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故D 选项不符合题意, 故选B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.A【解析】试题分析:根据不等式的基本性质即可得到结果.t >0,∴a +t >a ,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.3.C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .4.D【解析】【分析】分两种情形讨论当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P 顺时针旋转时,BP 的长从2增加到2,再降到02,图象③符合;②当点P 逆时针旋转时,BP 2降到0,再增加到22,图象①符合.故答案为①或③.故选D .【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.5.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.6.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.7.C【解析】【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【详解】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.8.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.9.D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,b<0,故D正确.a故选D.10.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长. 11.B【解析】【分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x >-1;解第二个不等式得:x≤1, 在数轴上表示, 故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.12.D【解析】试题解析:A 、336x x x ⋅=,原式计算错误,故本选项错误; B 、()3236xy x y =, 原式计算错误,故本选项错误; C 、()236a a =,原式计算错误,故本选项错误; D 、109t t t ÷=, 原式计算正确,故本选项正确;故选D .点睛:同底数幂相除,底数不变,指数相减.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.105000300034000x y x y +=⎧⎨+=⎩【解析】试题解析:根据题意得:105000300034000.x y x y +=⎧⎨+=⎩故答案为105000300034000.x y x y +=⎧⎨+=⎩14.a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8- a,根据题意得:8- a>2,8- a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.15.2.1【解析】【分析】先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A、∠B、∠C为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.16.3 8【解析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是3 8 .故答案是:3 8 .17.(﹣1,﹣1)【解析】【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【详解】x=-422⨯=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.18.1【解析】根据平均数为10求出x的值,再由众数的定义可得出答案.解:由题意得,(2+3+1+1+x)=10,解得:x=31,这组数据中1出现的次数最多,则这组数据的众数为1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)∠EPF=120°;(2)AE+AF=3.【解析】试题分析: (1)过点P作PG⊥EF于G,解直角三角形即可得到结论;(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,R t△PME≌Rt△PNF,问题即可得证.试题解析:(1)如图1,过点P作PG⊥EF于G,∵PE=PF,∴FG=EG=123FPG=∠EPG=12∠EPF,在△FPG中,sin∠FPG=233 FGPF==,∴∠FPG=60°,∴∠EPF=2∠FPG=120°;(2)如图2,过点P 作PM ⊥AB 于M ,PN ⊥AD 于N ,∵四边形ABCD 是菱形,∴AD=AB ,DC=BC ,∴∠DAC=∠BAC ,∴PM=PN ,在Rt △PME 于Rt △PNF 中,PM PN PE PF ⎧⎨⎩═= , ∴R t △PME ≌R t △PNF ,∴FN=EM ,在Rt △PMA 中,∠PMA=90°,∠PAM=12∠DAB=30°, ∴3,同理3,∴AE+AF=(AM-EM )+(AN+NF )3.【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.20.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.【解析】【分析】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,依题意,得:x-y=152x+3y=255⎧⎨⎩, 解得:x=60y=45⎧⎨⎩. 答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,依题意,得:60m+45(50﹣m )≤2550,解得:m≤1.答:最多可以购进1筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(1)y=9x (x >0);(2)S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3);当S=92时,对应的t 值为32或6;(3)当t=32或2或3时,使△FBO 为等腰三角形. 【解析】【分析】(1)由正方形OABC 的面积为9,可得点B 的坐标为:(3,3),继而可求得该反比例函数的解析式.(2)由题意得P (t ,9t ),然后分别从当点P 1在点B 的左侧时,S=t•(9t-3)=-3t+9与当点P 2在点B 的右侧时,则S=(t-3)•9t =9-27t 去分析求解即可求得答案; (3)分别从OB=BF ,OB=OF ,OF=BF 去分析求解即可求得答案.【详解】解:(1)∵正方形OABC 的面积为9,∴点B 的坐标为:(3,3),∵点B 在反比例函数y=k x (k >0,x >0)的图象上, ∴3=3k , 即k=9, ∴该反比例函数的解析式为:y= y=9x (x >0); (2)根据题意得:P (t ,9t), 分两种情况:①当点P 1在点B 的左侧时,S=t•(9t ﹣3)=﹣3t+9(0≤t≤3);若S=92, 则﹣3t+9=92, 解得:t=32; ②当点P 2在点B 的右侧时,则S=(t ﹣3)•9t =9﹣27t ; 若S=9t ,则9﹣27t =92, 解得:t=6; ∴S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3); 当S=9t 时,对应的t 值为32或6; (3)存在.若CF=BC=3,∴OF=6,∴6=9t, 解得:t=32;若,则9t ,解得:t=2; 若BF=OF ,此时点F 与C 重合,t=3;∴当t=323时,使△FBO 为等腰三角形. 【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.22.(1)C (﹣3,2);(2)y 1=6x , y 2=﹣13x+3; (3)3<x <1. 【解析】分析:(1)过点C 作CN ⊥x 轴于点N ,由已知条件证Rt △CAN ≌Rt △AOB 即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C 在第二象限即可得到点C 的坐标;(2)设△ABC 向右平移了c 个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c ,2)、(c ,1),再设反比例函数的解析式为y 1=k x,将点C′,B′的坐标代入所设解析式即可求得c 的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵32 61m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt △CAN 和Rt △AOB ;(2)利用平移的性质结合点B 、C 的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C ′和B′的坐标,从而使问题得到解决.23.(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解析】【分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设s A 与t 的函数关系式为s A =kt+b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t|=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.24.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到2PA=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=12EF,等量代换即可得到结论.试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴PA PQBP PA,∴2PA=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=12 EF,∴2EF=4BP•QP.考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.25.(1)50,360;(2)23.【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率26.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.27.(1)49;(2)59.【解析】【分析】(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为49;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=59.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.。

2019年江苏省泰州市姜堰区中考数学二模试卷 (含答案解析)

2019年江苏省泰州市姜堰区中考数学二模试卷 (含答案解析)

2019年江苏省泰州市姜堰区中考数学二模试卷一、选择题(本大题共6小题,共18.0分)1.5的倒数为()A. 15B. 5 C. −15D. −52.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.估算√45−2的值在()A. 在5和6之间B. 在4和5之间C. 在3和4之间D. 在2和3之间4.下列命题中的真命题是()A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 三角形的一个外角大于它的内角D. 数据2,3,1,2的方差是0.55.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A. 55°B. 110°C. 125°D. 70°6.直线y=2x−1不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共10小题,共30.0分)7.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为__________.8.代数式√9−x有意义时,实数x的取值范围是______.9.一组数据2018,2018,2018,2018,2018,2018的方差是________.10.计算:(−a2)3÷a5=____.11.分解因式:4a−a3=______.12.已知圆锥的底面圆半径是3,母线长是5,则它的侧面展开图的面积是______.13.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x−1.5x2,该型号飞机着陆后滑行________m才能停下来.14.如图,已知直线PA与PB与圆O分别相切于点A,B,若PB=√3,∠APB=90°,则劣弧AB的长为______.15.如图,G为△ABC的重心,DE过点G,且DE//BC,交AB、AC,分别于D、E两点,若△ADE的面积为5,则四边形BDEC的面积为_______.16.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=______.三、计算题(本大题共1小题,共12.0分)17.(1)计算:(−12019)−1+√48−2cos30°+(7−√7)0−|5−3√3|(2)解方程32x−4+x2−x=1四、解答题(本大题共9小题,共90.0分)18.先化简,再求值:2xx+1−2x+4x2−1÷x+2x2−2x+1,其中x=8.19.某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.(1)m=______,n=______;(2)请补全图中的条形图;(3)扇形统计图中,足球部分的圆心角是______度;(4)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球.20.一个不透明的口袋中装有4个球,分别是红球和白球,这些球除颜色外都相同,将球搅匀,先从中任意摸出一个球,恰好摸到红球的概率等于1.2(1)求口袋中有几个红球?(2)先从中任意摸出一个球,从余下的球中再摸出一个球,请用列表法或树状图法求两次摸到的球中一个是红球和一个是白球的概率.21.某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元;购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.(k≠0)相交于A(1,2)和B(−2,m)两点,与y轴交于22.如图,直线y=ax+b(a≠0)与双曲线y=kx点C,与x轴交于点D.(1)求m、a、b的值;(2)在x轴上是否存在一点P,使△APD∽△OCD?若存在,请求出点P的坐标;若不存在,请说明理由.23.如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)24.如图,AB是⊙O的直径,在⊙O上取一点C,连接AC、BC,将△ABC沿直线AB翻折得到△ABD.(1)点D在⊙O上吗?请说明理由.(2)延长BD到点E,使AB2=BC⋅BE,连接AE,求证:AE是⊙O的切线.25.如图,在长方形ABCD中,AB=4,BC=8,点N,M分别为线段AB,BC上的动点,点N从点B出发,沿BA方向,以每秒1个单位长度的速度向点A运动,点M从点C出发,沿CB方向,以每秒2个单位长度的速度向点B运动,点M与点N同时出发,设运动时间为t秒,连接DM,DN,MN.(Ⅰ)当BM=BN时,请求出t的值;(Ⅱ)试判断四边形BMDN的面积是否发生变化?若不变化,请求出其值;若变化,请说明理由;(Ⅲ)请探究∠DNM,∠ADN,∠BMN之间的数量关系,并说明理由.26.已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限。

2019年泰州市中考数学模拟试卷(解析版)

2019年泰州市中考数学模拟试卷(解析版)

2019年江苏省泰州市中考数学模拟试卷一、选择题(共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣2的倒数是()A.2 B.C.﹣D.﹣22.下列运算正确的是()A.3﹣2=1 B.+1=C.﹣=D.6+=73.以下几家银行行标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.一个简单空间几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱2计算,总分变化情况是()A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定6.设二次函数y=ax2+bx+c(a≠0),当x=2时,函数值y=0,则方程ax2+bx+c=0的判别式△=b2﹣4ac必定是()A.△=0 B.△<0 C.△>0 D.△≥0二、填空题(共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.25的平方根等于.8.今年2月份,泰州市6个省级经济开发区共完成出口316000000美元,将这个数据用科学记数法表示,应为美元.9.连续抛掷一枚均匀的硬币两次,结果出现一正一反的概率等于.10.一组数据6,8,10的方差等于.11.如果两个相似三角形的相似比是2:3,较小三角形的面积为4cm2,那么较大三角形的面积为cm2.12.圆心角为120°的扇形,其面积等于12πcm2,则这个扇形的半径等于cm.13.如图,直线l1∥l2,∠2=40°,则∠1+∠3+∠4=°.14.如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,则∠D=°.15.如图,等腰直角三角形的斜边长AB=8,一直线l绕顶点B任意旋转,过A向l作垂线,垂足为H,则线段CH长的取值范围是.16.如图,Rt△ABC的直角边BC在x轴上,斜边AC上的中线BD交y轴于点E,双曲线的y=(k>0)图象经过点A,若△BEC的面积为4,则k=.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(1)﹣2sin60°+()﹣1﹣|1﹣|;(2)÷(x+2﹣).18.袋中有1个红球和2个黑球,这些球除颜色外都相同,搅匀后从中任意摸除1个球,记录颜色后放回、搅匀,再从中任意摸出1球,像这样有放回地先后摸球2次.摸出红球得2分,摸出黑球得1分.(1)第一次摸得黑球的概率是多少?(2)两次摸球所得总分是4分的概率是多少?19.已知y1=x2﹣2x+3,y2=3x﹣k.(1)当x=1时,求出使等式y1=y2成立的实数k;(2)若关于x的方程y1+k=y2有实数根,求k的取值范围.20.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为%,该扇形圆心角的度数为;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?21.小明用12元买软面笔记本,小丽用21元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?22.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=9米,求塔CD的高度.(结果保留根号)23.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.24.如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结AE、BE,BE交AC于点F,且∠AFE=∠EAB.(1)试说明E为的中点;(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.25.已知两个一次函数y1=x+2﹣a和y2=﹣x+2+.(1)点(2,2)是否在这两个一次函数的图象上?为什么?(2)当a=2时,求这两个一次函数图象与x轴所围成的三角形的面积;(3)当a满足0<a<2时,求这两个一次函数图象与两坐标轴所围成的四边形面积的最小值.26.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?2019年江苏省泰州市中考数学模拟试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣2的倒数是()A.2 B.C.﹣D.﹣2【考点】倒数.【分析】根据倒数定义可知,﹣2的倒数是﹣.【解答】解:﹣2的倒数是﹣.故选:C.2.下列运算正确的是()A.3﹣2=1 B.+1=C.﹣=D.6+=7【考点】二次根式的加减法.【分析】直接利用合并同类项法则计算,进而化简求出答案.【解答】解:A、3﹣2=,故此选项错误;B、+1,无法计算,故此选项错误;C、﹣,无法计算,故此选项错误;D、6+=7,正确.故选:D.3.以下几家银行行标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形以及轴对称图形的定义和各图形的特点即可求解.【解答】解:A、既是中心对称图形,也是轴对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项错误D、是中心对称图形,不是轴对称图形,故本选项错误.故选A.4.一个简单空间几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱【考点】由三视图判断几何体.【分析】先根据主视图和左视图可得这个几何体是锥体,再根据俯视图即可得出这个几何体是四棱锥.【解答】解:根据主视图和左视图可得:这个几何体是锥体;根据俯视图可得:这个几何体是四棱锥;故选B.2计算,总分变化情况是()A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定【考点】加权平均数.【分析】根据题意可以分别求出按3:5:2计算时小亮和小丽的成绩以及按5:3:2计算时小亮和小丽的成绩,从而可以得到他们的成绩的变化情况,本题得以解决.【解答】解:当写作能力、普通话水平、计算机水平这三项的总分按3:5:2计算时,小亮的成绩是:=74.7,小丽的成绩是:=74.4,当写作能力、普通话水平、计算机水平这三项的总分按5:3:2计算时,小亮的成绩是:=77.7,小丽的成绩是:=69.6,故写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,小亮的成绩变化是77.7﹣74.7=3,小丽的成绩变化是69.6﹣74.4=﹣4.8,故小亮成绩增加的多,故选B.6.设二次函数y=ax2+bx+c(a≠0),当x=2时,函数值y=0,则方程ax2+bx+c=0的判别式△=b2﹣4ac必定是()A.△=0 B.△<0 C.△>0 D.△≥0【考点】抛物线与x轴的交点.【分析】当二次函数与x轴只有一个交点时,△=0,当二次函数与x轴有两个交点时,△>0,当二次函数与x轴没有交点时,△<0,根据以上知识点判断即可.【解答】解:∵x=2时,函数值y=0,∴二次函数y=ax2+bx+c(a≠0)和x轴的一个交点的坐标为(2,0),当函数和x轴还交于一点时,△>0,当函数和x轴再没有交点时,△=0,即方程ax2+bx+c=0的判别式△=b2﹣4ac必定是△≥0,故选D.二、填空题(共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.25的平方根等于±5.【考点】平方根.【分析】利用平方根定义计算即可得到结果.【解答】解:25的平方根等于±5,故答案为:±58.今年2月份,泰州市6个省级经济开发区共完成出口316000000美元,将这个数据用科学记数法表示,应为 3.16×108美元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:316000000=3.16×108.故答案为:3.16×108.9.连续抛掷一枚均匀的硬币两次,结果出现一正一反的概率等于.【考点】列表法与树状图法.【分析】举出所有情况,看一正一反的情况数占总情况数的多少即可.【解答】解:如图,共4种情况,一正一反的情况数有2种,所以概率是.故答案为:10.一组数据6,8,10的方差等于.【考点】方差.【分析】先求出这组数据的平均数,然后代入方差计算公式求出即可.【解答】解:平均数为:(6+8+10)÷3=8,S2=[(6﹣8)2+(8﹣8)2+(10﹣8)2]=[(4+0+4)=,故答案为:.11.如果两个相似三角形的相似比是2:3,较小三角形的面积为4cm2,那么较大三角形的面积为9cm2.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出面积比,根据题意计算即可.【解答】解:∵两个相似三角形的相似比是2:3,∴两个相似三角形的面积比是4:9,又较小三角形的面积为4cm2,那么较大三角形的面积为9cm2,故答案为:9.12.圆心角为120°的扇形,其面积等于12πcm2,则这个扇形的半径等于6cm.【考点】扇形面积的计算.【分析】设该扇形的半径是rcm,再根据扇形的面积公式即可得出结论.【解答】解:设该扇形的半径是rcm,则12π=,解得r=6.故答案是:6.13.如图,直线l1∥l2,∠2=40°,则∠1+∠3+∠4=220°.【考点】平行线的性质.【分析】根据平行线的性质得到∠ABE=∠1,∠EBC=∠BCF,∠FCD+∠4=180°,等量代换得到结论.【解答】解:如图,过B作BE∥l1,CF∥l1,∵直线l1∥l2,∴BE∥CF∥l1∥l2,∴∠ABE=∠1,∠EBC=∠BCF,∠FCD+∠4=180°,∴∠1+∠3+∠4=∠2+180°=220°,故答案为:220.14.如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,则∠D=110°.【考点】圆周角定理.【分析】连接BD,根据圆周角定理求出∠ADB及∠BDC的度数,进而可得出结论.【解答】解:连接BD,∵AB是半圆的直径,∴∠ADB=90°.∵∠BAC=20°,∴∠BDC=20°,∴∠D=∠ADB+∠BDC=90°+20°=110°.故答案为:110.15.如图,等腰直角三角形的斜边长AB=8,一直线l绕顶点B任意旋转,过A向l作垂线,垂足为H,则线段CH长的取值范围是0≤CH≤8.【考点】旋转的性质;等腰直角三角形.【分析】首先证明A、C、H、B四点共圆,再根据CH是弦即可确定其范围.【解答】解:如图,∵∠ACB=∠AHB=90°,∴A、C、H、B四点共圆,∵AB是直径,CH是弦,∴CH的最小值是0(此时C与H重合),CH的最大值是直径,∴0≤CH≤8.故答案为0≤CH≤8.16.如图,Rt△ABC的直角边BC在x轴上,斜边AC上的中线BD交y轴于点E,双曲线的y=(k>0)图象经过点A,若△BEC的面积为4,则k=8.【考点】反比例函数系数k的几何意义.【分析】由BD为Rt△ABC斜边AC上的中线,可得出BD=CD=AD,进而得出∠DCB=∠DBC,再由EO⊥BC得出∠BOE=CBA,从而得出△BOE∽△CBA,由相似三角形的性质可得出,再结合△BEC的面积为4以及反比例函数系数k的几何意义即可得出结论.【解答】解:∵BD为Rt△ABC斜边AC上的中线,∴BD=CD=AD,∴∠DCB=∠DBC,又∵EO⊥BC,∴∠BOE=CBA=90°,∴△BOE∽△CBA,∴,即BC•OE=OB•BA.又∵S△BCE=BC•OE=4,∴OB•BA=|k|=8,∴k=±8,∵k>0,∴k=8.故答案为8.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(1)﹣2sin60°+()﹣1﹣|1﹣|;(2)÷(x+2﹣).【考点】实数的运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2﹣2×+2﹣+1=3;(2)原式=÷=•=.18.袋中有1个红球和2个黑球,这些球除颜色外都相同,搅匀后从中任意摸除1个球,记录颜色后放回、搅匀,再从中任意摸出1球,像这样有放回地先后摸球2次.摸出红球得2分,摸出黑球得1分.(1)第一次摸得黑球的概率是多少?(2)两次摸球所得总分是4分的概率是多少?【考点】列表法与树状图法.【分析】(1)根据题意作出树状图,然后根据概率公式解答;(2)根据得分,写出两次都摸出红球的概率即可.【解答】解:(1)由题意画出树状图如下:第一次摸得黑球的概率是;(2)一共有9种情况,两次摸得红球的情况只有一次,所以,所得总分是4分的情况只有一种,所以,P(所得总分是4分)=.19.已知y1=x2﹣2x+3,y2=3x﹣k.(1)当x=1时,求出使等式y1=y2成立的实数k;(2)若关于x的方程y1+k=y2有实数根,求k的取值范围.【考点】根与系数的关系;根的判别式.【分析】(1)把x=1代入y1=y2即x2﹣2x+3=3x﹣k,得关于k的方程,解方程可得k的值;(2)由方程y1+k=y2即x2﹣2x+3+k=3x﹣k有实数根,可得△≥0,解不等式可得k的范围.【解答】解:(1)当x=1时,y1=2,y2=3﹣k,根据题意,得:2=3﹣k,解得:k=1;(2)由题意,x2﹣2x+3+k=3x﹣k,即x2﹣5x+3+2k=0有实数根,∴△=(﹣5)2﹣4(3+2k)≥0,解得:k≤.20.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为25%,该扇形圆心角的度数为90°;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)先求出参加社会实践活动的总人数,再乘以参加社会实践活动为6天的所占的百分比,求出参加社会实践活动为6天的人数,从而补全统计图;(3)用总人数乘以活动时间不少于5天的人数所占的百分比即可求出答案.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣5%﹣15%=25%,该扇形所对圆心角的度数为360°×25%=90°;故答案为:25,90°;(2)参加社会实践活动的总人数是:=200(人),则参加社会实践活动为6天的人数是:200×25%=50(人),补图如下:(3)该市初一学生第一学期社会实践活动时间不少于5天的人数约是:20000×(30%+25%+20%)=15000(人).21.小明用12元买软面笔记本,小丽用21元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?【考点】分式方程的应用.【分析】假设能买到相同数量的软面本和硬面本,设软面本每本x元,则硬面本(x+1.2)元,根据题意可得方程:=,解分式方程后可以算出答案.,【解答】解:假设能买到相同数量的软面本和硬面本,设软面本每本x元,则硬面本(x+1.2)元,根据题意可得方程:=,解得:x=1.6,经检验:x=1.6是原分式方程的解,12÷1.6=7.5,∵7.5不是整数.∴不能买到相同的两种笔记本.22.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=9米,求塔CD的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,在Rt△PEH中,∵tanβ==,即=,∴BF=8,∴PG=BD=BF+FD=8+9,在Rt△PCG中,∵tanβ=,∴CG=(8+9)•=8+3,∴CD=(9+3)米.答:塔CD的高度为(9+3)米.23.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据线段中点的定义可得BE=CE,再根据正方形的四条边都相等可得BC=CD,BE=BF,然后求出BF=CE,再利用“边角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得DE=CF;(2)设CE=x,根据∠CDE的正切值表示出CD,然后求出BE,从而得到∠BCF的正切值,再根据两直线平行,内错角相等可得∠BCF=∠GFH,然后根据等角的正切值相等解答即可.【解答】(1)证明:∵E是BC的中点,∴BE=CE,在正方形ABCD和正方形BFGE中,BC=CD,BE=BF,∴BF=CE,在△BCF和△CDE中,,∴△BCF≌△CDE(SAS),∴DE=CF;(2)解:设CE=x,∵∠CDE=30°,∴tan∠CDE==,∴CD=x,∵正方形ABCD的边BC=CD,∴BE=BC﹣CE=x﹣x,∵正方形BFGE的边长BF=BE,∴tan∠BCF===,∵正方形BGFE对边BC∥GF,∴∠BCF=∠GFH,∵tan∠GFH=,∴=.24.如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结AE、BE,BE交AC于点F,且∠AFE=∠EAB.(1)试说明E为的中点;(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.【考点】切线的性质.【分析】(1)只要证明∠EAD=∠ABE,根据∠EFA=∠EAB,∠EFA=∠FAB+∠FBA,∠EAB=∠EAF+∠FAB即可证明.(2)首先证明∠C=∠AOM,设半径为r,根据cos∠AOM==路程方程即可解决问题.【解答】解:(1)∵∠EFA=∠EAB,∠EFA=∠FAB+∠FBA,∠EAB=∠EAF+∠FAB,∴∠EAF=∠ABE,∴=,∴点E是中点.(2)如图,连接EO,交AD于M,∵=,∴OE⊥AD,AM=DM,设半径为r,∵∠C+∠CAB=90°,∠CAB+∠AOM=90°,∴∠C=∠AOM,∴cos∠AOM=cos∠C=,∵cos∠AOM=,EM=1,OM=r﹣1,AO=r,∴=,∴r=.∴⊙O半径为.25.已知两个一次函数y1=x+2﹣a和y2=﹣x+2+.(1)点(2,2)是否在这两个一次函数的图象上?为什么?(2)当a=2时,求这两个一次函数图象与x轴所围成的三角形的面积;(3)当a满足0<a<2时,求这两个一次函数图象与两坐标轴所围成的四边形面积的最小值.【考点】两条直线相交或平行问题.【分析】(1)将x=2代入两个函数解析式求出y的值,看是否等于2,即可判断.(2)求出两个函数图象与x轴的交点坐标,以及两个函数图象的交点即可解决问题.(3)画出图形,用分割法求面积,利用二次函数的性质解决这种问题.【解答】解:(1)点(2,2)在这两个一次函数的图象上.理由:∵x=2时,y1=×2+2﹣a=2,y2=﹣×2+2+=2,∴点(2,2)在这两个一次函数的图象上.(2)a=2,y1=x由x轴交于点(0,0),y2=﹣x+3与x轴交于点(6,0).∵(2,2,)是这两个一次函数的图象的交点,∴这两个一次函数图象与x轴所围成的三角形的面积为:×6×2=6.(3)如图所示,∵A(2,2),B(a2+2,0),C(0,2﹣a),∴这两个一次函数图象与两坐标轴所围成的四边形面积S=S△AOC+S△AOB=×(2﹣a)×2+×(a2+2)×2=a2﹣a+4=(a﹣)2+,∴a=时,S最小值=.26.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【考点】二次函数综合题.【分析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得k的值;(2)因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.如答图2,按照以上两种情况进行分类讨论,分别计算;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如答图3,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).(2)方法一:由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.与①同理,可求得:k=.综上所述,k=或k=.方法二:∵点P在第一象限内的抛物线上,∴∠ABP为钝角,①若△ABC∽△APB,则有∠BAC=∠PAB,∴K AP+K AC=0,∵C(0,﹣k),A(﹣2,0),∴K AC=﹣,∴K AP=,∵A(﹣2,0),∴l AP:y=x+k,∵抛物线:y=(x+2)(x﹣4),∴x2﹣6x﹣16=0,解得:x=8或x=2(舍)∴P(8,5k),∵△ABC∽△APB,∴,∴,∴k=,②若△ABC∽△APB,则有∠ABC=∠PAB,同理可得:k=;(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.=AH,AH与直线BD的交点,即为所求之F点.过点A作AH⊥DK于点H,则t最小∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∴F X=A X=﹣2,∴F(﹣2,).。

姜堰初中二模数学试卷答案

姜堰初中二模数学试卷答案

一、选择题1. 下列数中,既是质数又是偶数的是()A. 2B. 4C. 6D. 8答案:A2. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 20cmB. 25cmC. 30cmD. 40cm答案:C3. 如果a+b=5,a-b=3,那么a的值是()A. 4B. 3C. 2D. 1答案:A4. 下列函数中,自变量x的取值范围是全体实数的是()A. y=x^2B. y=1/xC. y=√xD. y=x^3答案:D5. 一个等腰三角形的底边长为8cm,腰长为10cm,它的面积是()A. 32cm^2B. 40cm^2C. 48cm^2D. 64cm^2答案:B二、填空题6. 一个数的平方根是±2,那么这个数是()答案:47. 如果a=2,b=-3,那么a^2+b^2的值是()答案:138. 一个等边三角形的边长为6cm,它的周长是()答案:18cm9. 下列数中,能被3整除的是()答案:910. 一个数的倒数是1/4,那么这个数是()答案:4三、解答题11. 解方程:3x-5=14解答:3x=14+5,3x=19,x=19/3答案:x=19/312. 计算下列表达式的值:(-2)^3 + 3×(-4) - 5解答:-8 + (-12) - 5 = -25答案:-2513. 一个正方形的对角线长为10cm,求它的面积。

解答:设正方形的边长为a,根据勾股定理,a^2 + a^2 = 10^2,2a^2 = 100,a^2 = 50,所以正方形的面积是50cm^2。

答案:50cm^214. 一个长方体的长、宽、高分别为5cm、3cm、4cm,求它的体积。

解答:长方体的体积公式为V=长×宽×高,所以V=5×3×4=60cm^3。

答案:60cm^315. 解不等式:2(x-3) > 8解答:2x - 6 > 8,2x > 14,x > 7答案:x > 7四、应用题16. 小明骑自行车去图书馆,已知图书馆距离小明家8km,他每小时骑行速度为10km/h,求小明骑行到图书馆需要的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省泰州市姜堰市溱潼实验中学中考数学二模试卷一.选择题(共6小题,每小题3分,满分18分)1.的倒数是()A.2018B.﹣2018C.﹣D.2.下列计算正确的是()A.(﹣3a)2=3a2B.a6÷a3=a2C.﹣3(a﹣1)=3﹣3a D.a•a2=a23.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2B.3C.4D.54.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1025.某篮球队5名场上队员的身高(单位:cm)是:183、187、190、200、210,现用一名身高为195cm 的队员换下场上身高为210cm的队员,与换人前相比,场上队员的身高()A.平均数变大,方差变大B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变小,方差变小6.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.二.填空题(共10小题,每小题3分,满分30分)7.对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)=.8.若二次根式在实数范围内有意义,则x的取值范围是.9.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是.10.因式分解:a3﹣9a=.11.若多项式2x2+3x﹣7的值为﹣10,则多项式6x2+9x+7的值为.12.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.13.二次函数y=x2﹣3x+c的图象与x轴有且只有一个交点,c=.14.已知底面半径为4cm,母线长为12cm的圆锥,则它的侧面展开图的圆心角为°.15.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=4,G是△ABC重心,则S=.△AGC16.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.三.解答题(共10小题,满分102分)17.(12分)(1)计算:;(2)先化简,再求值:,其中.18.(8分)某数学兴趣小组在全校范围内随机抽取了一部分学生进行“风味泰兴﹣﹣我最喜爱的泰兴美食”调查活动,将调查问卷整理后绘制成如下图所示的不完整的条形统计图和扇形统计图.调查问卷在下面四种泰兴美食中,你最喜爱的是()(单选)A.黄桥烧饼B.宣堡小馄饨C.蟹黄汤包D.刘陈猪四宝请根据所给信息解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图,并计算扇形统计图中“A”部分所对应的圆心角的度数为;(3)若全校有1200名学生,请估计全校学生中最喜爱“蟹黄汤包”的学生有多少人?19.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)目前节能灯已基本普及,节能还环保,销量非常好,某商场计划购进甲、乙两种型号节能灯共1200只,这两种节能灯的进价、售价如表所示:(1)商场应如何进货,使进货款恰好为46000元?(2)若商场销售完节能灯后获利不超过进货价的30%,至少购进甲种型号节能灯多少只?21.(10分)如图,菱形ABCD的边长为,对角线AC、BD交于O,且DE∥AC,AE∥BD.(1)判断四边形AODE的形状并给予证明;(2)若四边形AODE的周长为14,求四边形AODE的面积.22.(10分)如图,一次函数y=﹣x+6的图象与反比例函数y=(k>0)的图象交于A、B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为2.5.(1)求反比例函数的表达式;(2)在y轴上有一点P,当PA+PB的值最小时,求点P的坐标.23.(10分)济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B 处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)24.(10分)《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表累进计算:(纳税款=应纳税所得额×对应税率)(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)若某乙一月份应缴所得税款95元,那么他一月份的工资、薪金是多少元?25.(12分)如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.(1)填空:直线OC的解析式为;抛物线的解析式为;(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE的面积为S,求S的取值范围.26.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.2019年江苏省泰州市姜堰市溱潼实验中学中考数学二模试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.【点评】本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵(﹣3a)2=9a2,∴选项A不符合题意;∵a6÷a3=a3,∴选项B不符合题意;∵﹣3(a﹣1)=3﹣3a,∴选项C符合题意;∵a•a2=a3,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,要熟练掌握.3.【分析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.【解答】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7600=7.6×103,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】分别计算出原数据和新数据的平均数和方差即可得.【解答】解:原数据的平均数为×(183+187+190+200+210)=194(cm),方差为×[(183﹣194)2+(187﹣194)2+(190﹣194)2+(200﹣194)2+(210﹣194)2]=95.6(cm2),新数据的平均数为×(183+187+190+200+195)=191(cm),方差为×[(183﹣191)2+(187﹣191)2+(190﹣191)2+(200﹣191)2+(195﹣191)2]=35.6(cm2),∴平均数变小,方差变小,故选:D.【点评】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.6.【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【解答】解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,解得:x=,∴sin∠BED=sin∠CDF==.故选:B.【点评】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.二.填空题(共10小题,满分30分,每小题3分)7.【分析】求出6*3=1,再求出7*1即可.【解答】解:∵6*3==1,∴7*1==,即7*(6*3)=,故答案为:.【点评】本题考查了对算术平方根的应用,主要考查学生的计算能力和理解能力.8.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.9.【分析】由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.【解答】解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,所以朝上一面的点数不小于3的概率是=,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.10.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【分析】由已知多项式的值求出2x2+3x的值,原式变形后代入计算即可求出值.【解答】解:∵2x2+3x﹣7=﹣10,∴2x2+3x=﹣3,则原式=3(2x2+3x)+7=﹣9+7=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.【点评】本题考查了等腰直角三角形以及平行线的性质,根据平行线的性质结合对顶角相等,找出∠3=∠1+∠2是解题的关键.13.【分析】根据判别式的意义得到△=(﹣3)2﹣4c =0,然后解关于c 的方程即可.【解答】解:∵二次函数y =x 2﹣3x +c 的图象与x 轴有且只有一个交点,∴△=(﹣3)2﹣4c =0,∴c =.故答案为.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.14.【分析】圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:8πcm ,设圆心角的度数是n 度.则=8π,解得:n =120.故答案为120.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.【分析】延长AG 交BC 于E .易知S △AGC =×S △AEC ,由此计算即可解决问题.【解答】解:延长AG 交BC 于E .∵∠BAC =90°,AB =6,AC =4,∴S △ABC =•AB •AC =12,∵G 是△ABC 的重心,∴AG =2GE ,BE =EC ,∴S △AEC =×12=6,∴S △AGC =×S △AEC =4,故答案为4.【点评】本题考查三角形的面积,三角形的重心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【分析】连接AQ ,首先证明△ABP ∽△QBA ,则∠APB =∠QAB =90°,然后求得点P 与点C 重合时,AQ 的长度即可.【解答】解:如图所示:连接AQ .∵BP •BQ =AB 2,∴=.又∵∠ABP =∠QBA ,∴△ABP ∽△QBA ,∴∠APB =∠QAB =90°,∴QA 始终与AB 垂直.当点P 在A 点时,Q 与A 重合,当点P 在C 点时,AQ =2OC =4,此时,Q 运动到最远处,∴点Q 运动路径长为4.故答案为:4.【点评】本题主要考查的是相似三角形的判定和性质,证得△ABP ∽△QBA 是解题的关键.三.解答题(共10小题,满分102分)17.【分析】(1)先计算负整数指数幂、零指数幂、乘方、化简二次根式并代入特殊锐角三角函数值,再进一步计算乘法和加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x和y的值代入计算可得.【解答】解:(1)原式=﹣2+1﹣1﹣(2﹣)×=﹣2﹣×=﹣2﹣1=﹣3.(2)原式=﹣×﹣×(x+y)(x﹣y)=﹣﹣(x﹣y)=﹣x+y,当时,原式=﹣1+3﹣3﹣1=﹣2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【分析】(1)用B种小吃的人数除以对应百分比可得样本容量;(2)根据四种小吃的人数之和等于总人数求得C的人数,据此可补全条形图,用360°乘以A 部分人数占总人数的比例可得;(3)用总人数乘以样本中C种类人数占被调查人数的比例即可得.【解答】解:(1)本次抽样调查的样本容量是15÷30%=50,故答案为:50;(2)C种小吃的人数为50﹣(10+15+5)=20(人),补全条形图如下:扇形统计图中“A”部分所对应的圆心角的度数为360°×=72°,故答案为:72°;(3)估计全校学生中最喜爱“蟹黄汤包”的学生有1200×=480(人).【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.19.【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)设购进甲型节能灯x只,乙型节能灯y只,根据“总数量为1200只、进货款恰好为46000元”列方程组求解可得;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,根据“获利最多不超过进货价的30%”列出不等式求解可得.【解答】解:(1)设购进甲型节能灯x只,乙型节能灯y只,根据题意,得:,解得:,答:购进甲型节能灯400只,乙型节能灯800只,进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,由题意,得:(30﹣25)a+(60﹣45)(1200﹣a)≤[25a+45(1200﹣a)]×30%,解得:a≥450.答:至少购进甲种型号节能灯450只.【点评】此题主要考查了二元一次方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,设出未知数,列出方程与不等式.21.【分析】(1)证出四边形AODE为平行四边形,由菱形的性质得出AC⊥BD,即可得出结论;(2)设AO=x,则OD=7﹣x,在Rt△AOD中,由勾股定理得出方程,解方程即可.【解答】(1)解:四边形AODE为矩形.理由如下:∵DE∥AC,AE∥BD.∴四边形AODE为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,即∠AOD=90°∴四边形AODE为矩形;(2)解:∵四边形AODE的周长为14,∴AO+OD=7,设AO=x,则OD=7﹣x在Rt△AOD中,由勾股定理得:x2+(7﹣x)2=()2,∴解得:x=2或x=5∴四边形AODE的面积为2×5=10.【点评】本题考查了矩形的判定、菱形的性质、平行四边形的判定以及勾股定理;熟练掌握菱形的性质和勾股定理是关键.22.【分析】(1)反比例函数k的几何意义;(2)作点A关于y轴的对称点C,连接BC交y轴于P点.联立方程组解出A、B坐标,利用已知点求出直线BC的解析式,P是直线BC与y轴的交点.【解答】解:(1)设A(m,n),则=2.5,∵S△AOM∴|k|=2.5,∵k>0,∴k=5,∴反比例函数的表达式为y=.(2)如图,作点A关于y轴的对称点C,连接BC交y轴于P点.∵A,B是两个函数图象的交点,∴,解得或,∴A(1,5),B(5,1),∴C(﹣1,5),设y BC=kx+b,代入B,C两点坐标得,解得,∴y=﹣x+,∴P(0,).【点评】考查知识点:反比例函数k的几何意义;一次函数与反比例函数交点的求法;待定系数法求函数解析式.23.【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.24.【分析】(1)由题意,甲得到的月工资、薪金所得为x元(1300<x<2800),则对应的纳税区间为:1300﹣800=500;2800﹣800=2000,即对应的纳税款区间为:超过500元至2000元的部分,即可得出y与x的函数关系式(2)将税款95元代入(1)中求解函数关系式中即可得出一月份的工资、薪金.【解答】解:由题意(1)∵甲得到的月工资、薪金所得为1300~2800元,则对应的纳税范围为:1300﹣800=500;2800﹣800=2000,即对应的纳税款区间为:超过500元至2000元的部分∴y=500×5%+(x﹣1300)×10%=0.1x﹣105故y与x的函数关系式为:y=0.1x+105(2)某乙一月份应缴所得税款95元,由(1)关系式可知,令y=95.得95=0.1x+105,解得x =2000,满足所对应的纳税区间.即他一月份的工资、薪金是2000元.【点评】此题考查的一次函数的应用,在此类题型中要懂得判断最后计算出来的工资、薪金是否在对应的纳税区间中.25.【分析】(1)本题须先求出点C的坐标然后即可求出直线OC的解析式和抛物线的解析式.(2)①本题首先需根据抛物线的移动规律设出抛物线的解析式,再根据平行四边形的性质即可得出m的值.②本题需先求出△BOE的面积S与m的关系,再根据m的取值范围即可求出S的取值范围.【解答】解:(1)∵OA=2,AB=8,点C为AB边的中点∴点C的坐标为(2,4)点,设直线的解析式为y=kx则4=2k,解得k=2∴直线的解析式为y=2x,设抛物线的解析式为y=kx2则4=4k,解得k=1∴抛物线的解析式为y=x2(2)设移动后抛物线的解析式为y=(x﹣m)2+2m 当OD=BC,四边形BDOC为平行四边形,∴OD=BC=4,①则可得x=0时y=4,∴m2+2m=4,∴(m+1)2=5解得,(舍去),所以y=+2×(﹣1+)=﹣2+2,②∵BE=8﹣[(2﹣m)2+2m]=4+2m﹣m2=BE•OA∴S△BOE=(4+2m﹣m2)×2=﹣m2+2m+4=﹣(m﹣1)2+5,而0≤m≤2,所以4≤S≤5.【点评】本题主要考查了二次函数综合应用,在解题时要注意结合题意求出抛物线的解析式并能列出方程是本题的关键.26.【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得=,结合AB=2BO即可得;(3)证ECD∽△EGC得=,根据CE=3,DG=2.5知=,解之可得.【解答】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴=,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴=,∵CE=3,DG=2.5,∴=,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点评】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.。

相关文档
最新文档