秩和检验

合集下载

第九讲 秩和检验

第九讲 秩和检验


比“定量”粗,而比一般的“定性”细; 等级间既非等距,亦不能度量。
秩和检验

秩和检验是非参数统计中一种常用的检 验方法,其中“秩”又称等级、即按数 据大小排定的次序号,上述次序号的和 称“秩和”,秩和检验就是用秩和作为 统计量进行假设检验的方法。
秩和检验



配对资料符号秩和检验 单个样本的秩和检验 两样本比较的秩和检验 多个样本比较的秩和检验 随机区组设计的秩和检验
13.80 3.03 15.20
9.50
6.80 3.48 5.50
1.00
7.00 -0.45 9.70
2.5
6 -1 11
14
16.50
9.00
7.50
8.5
步骤
1.
2.
3.
建立建设:H0:差值的总体中位数=0, H1:差值的总体中位数0; =0.05 计算统计量 计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 查表及结论 n=12,查T界值表T0.05(10)=13~65,P<0.05, 拒绝H0。
取平均秩次。再将各处理组的秩次相加,得到各处理 组的秩和Rj。
3.计算检验统计量M : M (Rj R)2
17 19.5 17 16.5 R 17.5 4
M (17 17.5)2 (19.5 17.5)2 (17 17.5)2 (16.5 17.5)2 5.5
T值在界值范围内,p>0.05,不拒绝H0,当T值在界 值上或界值范围外, p<0.05 ,H0成立的概率很小, 拒绝它,认为两总体分布不同。

秩和检验【医学统计学】

秩和检验【医学统计学】

568.4
14.0
384.6
3.0
556.2
13.0
369.1
1.0
435.7
7.0
377.8
2.0
574.8
15.0
436.7
8.0
468.7
12.0
662.9
19.5
433.4
6.0
582.8
16.5
442.3
10.0
438.1
9.0
426.1
5.0
n1 10
T1 101
n2 12
T2 152
2.求检验统计量T 值
①省略所有差值为0的对子数,观察单位数减去0对子数 的个数 ②按差值的绝对值从小到大编秩,绝对值相等的差值若 符号不同取平均值,并保持原差值的正负号;
③任取正秩和或负秩和为T,本例取T-=3。
3. 确定P 值,作出推断结论
2020/8/8
15
检验步骤
查附表12 • 本例T=3,n=10,
3 9 6 8 7 -1 10 4 -2 5
T 52 T 3
2020/8/8
10
配对符号秩检验基本思想
• 当H0(差值的总体中位数Md=0)成立,任一配对差值出现正号、负号的 机会均等,秩和T-与T+的理论数也应相等为n(n+1)/4
• 可以证明:
• H0为真时,秩统计量T是对称分布 • H0非真时,T呈偏态分布
单纯⑴虚寒型 ⑵3 ⑶6 ⑷25 ⑸26 13 ⑻ 73
喘息虚寒型
1
3 10
9
3 26
虚寒阻塞型 16 28 61 27 ⑹9 141
2020/8/8
21

秩和检验零值编秩原则

秩和检验零值编秩原则

秩和检验零值编秩原则摘要:1.秩和检验概述2.零值编秩原则的定义3.零值编秩原则的应用4.零值编秩原则的优点与局限性正文:一、秩和检验概述秩和检验(Wilcoxon signed-rank test)是一种非参数检验方法,用于检验两个样本之间是否存在显著差异。

该方法由美国统计学家Wilcoxon 于1945 年提出,适用于总体分布不明、分布不对称以及组间方差不齐的情况下进行比较。

二、零值编秩原则的定义零值编秩原则是秩和检验中一种重要的编秩方法,其主要思想是将所有零值替换为最小的非零值,然后再进行排序。

具体操作步骤如下:1.对两个样本的数据进行合并,并按从小到大的顺序进行排序;2.将合并后的数据中所有零值替换为最小的非零值;3.根据替换后的数据,计算各数据点的秩次;4.根据秩次计算检验统计量,进而判断两组样本之间是否存在显著差异。

三、零值编秩原则的应用零值编秩原则在秩和检验中具有广泛的应用,尤其在处理数据中含有大量零值的情况时,可以有效地提高检验效能。

例如,在医学研究中,对两组治疗方法的效果进行比较时,可能会遇到一些患者未出现明显疗效的情况,这时采用零值编秩原则可以更好地分析数据。

四、零值编秩原则的优点与局限性1.优点:(1)适用于各种分布类型的数据;(2)对数据中的零值处理更加合理;(3)能有效提高检验效能,尤其适用于数据中含有大量零值的情况。

2.局限性:(1)零值编秩原则依赖于非零值的分布,当非零值分布严重偏态时,可能影响检验结果的准确性;(2)当样本量较小时,零值编秩原则可能无法充分发挥作用。

在这种情况下,可以考虑使用其他非参数检验方法,如Mann-Whitney U 检验等。

总之,零值编秩原则为秩和检验提供了一种有效的编秩方法,尤其在处理含有大量零值的数据时具有较高的实用价值。

秩和检验

秩和检验
结果: W检验:W1=0.865,P=0.019<0.05; W2=0.891,P=0.014<0.05; W3=0.937, P=0.232>0.05 其中两组独立样本资料均不符合正态分布
三、建立假设检验,确定检验水准
H0: 三组总体分布相同,即三组吞噬指数的总体 分布相同
H1: 三组总体分布不全相同,即三组吞噬指数的 总体分布不全相同
787.47
880.83
差值
10
27.88
1.15
154.72
结果展示: 根据样本数据分布类型,选择合适的表示方法 正态分布时,用均数和标准差表示(mean±SD) 偏态分布时,用中位数和四分位间距表示
两样本比较的秩和检验
例2、在河流监测断面优化研究中,研究者从某河流甲乙两个
断面分别随机抽取10和15个样本,测得其亚硝酸盐氮(mg/L)
表1 不同剂量组小鼠肝糖原含量(mg/100g)
小鼠对号 1 2 3 4 5 6 7 8 9 10
中剂量组 620.16 866.50 641.22 812.91 738.96 899.38 760.78 694.95 749.92 793.94
高剂量组 958.47 838.42 788.90 815.20 783.17 910.92 758.49 870.80 862.26 805.48
要求掌握内容
计算机操作
配对比较的秩和检验 两样本比较的秩和检验 多个独立样本比较的秩和检验
结果的表达
配对比较的秩和检验
例1、某研究者欲研究保健食品对小鼠抗疲劳作用,将同种属的小鼠按性 别和年龄相同、体重相近配成对子,共10对,并将每对中的两只小鼠随 机分到保健食品两个不同的剂量组,过一定时期将小鼠处死,测得其肝 糖原含量(mg/100g),结果见表1,问不同剂量组的小鼠肝糖原含量有 无差别?

第十一讲 秩和检验

第十一讲 秩和检验

适用范围
1、成组设计的两样本计量数据,不符合 t 检 验的条件(方差相等,且服从正态分布); 2、两组等级资料或两端无确切值的资料。
一、原始数据的两样本比较
基本思想: • 假定:两组样本的总体分布形式相同(即 H0成立),则两样本来自同一总体,且任 一组秩和不应太大或太小 。即T 与平均秩 和 n1(N+1)/2应相差不大。 N = n1+n2
• 前面介绍的检验方法首先假定分析变量 服从特定的已知分布(如正态分布), 然后对分布参数(如均数)作检验。这 类 检 验 方 法 称 参 数 检 验 ( parametric test)。 • 今天介绍的检验方法不对变量的分布作 严格假定,这类检验称非参数检验 (nonparametric test)。
非参数统计
(nonparametric statistics)
对总体的分布类型不 作特殊要求 ,统计 推断时不涉及参数 不受总体参数的影响,比 较的是分布或分布位置
依赖于特定分布类 型,比较的是参数
非参数统计的适用情况
• • • • • 等级资料 偏态分布资料 分布不明资料 个别数据偏离过大的资料 各组方差明显不齐的资料
• 确定P值: 以较小绝对值的秩和为T值。 本例T=3.5 以n=11查附表6(P268,单侧) p<0.005, • 判定结果: 按α=0.05水准,拒绝H0,接受H1,故可以 认为该厂工人尿氟含量高于当地健康人。
第二节 成组设计两样本比较 的秩和检验
Wilcoxon rank sum test
这下面一行(记为Ri)就是上面一行数 据Xi的秩。
秩和检验原理
• 秩和检验(rank sum test):是通过对数 据依小到大排列的秩次,以求秩次之和来 进行假设检验的方法。

秩和检验

秩和检验
结论:可以认为该保健食品的不同 剂量对小鼠肝糖原含量的作用不同
12
五、统计结果表达
表2 比较不同剂量的保健食品对小鼠抗疲劳作用的秩和检验
分组
例数 中位数 25百分位数 75百分位数 Z 统计量 P值
中剂量组 10 755.35
681.52
826.31 -2.193 0.028
高剂量组 10 826.81
秩和检验
(Rank Sum Test)
1
秩和检验(rank sum test)
秩和检验是一种非参数检验(non-parametric test)。它不依赖于总体分布的具体形式,应 用时可以不考虑被研究对象为何种分布以及分 布是否已知,因而适用性较强。
秩和检验是总体分布之间而不是参数(参数检 验,如t检验、方差分析)之间的检验。
787.47
880.83
差值
10
27.88
1.15
154.72
结果展示: 根据样本数据分布类型,选择合适的表示方法 正态分布时,用均数和标准差表示(mean±SD) 偏态分布时,用中位数和四分位间距表示
13
两样本比较的秩和检验
例2、在河流监测断面优化研究中,研究者从某河流甲乙两个
断面分别随机抽取10和15个样本,测得其亚硝酸盐氮(mg/L)
4
要求掌握内容 计算机操作
配对比较的秩和检验 两样本比较的秩和检验 多个独立样本比较的秩和检验
结果的表达
5
配对比较的秩和检验
例1、某研究者欲研究保健食品对小鼠抗疲劳作用,将同种属的小鼠按性 别和年龄相同、体重相近配成对子,共10对,并将每对中的两只小鼠随 机分到保健食品两个不同的剂量组,过一定时期将小鼠处死,测得其肝 糖原含量(mg/100g),结果见表1,问不同剂量组的小鼠肝糖原含量有 无差别?

医学统计学秩和检验

医学统计学秩和检验
诊断和疗效评价
在医学研究中,秩和检验常用于比较两种或多种治疗方案的效果,如药物、手术等。通过 对秩和的统计分析,可以得出哪种方案更有效的结论。
疾病流行病学研究
在疾病流行病学研究中,秩和检验可用于分析不同人群或地区的发病率或死亡率差异。通 过对这些数据的分析,可以评估不同因素对疾病发生的影响。
临床决策支持
秩和检验在临床决策支持系统中也得到广泛应用。通过对病人的各种指标进行统计分析, 医生可以更好地了解病人的病情,从而制定更有效的治疗方案。
生物领域的应用
01
基因表达分析
在基因表达分析中,秩和检验可用于比较不同样本之间的基因表达谱
差异。通过对基因表达谱的统计分析,可以找出与特定疾病或生理过
程相关的关键基因。
根据样本数据计算检验统计量的值。
确定显著性水平
确定在假设检验中拒绝零假设的最小显著 性水平。
假设检验的推断与解释
推断
根据计算出的p值或其他统计指标,推断样 本数据所来自的总体的特性或参数。
解释
解释推断结果,考虑研究的假设和目的, 结合其他相关信息做出科学结论。
05
秩和检验的实际应用与案例 分析
医学领域的应用
社会科学研究
在社会科学研究中,秩和检验常用于比较不同群体或地区的经济社会指标差异。通过对这些数据的统计分析,可以评估不同 因素对社会发展的影响。
公共政策评估
秩和检验可用于评估公共政策的效果。通过对政策实施前后的数据进行统计分析,可以得出政策是否有效的结论,从而为 政策制定者提供参考。
市场调研
在市场调研中,秩和检验可用于比较不同产品或品牌的市场占有率差异。通过对这些数据的统计分析,可以帮助企业了解 市场状况,从而制定更有效的市场策略。

秩和检验

秩和检验

某药对两种病情的老年慢性支气管炎患者的疗效
合 计 秩次范围 平均秩 次 秩 单纯性 和 肺气肿
控 制 显 效 有 效 无 效 合 计
65 42 107 1~107 18 6
54
3510 2151 4740
2268 717 3634
24 108~131 119.5 53 132~184 158
30 23 13 11
(2)大样本时,正态近似法:
| T n( n 1 ) / 4 | 0.5 u n( n 1 )( 2n 1 ) / 24
校正公式:(当相持个数较多时)
u | T n( n 1 ) / 4 | 0.5 ( t3 tj ) n( n 1 )( 2n 1 ) j 24 48
12 342 602 262 H 3(15 1) 6.32 15(15 1) 5 5 5
2 i
Hc H C
分子为H值,分母C为校正数,
tj C 1 N N 校正后,Hc>H,P值减小。
3 j 3
t
HC 1
H ( t3 tj ) j N3 N
此例n1=82,n2=126,n2-n1=44, 用正态分布法。求u值
计算校正的uc值,即:
8780.5 82 208 1 / 2 0.5 u 0.4974 82 126 208 1) 12 ( /
tj ( 3 107 243 24 533 53 243 24 107 )( )( )( ) C 1 1 0.8443 3 N N 208 208
3 j 3
t
0.4974 uc 0.541 0.8443
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非参数统计的主要优点
①由于没有条件限制,适用范围广。它可适用于有序分类资料、 偏态分布资料、变异较大或方差不齐的资料、分布型不明的资 料及有特大、特小值或数据的某一端有不确定数值的资料。 ②搜集资料方便。由于非参数统计在搜集资料时可用“等级”或 “符号”来评定观察结果,因而搜集资料十分方便,更符合实 际情况。 ③具有较好的稳健性。参数检验是建立在严格的假定条件的基础 上,一旦不符合假定条件,其推断的正确性将受到质疑。非参 数检验则是带有最弱的假定,所受条件限制很少,稳健性好。
配对符号秩检验基本思想
H0为真时,T服从对 称分布,大多数情况下,T 在对称点n(n+1)/4附近。
H0为非真时,T呈
偏态分布,大多数的情 况下,T远离对称点为
n(n+1)/4。
符号秩检验的基本思想
可以证明:当H0(Md=0)成立时,任一配对的差值出现正号与负 号的机会均等,因此,秩和T+与T-的理论数(期望值)也应相等, 由T+与T-之和为n(n+1)/2可知,T+与T-的理论数为n(n+1)/4,当n 很大时,T近似服从均数T为n(n+1)/4,方差为n(n+1)(2n+1)/2 4的正态分布。 H0不成立时,统计量T呈偏态分布,并且在大多数情况下T远离n (n+1)/4 。 因此,在H0成立的情况下T远离n(n+1)/4为小概率事件,可认为 在一次抽样中是不会发生的,故当出现这种情况时推断拒绝H0。
第一节 配对设计资料的符号秩 和检验
(Wilcoxon signed-rank test)
一、基本思想 二、检验步骤
一、基本思想
符号秩和检验:是由Wilcoxon于1945年提出,又称 Wilcoxon 符号秩检验 常用于检验差值的总体中位数是否等于零 配对资料有: 同对的两个受试对象分别接受不同处理 同一样品用两种不同方法测试 同一受试对象处理前后的比较或不同部位测定值比较
1 f ( x) e 2
( X )2 2 2
正态分布有几个参数 ?
1 f ( x) e 2
σ1
( x )2 2 2
, x
σ2 μ1 μ2
隐含假设是方差相等(齐性)
参数检验的特点
•分析目的:对总体参数(μ或π)进行估计或检验。 •分布:要求总体分布已知,如:
T+=18.5
T-=36.5
分析步骤:
1.建立检验假设,确定检验水准
H0:两法检测结果相同,即差值总体中位数等于零,Md=0 H1:两法检测结果不同,即差值的总体中位数Md≠0 α=0.05
2. 选择检验方法、计算统计量 ⑴编秩: ⑵求秩和:本例按双侧检验,T=T+=18.5。 3.确定P值、做出推论
1(
n+1)/2不应该相差很大;如相差悬殊,超出所列界值范围,
就怀疑H0,接受H1。提示两总秩 2.分别求两组的秩和 3.以样本量较小组的秩和为T 4.查成组设计的T界值表、确定P值
如果n1>10或n2>20则可用正态近似法:
• 当相同秩次较多时用校正公式:
第九章
秩和检验
计 量 资 料
计 数 资 料
参 数 统 计 非 参 数 统 计
t 检验 F 检验 u 检验
秩和检验
参数统计
(parametric statistics ) 前面学习的统计方法如t检验和方差分析,都有一定的适用条 件,即要求样本来自正态总体,并且方差齐性(Homogeneity of Variance);并对总体分布的参数(如总体均数)进行估计和检验。
T界值表(配对比较的符号 秩和检验用)”,若检验统计量T值在Tα界值范围内,其P> α;若T值在Tα上、下界值范围外,则P<α。
查“附表7
正态近似法
n>25时,T分布近似正态分布可用正态近似法作u检验:
相同秩次较多时的校正值
注意:仍为非参数检验

配对符号秩检验基本思想
表 n=5时秩和T的分布
非参数统计的主要缺点
对适宜用参数方法的资料,若采用非参数处理,因没有充 分利用资料提供信息,而使检验效率降低,会增加Ⅱ类错误 (假阴性)的概率。反之,如果不符合参数检验的条件,非参数 检验有极高的检验效率。
β
α
非参数统计的基本思想
非参数检验是一种与总体分布无关的统计方法,它不比较 参数,而是通过比较分布的位置来完成统计检验。 基本思想是基于秩次(通过编秩,用秩次代替原始数据信 息来进行检验)即检验各组的平均秩是否相等。如果经检验得 各组的平均秩不相等,则可以推论数据的分布不同,进一步可 推论各分布间分布位置发生了平移。
两组各有5个变量值。现在依从小到大的顺序将它们排列起来, 并标明秩次,结果如下: A组 秩次 B组 秩次 2.6 3.5 1.7 1 3.2 5 2.3 2 4.7 8 2.6 3.5 5.2 9 3.6 6 6.4 10 3.7 7
平均秩次=
7 8 9 10 8.5 4
3 45 6 4.5 平均秩次= 4
非参数检验适用范围
实际工作中,非参数统计方法可以发挥作用的情形有:
①总体分布形式未知或分布类型不明;尤其是对于分布不知是否正态的小样本 资料。 ②分布呈非正态而又无适当数据转换方法的偏态分布的资料(非正态分布的资 料): ③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表 示 ——单向有序行×列表资料 ④不满足参数检验条件的资料:各组方差明显不齐。 ⑤数据一端或两端是不确定数值(必选),如“>50kg”等。
非参数统计的主要优点
非参数检验比较的常常是中位 数,而中位数具有较好的耐极端 值的作用。 将变量值从小到大或从弱到 强转换成秩后再计算检验统计量, 从而推断一个总体表达分布位置 的中位数M和已知M0、两个或多 个总体的分布是否不同。 特点:对总体分布的形状差 别不敏感,只对总体分布的位置 差别敏感。
A组:- ± + + + ++ B组: + ++ ++ ++ +++ +++ 1 2 4.5 4.5 4.5 4.5 8.5 8.5 8.5 8.5 11 12
秩次
TA 25 TB 53
N ( N 1) T总 1 2 3 N 2
T总 = 12 ×(12+1)/2 = 78 = TA + TB
n1=7 秩和=93.5
n2=10 秩和=59.5
二、检验步骤
1.建立假设、确定检验水准
H0:两组工人血铅值的总体分布相同; H1:两组工人血铅值的总体分布不同 α=0.05
2.选择检验方法、计算统计量 ⑴编秩: ⑵求T值:分别求两组秩和。本例:n1=7,n2=10,T=93.5 3.确定P值、做出推论 由n1、n2-n1查“附表8,若T值在T界值范围 内,则P>α;若T值在界值范围外或等于界值,则P≤α。
Frank Wilcoxon, (1892-1965)
Frank Wilcoxon,是英国生物化学家、统 计学家。 Wilcoxon利用统计学方法研究植物病理学。 一生共发表论文70余篇。他首次引入了两 样本非参数检验方法。 两个著名的非参数方法:Wilcoxon signed -rank test 、 Wilcoxon rank-sum test 就是以他的名字命名的。
非参数统计
(nonparametric statistics ) 又称秩转换的非参数检验或秩和检验(Rank sum test)
对总体分布不做严格假定,也不对总体参数进行统计推 断,而是直接对总体分布的位置进行假设检验。由于这类方 法不受总体参数的限制,故称非参数检验,又称任意分布检 验(distribution-free test)。
ti为第i个相同秩次的个数
二、检验步骤
(一)两组数值变量资料的秩和检验 (二)两组有序分类变量资料的秩和检验
【例9-2】 测得铅作业与非铅作业工人的血铅值(μmol/L) 见表9-2,问两组工人的血铅值有无差别?
表9-2 两组工人的血铅(μmol/L) 铅作业组 血铅值 0.82 0.87 0.97 1.21 1.64 2.08 2.13 秩次 9 10.5 12 14 15 16 17 非铅作业组 血铅值 0.24 0.24 0.29 0.33 0.44 0.58 0.63 0.72 0.87 1.01 秩次 1 2 3 4 5 6 7 8 10.5 13
• 连续性资料 ——正态分布 • 计数资料——二项分布、Poisson分布等
统计量:有明确的理论依据(t分布、u分布) 有严格的适用条件,如:
•正态分布 •总体方差齐 •数据间相互独立 Normal distribution Equal Variance Independent
条件不满足时——采用非参数统计的方法。
T(秩和)(1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 合计 0 1 2 3 4 5 1+2+3 1+2+4 1+2+5 1+3+5 1+4+5 1+2+3+5 1+2+4+5 1+3+4+5 2+3+4+5 1+2+3+4+5 1+2 1+3 1+4 1+5 2+5 3+5 4+5 2+3+5 2+4+5 3+4+5 2+3 2+4 3+4 1+3+4 2+3+4 1+2+3+4 秩和组成情况(2) f(3) 1 1 1 2 2 3 3 3 3 3 3 2 2 1 1 1 32 概率(4) 0.03125 0.03125 0.03125 0.06250 0.06250 0.09375 0.09375 0.09375 0.09375 0.09375 0.09375 0.0625 0.0625 0.03125 0.03125 0.03125 1.0000
相关文档
最新文档